Grid-Based Graphs, Linear Realizations, and the Buratti-Horak-Rosa (BHR) Conjecture

Onur Ağırseven
CODESCO'24
July 9, 2024

1. Introduction to the Buratti-Horak-Rosa Conjecture

Initial Problem (by Marco Buratti)

Listing all the elements in \mathbb{Z}_{v} with given (multiset of) minimal cyclic step-lengths.

1. Introduction to the Buratti-Horak-Rosa Conjecture

Initial Problem (by Marco Buratti)

Listing all the elements in \mathbb{Z}_{v} with given (multiset of) minimal cyclic step-lengths.

1. Introduction to the Buratti-Horak-Rosa Conjecture

Initial Problem (by Marco Buratti)

Listing all the elements in \mathbb{Z}_{v} with given (multiset of) minimal cyclic step-lengths.

Example multiset: $\{1,1,2,2,2,3\}=\left\{1^{2}, 2^{3}, 3^{1}\right\}$

1. Introduction to the Buratti-Horak-Rosa Conjecture

Initial Problem (by Marco Buratti)

Listing all the elements in \mathbb{Z}_{v} with given (multiset of) minimal cyclic step-lengths.

Example multiset: $\{1,1,2,2,2,3\}=\left\{1^{2}, 2^{3}, 3^{1}\right\}$
Example list: $[0,2,3,1,5,6,4]$

1. Introduction to the Buratti-Horak-Rosa Conjecture

Equivalent Problem (by Marco Buratti)
Finding Hamiltonian paths in K_{v} with given (multiset of) cyclic edge-lengths.

1. Introduction to the Buratti-Horak-Rosa Conjecture

Equivalent Problem (by Marco Buratti)

Finding Hamiltonian paths in K_{v} with given (multiset of) cyclic edge-lengths.

1. Introduction to the Buratti-Horak-Rosa Conjecture

Equivalent Problem (by Marco Buratti)

Finding Hamiltonian paths in K_{v} with given (multiset of) cyclic edge-lengths.

Example multiset: $\{1,1,2,2,2,3\}=\left\{1^{2}, 2^{3}, 3^{1}\right\}$

1. Introduction to the Buratti-Horak-Rosa Conjecture

Equivalent Problem (by Marco Buratti)

Finding Hamiltonian paths in K_{v} with given (multiset of) cyclic edge-lengths.

Example multiset: $\{1,1,2,2,2,3\}=\left\{1^{2}, 2^{3}, 3^{1}\right\}$
Example path: $[0,2,3,1,5,6,4]$

2. The Buratti-Horak-Rosa Conjecture

For L multiset of $v-1$ positive integers not exceeding $\lfloor v / 2\rfloor$
a. If v is prime, then K_{v} has a Hamiltonian path with cyclic edge-lengths as L (i.e. L has a realization).
(conjecture by Marco Buratti in 2007)

2. The Buratti-Horak-Rosa Conjecture

For L multiset of $v-1$ positive integers not exceeding $\lfloor v / 2\rfloor$
a. If v is prime, then K_{v} has a Hamiltonian path with cyclic edge-lengths as L (i.e. L has a realization).
(conjecture by Marco Buratti in 2007)
b. There is a realization for L if and only if for any divisor d of v, the number of multiples of d in L is at most $v-d$.
(conjecture by Peter Horak and Alexander Rosa in 2009, reformulated by Anita Pasotti and Marco Pellegrini in 2014)

3. Known Results on the Buratti-Horak-Rosa Conjecture

$|U|=1$: Trivial. (Note: U is the underlying set of L)
$|U|=2$: Solved!
For prime v: Jeff Dinitz and Susan Janiszewski (2009)
For prime v \& all v: Peter Horak and Alexander Rosa (2009)
$|U|=3$: Complete solutions for specific choices of U :
Stefano Capparelli and Alberto Del Fra (2010): $\{1,2,3\}$
Anita Pasotti and Marco Pellegrini (2014):
$\{1,2,4\},\{1,2,5\},\{1,2,6\},\{1,2,8\},\{1,3,5\}$
Matt Ollis, A. Pasotti, M. Pellegrini, John Schmitt (2022):
$\{1,4,5\}$
Pranit Chand and Matt Ollis (2022):

$$
\max (U) \leq 7
$$

3. Known Results on the Buratti-Horak-Rosa Conjecture

$|U|=3$: Partial families for many U :
Anita Pasotti and Marco Pellegrini (2014):
$L=\left\{1^{a}, 2^{b}, x^{c}\right\}$ when x is even and $a+b \geq x-1$
Adrian Vazquez Avila (2022):
$L=\left\{1^{a}, 2^{x-1}, x\right\}$
Matt Ollis, A. Pasotti, M. Pellegrini, John Schmitt (2021):
$L=\left\{1^{a}, x^{b},(x+1)^{c}\right\}$ when x is odd and
either $a \geq \min (3 x-3, b+2 x-3)$ or $a \geq 2 x-2$ and $c \geq 4 b / 3$
$L=\left\{1^{a}, x^{b},(x+1)^{c}\right\}$ when x is even and
either $a \geq \min (3 x-1, c+2 x-1)$ or $a \geq 2 x-1$ and $b \geq c$
$L=\left\{1^{a}, x^{b}, y^{c}\right\}$ when x is even, $x<y$ and
either y is even and $a \geq y-1$ or y is odd and $a \geq 3 y-4$
Peter Horak and Alexander Rosa (2009), followed by
Matt Ollis, A. Pasotti, M. Pellegrini, John Schmitt (2022):
$L=\left\{1^{a}, x^{b}, y^{c}\right\}$ where $x<y$ and $a \geq x+4 y-5$

3. Known Results on the Buratti-Horak-Rosa Conjecture

$|U|>3$: Another partial list:
Peter Horak and Alexander Rosa (2009):

$$
v=2 m+1 \text { is prime and } L=\left(\left\{1^{2}, 2^{2}, \ldots, m^{2}\right\} \cup\{x\}\right) \backslash\{y\}
$$

Peter Horak and Alexander Rosa (2009), followed by Matt Ollis, A. Pasotti, M. Pellegrini, John Schmitt (2021): $L \cup\left\{1^{s}\right\}$ for some constant s depending only on U
Anita Pasotti and Marco Pellegrini (2014), followed by Matt Ollis, A. Pasotti, M. Pellegrini, John Schmitt (2021):

$$
U=\{1,2,3,4\},\{1,2,3,5\}
$$

Matt Ollis, A. Pasotti, M. Pellegrini, John Schmitt (2021):
Partial results for $U \subseteq\{1,2,4, \ldots, 2 x, 2 x+1\}$;
$\left\{1^{a_{1}}, 2^{a_{2}}, \ldots, x^{a_{x}}\right\}$ when $a_{1} \geq a_{2} \geq \cdots \geq a_{x}$
Brendon McKay and Tim Peters (2022):
$|L|<37$

4. Recent Results on the Buratti-Horak-Rosa Conjecture

$|U|=3:$ A., Ollis (2024):
$U=\{1, x, x+1\}$ and $v \geq 2 x^{2}+13 x+11$ with $\operatorname{gcd}(v, x)=\operatorname{gcd}(v, x+1)=1$
$U=\{1,2, x\}$ and $v>4 x$ with $\operatorname{gcd}(v, x)=1$
(except possibly when x is odd and $a \in\{1,2\}$ for $L=\left\{1^{a}, 2^{b}, x^{c}\right\}$)
For the first time:
Infinitely many U for which there are infinitely many values of v where the conjecture holds.
Maybe a first step towards solutions for infinitely many U ?
(Similar techniques also provide partial families for more U.)
$|U|>3:$ A., Ollis (2024):

$$
\begin{aligned}
& L=\left\{1^{a}, x^{b},(x+1)^{c}, y^{d}\right\} \text { when } a \geq x+y+1 \\
& L=\left\{1^{a}, x^{b},(x+1)^{c}, y^{d},(y+1)^{e}\right\} \text { when } a \geq x+y+2
\end{aligned}
$$

5. Different Types of Realizations

Back to Our Example

Given multiset: $L=\{1,1,2,2,2,3\}=\left\{1^{2}, 2^{3}, 3^{1}\right\}$
A realization like $\Gamma=[0,2,3,1,5,6,4]$ gives rise to many!

$\begin{array}{llllllll}\text { Our realization, } \Gamma & 0 & 2 & 3 & 1 & 5 & 6 & 4\end{array}$

$$
\begin{aligned}
& \text { Directed Edge Labels } \begin{array}{lllllll}
-2 & -1 & +2 & +3 & -1 & +2
\end{array} \\
& \text { Complement of } \Gamma \quad \begin{array}{lllllll}
6 & 4 & 3 & 5 & 1 & 0 & 2
\end{array}
\end{aligned}
$$

6. Main Result for $U=\{1, x, x+1\}$

Let $x>1$.
6. Main Result for $U=\{1, x, x+1\}$

Let $x>1$.

Construction

A standard linear realization can be constructed for $L=\left\{1^{a}, x^{b},(x+1)^{c}\right\}$ whenever $a \geq x+1$.

6. Main Result for $U=\{1, x, x+1\}$

Let $x>1$.

Construction

A standard linear realization can be constructed for $L=\left\{1^{a}, x^{b},(x+1)^{c}\right\}$ whenever $a \geq x+1$.

Theorem

For all $v \geq 2 x^{2}+13 x+11$ with $\operatorname{gcd}(v, x)=\operatorname{gcd}(v, x+1)=1$, the Buratti-Horak-Rosa Conjecture holds for multisets with support $\{1, x, x+1\}$.

6. Main Result for $U=\{1, x, x+1\}$

Let $x>1$.

Construction

A standard linear realization can be constructed for $L=\left\{1^{a}, x^{b},(x+1)^{c}\right\}$ whenever $a \geq x+1$.

Theorem

For all $v \geq 2 x^{2}+13 x+11$ with $\operatorname{gcd}(v, x)=\operatorname{gcd}(v, x+1)=1$, the Buratti-Horak-Rosa Conjecture holds for multisets with support $\{1, x, x+1\}$.

The theorem follows from the construction via straightforward modular arithmetic, as demonstrated by the following example.

6. Main Result for $U=\{1, x, x+1\}$

Example

Let $v=101$ and let $U=\{1,7,8\}$.
In mod 101:
$7^{-1}=29$ and $\{1,7,8\} \stackrel{\times 29}{\longmapsto}\{29,1,30\}$
$8^{-1}=38$ and $\{1,7,8\} \stackrel{\times 38}{\longrightarrow}\{38,64,1\} \equiv\{38,37,1\}$
Thus, $\left\{1^{a}, 7^{b}, 8^{c}\right\},\left\{29^{a}, 1^{b}, 30^{c}\right\}$, and $\left\{38^{a}, 37^{b}, 1^{c}\right\}$ are equivalent.
Hence, we can construct a realization whenever $a \geq 8, b \geq 30$, or $c \geq 38$.
Therefore, a counterexample would need $a+b+c<8+30+38=76$.
This contradicts with $a+b+c=v-1=100$.

6. Main Result for $U=\{1, x, x+1\}$

Example

Let $v=101$ and let $U=\{1,7,8\}$.
In mod 101:
$7^{-1}=29$ and $\{1,7,8\} \stackrel{\times 29}{\longmapsto}\{29,1,30\}$
$8^{-1}=38$ and $\{1,7,8\} \stackrel{\times 38}{\longrightarrow}\{38,64,1\} \equiv\{38,37,1\}$
Thus, $\left\{1^{a}, 7^{b}, 8^{c}\right\},\left\{29^{a}, 1^{b}, 30^{c}\right\}$, and $\left\{38^{a}, 37^{b}, 1^{c}\right\}$ are equivalent.
Hence, we can construct a realization whenever $a \geq 8, b \geq 30$, or $c \geq 38$.
Therefore, a counterexample would need $a+b+c<8+30+38=76$.
This contradicts with $a+b+c=v-1=100$.
So what remains is to describe the constructions of needed the standard linear realizations.

7. Construction Tool: Using Grid Graphs to "Optimize" for $U=\{1, x\}$

$\omega(x, b)$: the smallest possible number of 1 -edges used in a standard linear realization with $b x$-edges and support $U=\{1, x\}$

Method: To find $\omega(x, b)$, we work on the subgraph of K_{v} with only edges of length $1 \& x$, drawn on a grid, where vertex labels differ horizontally by 1 and vertically by x.

Theorem

For given $b \geq 0$ and $x>1$ with Euclidean division of $b=q x+r$,

$$
\omega(x, b)= \begin{cases}x, & \text { if } x \text { and } r \text { are both odd and } r>1 \\ x-1, & \text { otherwise }\end{cases}
$$

Notes: The constructions yield growable realizations.
The exceptional case is due to a "tail-curl" that is needed.

๑ூワ

ПЛЛ๘ศศ

 ПИЛォォл ПППภาПーム

\qquad
 $\square \square \square \square \square \square \square\llcorner\square \square \square \square \square \square 𠃌$
 x odd，$r>1$ odd

ட ᄂㄴ
 $\square \square \square$

๗ூぃூூ๑
ПЛЛЛЛป
 x odd，$r=1$
\qquad
 เПППП

பП凸
ПЛתสת
 תา

ோ
 กภภภภา

8. Construction Technique I: Path Concatenations

$\mathbf{g} \oplus \mathbf{h}$: The complement of \mathbf{g} (with v vertices) and the translation of \mathbf{h} by $v-1$, identified at the end-vertices labeled with $v-1$.

Use: Realizations on K_{v} and K_{w} to a realization on K_{v+w-1} :

1. standard \oplus standard \Longrightarrow linear
2. standard \oplus perfect \Longrightarrow standard
3. perfect \oplus perfect \Longrightarrow perfect

Note: For the multiset $\left\{1^{s}\right\},[0,1, \ldots, s-1]$ is a perfect realization.
Lemma: If L has a standard (respectively perfect) realization then $L \cup\left\{1^{s}\right\}$ has a standard (respectively perfect) realization $\forall s \geq 0$.

8. Construction Technique I: Path Concatenations

Construction

A perfect realization can be constructed for $L=\left\{x^{y-1}, y^{x+1}\right\}$ for coprime x and y.

8. Construction Technique I: Path Concatenations

Construction

A perfect realization can be constructed for $L=\left\{x^{y-1}, y^{x+1}\right\}$ for coprime x and y.

Corollary

A perfect realization can be constructed for $L=\left\{x^{x},(x+1)^{x+1}\right\}$.

8. Construction Technique I: Path Concatenations

Construction

A perfect realization can be constructed for $L=\left\{x^{y-1}, y^{x+1}\right\}$ for coprime x and y.

Corollary

A perfect realization can be constructed for $L=\left\{x^{x},(x+1)^{x+1}\right\}$.

Technique

To construct realizations with $a \geq x+1$ for $L=\left\{1^{a}, x^{b},(x+1)^{c}\right\}$ with given b and c, use concatenated perfect realizations to reduce to b^{\prime} and c^{\prime}, followed by modifications on the optimal constructions for either $U=\{1, x\}$ or $U=\{1, x+1\}$, as needed.

Constructing realizations with $a \geq 7$ for $L=\left\{1^{a}, 7^{18}, 8^{32}\right\}$

$$
\left\{1^{a}, 7^{18}, 8^{32}\right\}=\left\{7^{7}, 8^{8}\right\} \cup\left\{7^{7}, 8^{8}\right\} \cup\left\{1^{a}, 7^{4}, 8^{16}\right\}
$$

Since $4<16$, we use modifications on the optimal construction for $\left\{1^{a}, 8^{4+16}\right\}$:

$$
\left\{1^{7}, 8^{4+16}\right\} \backslash\left\{1^{1}, 8^{2}\right\} \cup\left\{1^{1}, 7^{2}\right\} \backslash\left\{1^{1}, 8^{2}\right\} \cup\left\{1^{1}, 7^{2}\right\}=\left\{1^{7}, 7^{4}, 8^{16}\right\}
$$

Constructing realizations with $a \geq 6$ for $L=\left\{1^{a}, 7^{26}, 8^{38}\right\}$

$$
\left\{1^{a}, 7^{26}, 8^{38}\right\}=\left\{7^{7}, 8^{8}\right\} \cup\left\{7^{7}, 8^{8}\right\} \cup\left\{7^{7}, 8^{8}\right\} \cup\left\{1^{a}, 7^{5}, 8^{14}\right\}
$$

Since $5<14$, we use modifications on the optimal construction for $\left\{1^{a}, 8^{5+14}\right\}$:

$$
\left\{1^{7}, 8^{5+14}\right\} \backslash\left\{1^{1}, 8^{2}\right\} \cup\left\{1^{1}, 7^{2}\right\} \backslash\left\{1^{1}, 8^{2}\right\} \cup\left\{1^{1}, 7^{2}\right\} \backslash\left\{1^{1}, 8^{1}\right\} \cup\left\{7^{1}\right\}=\left\{1^{6}, 7^{5}, 8^{14}\right\}
$$

Constructing realizations with $a \geq 6$ for $L=\left\{1^{a}, 7^{36}, 8^{28}\right\}$

$$
\left\{1^{a}, 7^{36}, 8^{28}\right\}=\left\{7^{7}, 8^{8}\right\} \cup\left\{7^{7}, 8^{8}\right\} \cup\left\{7^{7}, 8^{8}\right\} \cup\left\{1^{a}, 7^{15}, 8^{4}\right\}
$$

Since $15>4$, we use modifications on the optimal construction for $\left\{1^{a}, 7^{15+4}\right\}$
$\left\{1^{6}, 7^{15+4}\right\} \backslash\left\{1^{1}, 7^{2}\right\} \cup\left\{1^{1}, 8^{2}\right\} \backslash\left\{1^{1}, 7^{2}\right\} \cup\left\{1^{1}, 8^{2}\right\}=\left\{1^{6}, 7^{15}, 8^{4}\right\}$

$$
\begin{aligned}
& \text { Constructing realizations with } a \geq 8 \text { for } L=\left\{1^{a}, 7^{26}, 8^{21}\right\} \\
& \qquad\left\{1^{a}, 7^{26}, 8^{21}\right\}=\left\{7^{7}, 8^{8}\right\} \cup\left\{7^{7}, 8^{8}\right\} \cup\left\{1^{a}, 7^{12}, 8^{5}\right\}
\end{aligned}
$$

Since $12>5$, we use modifications on the optimal construction for $\left\{1^{a}, 7^{12+5}\right\}$ $\left\{\mathbf{1}^{7}, \mathbf{7}^{12+5}\right\} \backslash\left\{1^{1}, 7^{2}\right\} \cup\left\{\mathbf{1}^{1}, 8^{2}\right\} \backslash\left\{1^{1}, 7^{2}\right\} \cup\left\{1^{1}, 8^{2}\right\} \backslash\left\{7^{1}\right\} \cup\left\{1^{1}, 8^{1}\right\}=\left\{\mathbf{1}^{8}, \mathbf{7}^{\mathbf{1 5}}, \mathbf{8}^{4}\right\}$

9. Construction Technique II: Block Modifications

Strategy

Use block modifications on the optimal constructions for either $U=\{1, x\}$ (if $a \geq b$) or $U=\{1, x+1\}$ (if $b \geq a$).

10. Extensions to Other Cases of $|U|=3$

Conjectures

For $k \leq\lfloor v / 2\rfloor$,

10. Extensions to Other Cases of $|U|=3$

Conjectures

For $k \leq\lfloor v / 2\rfloor$,
(1) A concatenated linear realization can be constructed for $L=\left\{1^{a},(y-k)^{b}, y^{c}\right\}$ whenever $a \geq y+k-1$.
(The realization is standard if k is odd.)

10. Extensions to Other Cases of $|U|=3$

Conjectures

For $k \leq\lfloor v / 2\rfloor$,
(1) A concatenated linear realization can be constructed for $L=\left\{1^{a},(y-k)^{b}, y^{c}\right\}$ whenever $a \geq y+k-1$.
(The realization is standard if k is odd.)
(2) A non-concatenated standard linear realization can be constructed for $L=\left\{1^{a},(y-k)^{b}, y^{c}\right\}$ and $L=\left\{1^{a}, k^{b}, y^{c}\right\}$ whenever $a \geq y$.

10. Extensions to Other Cases of $|U|=3$

Conjectures

For $k \leq\lfloor v / 2\rfloor$,
(1) A concatenated linear realization can be constructed for $L=\left\{1^{a},(y-k)^{b}, y^{c}\right\}$ whenever $a \geq y+k-1$.
(The realization is standard if k is odd.)
(2) A non-concatenated standard linear realization can be constructed for $L=\left\{1^{a},(y-k)^{b}, y^{c}\right\}$ and $L=\left\{1^{a}, k^{b}, y^{c}\right\}$ whenever $a \geq y$.

Current progress towards these conjectures :
$U=\{1, y-2, y\}$ (mostly resolved), $U=\{1, y-3, y\}$ (partial results),
$U=\{1,2, y\}$ (mostly resolved), $U=\{1,3, y\}$ (partial results),
$U=\{1, x, 2 x+1\}$ (mostly resolved), $U=\{1, x, 2 x-1\}$ (partial results).

IONDNANNNNANNN
 गTVlo ammon

м mumaman filior

11. Concluding Remarks

¡Muchas Gracias y Vámonos!

