Grid-Based Graphs, Linear Realizations, and the Buratti-Horak-Rosa (BHR) Conjecture

Onur Ağırseven

CODESCO'24

July 9, 2024

Initial Problem (by Marco Buratti)

Listing all the elements in \mathbb{Z}_{v} with given (multiset of) minimal cyclic step-lengths.

Initial Problem (by Marco Buratti)

Listing all the elements in \mathbb{Z}_{v} with given (multiset of) minimal cyclic step-lengths.

Initial Problem (by Marco Buratti)

Listing all the elements in \mathbb{Z}_{v} with given (multiset of) minimal cyclic step-lengths.

Example multiset: $\{1,1,2,2,2,3\}=\{1^2,2^3,3^1\}$

Initial Problem (by Marco Buratti)

Listing all the elements in \mathbb{Z}_{v} with given (multiset of) minimal cyclic step-lengths.

Example multiset: $\{1, 1, 2, 2, 2, 3\} = \{1^2, 2^3, 3^1\}$

Example list: [0, 2, 3, 1, 5, 6, 4]

Equivalent Problem (by Marco Buratti) Finding Hamiltonian paths in K_v with given (multiset of) cyclic edge-lengths.

Equivalent Problem (by Marco Buratti)

Finding Hamiltonian paths in K_v with given (multiset of) cyclic edge-lengths.

Equivalent Problem (by Marco Buratti)

Finding Hamiltonian paths in K_v with given (multiset of) cyclic edge-lengths.

Example multiset: $\{1,1,2,2,2,3\}=\{1^2,2^3,3^1\}$

Equivalent Problem (by Marco Buratti)

Finding Hamiltonian paths in K_v with given (multiset of) cyclic edge-lengths.

Example multiset: $\{1,1,2,2,2,3\}=\{1^2,2^3,3^1\}$

Example path: [0, 2, 3, 1, 5, 6, 4]

For L multiset of v-1 positive integers not exceeding $\lfloor v/2 \rfloor$

a. If v is prime, then K_v has a Hamiltonian path with cyclic edge-lengths as L (i.e. L has a **realization**).

(conjecture by Marco Buratti in 2007)

For L multiset of v-1 positive integers not exceeding $\lfloor v/2 \rfloor$

a. If v is prime, then K_v has a Hamiltonian path with cyclic edge-lengths as L (i.e. L has a **realization**).

(conjecture by Marco Buratti in 2007)

b. There is a realization for L if and only if for any divisor d of v, the number of multiples of d in L is at most v - d.

(conjecture by Peter Horak and Alexander Rosa in 2009, reformulated by Anita Pasotti and Marco Pellegrini in 2014)

3. Known Results on the Buratti-Horak-Rosa Conjecture

|U| = 1: Trivial. (**Note:** U is the underlying set of L)

|U| = 2: Solved!

For prime v: Jeff Dinitz and Susan Janiszewski (2009) For prime v & all v: Peter Horak and Alexander Rosa (2009)

```
|U| = 3: Complete solutions for specific choices of U:
```

```
 \begin{array}{l} \mbox{Stefano Capparelli and Alberto Del Fra (2010):} \\ \{1,2,3\} \\ \mbox{Anita Pasotti and Marco Pellegrini (2014):} \\ \{1,2,4\}, \{1,2,5\}, \{1,2,6\}, \{1,2,8\}, \{1,3,5\} \\ \mbox{Matt Ollis, A. Pasotti, M. Pellegrini, John Schmitt (2022):} \\ \{1,4,5\} \\ \end{array}
```

Pranit Chand and Matt Ollis (2022):

 $\max(U) \leq 7$

3. Known Results on the Buratti-Horak-Rosa Conjecture

|U| = 3: Partial families for many U:

Anita Pasotti and Marco Pellegrini (2014):

 $L = \{1^a, 2^b, x^c\}$ when x is even and $a + b \ge x - 1$

Adrian Vazquez Avila (2022):

$$L = \{1^{a}, 2^{x-1}, x\}$$

Matt Ollis, A. Pasotti, M. Pellegrini, John Schmitt (2021):

$$L = \{1^a, x^b, (x+1)^c\} \text{ when } x \text{ is odd and}$$

either $a \ge \min(3x-3, b+2x-3) \text{ or } a \ge 2x-2 \text{ and } c \ge 4b/3$
$$L = \{1^a, x^b, (x+1)^c\} \text{ when } x \text{ is even and}$$

either $a \ge \min(3x-1, c+2x-1) \text{ or } a \ge 2x-1 \text{ and } b \ge c$
$$L = \{1^a, x^b, y^c\} \text{ when } x \text{ is even, } x < y \text{ and}$$

either y is even and $a \ge y-1$ or y is odd and $a \ge 3y-4$

Peter Horak and Alexander Rosa (2009), followed by Matt Ollis, A. Pasotti, M. Pellegrini, John Schmitt (2022):

$$L = \{1^a, x^b, y^c\}$$
 where $x < y$ and $a \ge x + 4y - 5$

3. Known Results on the Buratti-Horak-Rosa Conjecture

|U| > 3: Another partial list:

Peter Horak and Alexander Rosa (2009): v = 2m + 1 is prime and $L = (\{1^2, 2^2, \dots, m^2\} \cup \{x\}) \setminus \{y\}$ Peter Horak and Alexander Rosa (2009), followed by Matt Ollis, A. Pasotti, M. Pellegrini, John Schmitt (2021): $L \cup \{1^s\}$ for some constant *s* depending only on *U*

Anita Pasotti and Marco Pellegrini (2014), followed by Matt Ollis, A. Pasotti, M. Pellegrini, John Schmitt (2021): $U = \{1, 2, 3, 4\}, \{1, 2, 3, 5\}$

Matt Ollis, A. Pasotti, M. Pellegrini, John Schmitt (2021): Partial results for $U \subseteq \{1, 2, 4, \dots, 2x, 2x + 1\};$ $\{1^{a_1}, 2^{a_2}, \dots, x^{a_x}\}$ when $a_1 \ge a_2 \ge \dots \ge a_x$

Brendon McKay and Tim Peters (2022):

|L| < 37

4. Recent Results on the Buratti-Horak-Rosa Conjecture

 $\begin{aligned} |U| &= 3: \text{ A., Ollis (2024):} \\ U &= \{1, x, x+1\} \text{ and } v \geq 2x^2 + 13x + 11 \text{ with } \gcd(v, x) = \gcd(v, x+1) = 1 \\ U &= \{1, 2, x\} \text{ and } v > 4x \text{ with } \gcd(v, x) = 1 \\ (\text{except possibly when } x \text{ is odd and } a \in \{1, 2\} \text{ for } L = \{1^a, 2^b, x^c\}) \end{aligned}$

For the first time:

Infinitely many U for which there are infinitely many values of v where the conjecture holds.

Maybe a first step towards solutions for infinitely many U?

(Similar techniques also provide partial families for more U.)

|*U*| > 3: A., Ollis (2024):

$$L = \{1^{a}, x^{b}, (x+1)^{c}, y^{d}\} \text{ when } a \ge x + y + 1$$
$$L = \{1^{a}, x^{b}, (x+1)^{c}, y^{d}, (y+1)^{e}\} \text{ when } a \ge x + y + 2$$

5. Different Types of Realizations

Back to Our Example

Given multiset: $L = \{1, 1, 2, 2, 2, 3\} = \{1^2, 2^3, 3^1\}$ A realization like $\Gamma = [0, 2, 3, 1, 5, 6, 4]$ gives rise to many!

6. Main Result for $U = \{1, x, x+1\}$

Let x > 1.

Let x > 1.

Construction

A standard linear realization can be constructed for $L = \{1^a, x^b, (x+1)^c\}$ whenever $a \ge x+1$.

Let x > 1.

Construction

A standard linear realization can be constructed for $L = \{1^a, x^b, (x+1)^c\}$ whenever $a \ge x+1$.

Theorem

For all $v \ge 2x^2 + 13x + 11$ with gcd(v, x) = gcd(v, x + 1) = 1, the Buratti-Horak-Rosa Conjecture holds for multisets with support $\{1, x, x + 1\}$. Let x > 1.

Construction

A standard linear realization can be constructed for $L = \{1^a, x^b, (x+1)^c\}$ whenever $a \ge x+1$.

Theorem

For all $v \ge 2x^2 + 13x + 11$ with gcd(v, x) = gcd(v, x + 1) = 1, the Buratti-Horak-Rosa Conjecture holds for multisets with support $\{1, x, x + 1\}$.

The theorem follows from the construction via straightforward modular arithmetic, as demonstrated by the following example.

Example

Let v = 101 and let $U = \{1, 7, 8\}$.

In mod 101:

$$7^{-1} = 29$$
 and $\{1, 7, 8\} \stackrel{ imes 29}{\longmapsto} \{29, 1, 30\}$

$$8^{-1} = 38$$
 and $\{1, 7, 8\} \stackrel{ imes 38}{\longmapsto} \{38, 64, 1\} \equiv \{38, 37, 1\}$

Thus, $\{1^a, 7^b, 8^c\}$, $\{29^a, 1^b, 30^c\}$, and $\{38^a, 37^b, 1^c\}$ are equivalent.

Hence, we can construct a realization whenever $a \ge 8$, $b \ge 30$, or $c \ge 38$.

Therefore, a counterexample would need a + b + c < 8 + 30 + 38 = 76.

This contradicts with a + b + c = v - 1 = 100.

Example

Let v = 101 and let $U = \{1, 7, 8\}$.

In mod 101:

$$7^{-1} = 29$$
 and $\{1, 7, 8\} \stackrel{ imes 29}{\longmapsto} \{29, 1, 30\}$

$$8^{-1} = 38$$
 and $\{1, 7, 8\} \stackrel{ imes 38}{\longmapsto} \{38, 64, 1\} \equiv \{38, 37, 1\}$

Thus, $\{1^a, 7^b, 8^c\}$, $\{29^a, 1^b, 30^c\}$, and $\{38^a, 37^b, 1^c\}$ are equivalent.

Hence, we can construct a realization whenever $a \ge 8$, $b \ge 30$, or $c \ge 38$.

Therefore, a counterexample would need a + b + c < 8 + 30 + 38 = 76.

This contradicts with a + b + c = v - 1 = 100.

So what remains is to describe the constructions of needed the standard linear realizations.

Onur Ağırseven

July 9, 2024 11 / 17

7. Construction Tool: Using Grid Graphs to "Optimize" for $U = \{1, x\}$

 $\omega(x, b)$: the smallest possible number of 1-edges used in a standard linear realization with *b x*-edges and support $U = \{1, x\}$

Method: To find $\omega(x, b)$, we work on the subgraph of K_v with only edges of length 1 & x, drawn on a grid, where vertex labels differ horizontally by 1 and vertically by x.

Theorem

For given $b \ge 0$ and x > 1 with Euclidean division of b = qx + r,

$$\omega(x,b) = \begin{cases} x, & \text{if } x \text{ and } r \text{ are both odd and } r > 1 \\ x - 1, & \text{otherwise.} \end{cases}$$

Notes: The constructions yield **growable** realizations. The exceptional case is due to a "tail-curl" that is needed.

Onur Ağırseven

Grid-Based Graphs, Linear Realizations, BHR Conjecture

July 9, 2024

12 / 17

Optimal Constructions (i.e. minimal a) for Standard Linear Realizations of the Multisets $\{1^a, x^c\}$, where c = qx + r with r < x

- $\mathbf{g} \oplus \mathbf{h}$: The complement of \mathbf{g} (with v vertices) and the translation of \mathbf{h} by v 1, identified at the end-vertices labeled with v 1.
 - Use: Realizations on K_v and K_w to a realization on K_{v+w-1} :
 - $1. \ \mathsf{standard} \ \oplus \ \mathsf{standard} \ \Longrightarrow \ \mathsf{linear}$
 - 2. standard \oplus perfect \implies standard
 - 3. perfect \oplus perfect \Longrightarrow perfect
- Note: For the multiset $\{1^s\}$, $[0, 1, \dots, s-1]$ is a perfect realization.
- Lemma: If L has a standard (respectively perfect) realization then $L \cup \{1^s\}$ has a standard (respectively perfect) realization $\forall s \ge 0$.

Construction

A perfect realization can be constructed for $L = \{x^{y-1}, y^{x+1}\}$ for coprime x and y.

Construction

A perfect realization can be constructed for $L = \{x^{y-1}, y^{x+1}\}$ for coprime x and y.

Corollary

A perfect realization can be constructed for $L = \{x^x, (x+1)^{x+1}\}.$

14 / 17

Construction

A perfect realization can be constructed for $L = \{x^{y-1}, y^{x+1}\}$ for coprime x and y.

Corollary

A perfect realization can be constructed for $L = \{x^x, (x+1)^{x+1}\}.$

Technique

To construct realizations with $a \ge x + 1$ for $L = \{1^a, x^b, (x + 1)^c\}$ with given b and c, use concatenated perfect realizations to reduce to b' and c', followed by modifications on the optimal constructions for either $U = \{1, x\}$ or $U = \{1, x + 1\}$, as needed.

Constructing realizations with $a \ge 7$ for $L = \{1^a, 7^{18}, 8^{32}\}$

 $\{1^{a}, 7^{18}, 8^{32}\} = \{7^{7}, 8^{8}\} \cup \{7^{7}, 8^{8}\} \cup \{1^{a}, 7^{4}, 8^{16}\}$

Since 4 < 16, we use modifications on the optimal construction for $\{1^{a}, 8^{4+16}\}$:

 $\{\mathbf{1}^7, \mathbf{8^{4+16}}\} \setminus \{\mathbf{1}^1, \mathbf{8}^2\} \cup \{\mathbf{1}^1, \mathbf{7}^2\} \setminus \{\mathbf{1}^1, \mathbf{8}^2\} \cup \{\mathbf{1}^1, \mathbf{7}^2\} = \{\mathbf{1}^7, \mathbf{7}^4, \mathbf{8}^{16}\}$

Strategy

Use block modifications on the optimal constructions for either $U = \{1, x\}$ (if $a \ge b$) or $U = \{1, x + 1\}$ (if $b \ge a$).

Conjectures

For $k \leq \lfloor v/2 \rfloor$,

Conjectures

- For $k \leq \lfloor v/2 \rfloor$,
 - A concatenated linear realization can be constructed for L = {1^a, (y − k)^b, y^c} whenever a ≥ y + k − 1. (The realization is standard if k is odd.)

16 / 17

Conjectures

- For $k \leq \lfloor v/2 \rfloor$,
 - A concatenated linear realization can be constructed for L = {1^a, (y − k)^b, y^c} whenever a ≥ y + k − 1. (The realization is standard if k is odd.)
 - 3 A non-concatenated standard linear realization can be constructed for $L = \{1^a, (y k)^b, y^c\}$ and $L = \{1^a, k^b, y^c\}$ whenever $a \ge y$.

Conjectures

For $k \leq \lfloor v/2 \rfloor$,

 A concatenated linear realization can be constructed for L = {1^a, (y − k)^b, y^c} whenever a ≥ y + k − 1. (The realization is standard if k is odd.)

3 A non-concatenated standard linear realization can be constructed for $L = \{1^a, (y - k)^b, y^c\}$ and $L = \{1^a, k^b, y^c\}$ whenever $a \ge y$.

Current progress towards these conjectures :

$$U = \{1, y - 2, y\}$$
 (mostly resolved), $U = \{1, y - 3, y\}$ (partial results),
 $U = \{1, 2, y\}$ (mostly resolved), $U = \{1, 3, y\}$ (partial results),
 $U = \{1, x, 2x + 1\}$ (mostly resolved), $U = \{1, x, 2x - 1\}$ (partial results).

Examples of Concatenated Constructions for $U = \{1, y - 2, y\}$

¡Muchas Gracias y Vámonos!

