On regular sets of affine type in finite Desarguesian planes and related codes

Angela Aguglia
(Joint work with Bence Csajbók and Luca Giuzzi)

Dipartimento di Meccanica, Matematica e Management
Politecnico di Bari
CODESCO'24
$9^{\text {th }}$ July, Sevilla

- A point set X of $\operatorname{PG}(2, q)$ is of type $\left(m_{1}, m_{2}, \ldots, m_{k}\right)$ if for each line ℓ of $\operatorname{PG}(2, q)$ there is some $i \in\{1,2, \ldots, k\}$ such that $|X \cap \ell|=m_{i}$.
- The numbers $m_{1}, m_{2}, \ldots, m_{k}$ are called the types of X.
- It is hard, in general, to find point sets with few types.
- Hirschfeld and Szőnyi in 1991 introduced the notion of affine type for those sets of $\operatorname{PG}(2, q)$ which admit at least one tangent line.
- Assume that P_{0} is a point of X and ℓ_{0} is a tangent to X at P_{0}, that is, $X \cap \ell_{0}=\left\{P_{0}\right\}$.
- We may assume that P_{0} is the common point (∞) of all vertical lines of affine equation $x=\alpha$ of $\operatorname{AG}(2, q)$ and that $\ell_{0}=\ell_{\infty}$ is the line at infinity.
- Then X is of affine type $\left(m_{1}, m_{2}, \ldots, m_{k}\right)$ if for each line $\ell \not \supset P_{0}$ we have $|X \cap \ell|=m_{i}$ for some $i \in\{1,2, \ldots, k\}$.
- The numbers $m_{1}, m_{2}, \ldots, m_{k}$ are called the affine types of X.
- By (d) we denote the common ideal point of the affine lines $y=d x+b$ with slope $d \in \operatorname{GF}(q)$.
- If X is a set of affine type (m, n) with distinguished point $P_{0}=(\infty)$ and with tangent $\ell_{0}=\ell_{\infty}$ then the number of m-secants and the number of n-secants incident with the direction $(d) \in \ell_{\infty}$ is the same for each $d \neq \infty$.
- If in addition all of the vertical lines meet X in the same number of points, say $t+1$ with $t>0$, then X is a set of pointed type $[t ; m, n]$.
- The classical examples for such sets are the unitals of $\operatorname{PG}\left(2, q^{2}\right)$; they are exactly the sets of pointed type $[q ; 1, q+1]$.

The generalization of these concepts is the following.

Definition 1

A point set X in $\operatorname{PG}(2, q)$ is regular of affine type $\left(m_{1}, m_{2}, \ldots, m_{h}\right)$ if there is a distinguished point P_{0} in X and a tangent ℓ_{0} of X incident with P_{0} such that:
(i) every line not through P_{0} is an m_{i}-secant for some $i \in\{1,2, \ldots, h\}$;
(ii) the number of m_{i}-secants incident with P is the same for each $P \in \ell_{0} \backslash\left\{P_{0}\right\}$.
The set X is called regular of pointed type $\left[t ; m_{1}, m_{2}, \ldots, m_{h}\right]$ for some $t>0$ if in addition to (i) and (ii) it holds that
(iii) all the lines incident with P_{0} other than ℓ_{0} are $(t+1)$-secants of X.

Finally, a set X in $\operatorname{PG}(2, q)$ is said to be of pointed type [$\left.t ; m_{1}, m_{2}, \ldots, m_{h}\right]$ if properties (i) and (iii) hold.

If X is regular of pointed type then it is regular of affine type with the same parameters $\left(m_{1}, m_{2}, \ldots, m_{h}\right)$.

Assuming $P_{0}=(\infty)$ and $\ell_{0}=\ell_{\infty}$, examples of regular sets of affine type are:

- subsets of a vertical line;
- the union of some vertical lines;
- a Baer subplane π whose intersection with ℓ_{∞} is (∞).

Examples of regular sets of pointed type:
the point sets constructed by Hirschfeld and Szőnyi in:

- J.W.P. Hirschfeld, T. Szőnyi: Constructions of large arcs and blocking sets in finite planes, Eur. J. Comb. (1991), 109-117.
which are obtained from a pencil of touching conics.

Our constructions of regular sets of pointed type.

Theorem 2 (A. A., B. Csajbók, L. Giuzzi (2024))
For $b \in \operatorname{GF}(q), q$ odd, let P_{b} denote the conic of equation $y z=x^{2}+b z^{2}$ in $\mathrm{PG}(2, q)$. For $B \subseteq \operatorname{GF}(q)$ consider

$$
X(B):=\cup_{b \in B} P_{b} .
$$

Then $X(B)$ is regular of pointed type.

- By Tr and N we will denote the $\operatorname{GF}\left(q^{2}\right) \rightarrow \operatorname{GF}(q)$ functions $x \mapsto x+x^{q}$ and $x \mapsto x^{q+1}$, respectively.

Theorem 3 (A. A., B. Csajbók, L. Giuzzi (2024))

If f is an additive $\operatorname{GF}\left(q^{2}\right) \rightarrow \operatorname{GF}\left(q^{2}\right)$ function then the set of projective points of the algebraic plane curve X of affine equation

$$
\operatorname{Tr}(y+f(x))=\mathrm{N}(x)
$$

is a regular set of pointed type in $\mathrm{PG}\left(2, q^{2}\right)$. Moreover, in every parallel class of lines the number of k-secants to X is a multiple of q for each integer k.

- For certain choices of f the resulting point set is a unital and, according to a non-exhaustive computer search for small values of q, when X is not a unital then we have at least 4 affine types (except when q is even and $f(x)=a x^{2}$).
- Up to equivalence, we found a unique infinite family with 4 affine types, obtained with the choice $f(x)=a x^{\sqrt{q}}$ whenever q is a square prime power and $a \in \operatorname{GF}\left(q^{2}\right)^{*}$.
- This case is particular not only because there are few affine types but also because they are all congruent to 1 modulus \sqrt{q} and the point set $X \cup\{(\infty)\}$ meets each line of the plane in 1 modulus \sqrt{q} points.

Theorem 4 (A. A., B. Csajbók, L. Giuzzi (2024))
Let q be a square prime power and $a \in \operatorname{GF}\left(q^{2}\right)^{*}$. Let Γ_{a} denote the algebraic plane curve of affine equation

$$
\begin{equation*}
\operatorname{Tr}\left(y+a x^{\sqrt{q}}\right)=\mathrm{N}(x) . \tag{1}
\end{equation*}
$$

Then the set of projective points of Γ_{a} in $\mathrm{PG}\left(2, q^{2}\right)$ is a regular $\left(q^{3}+1\right)$-set of pointed type

$$
[q ; q-2 \sqrt{q}+1, q-\sqrt{q}+1, q+1, q+\sqrt{q}+1] .
$$

- Using Theorem 4, we are able to describe the intersection between an Hermitian curve and a special family of curves of degree \sqrt{q}.

Theorem 5 (A. A., B. Csajbók, L. Giuzzi (2024))

Let q be a square prime power and let $a, m, d \in \operatorname{GF}\left(q^{2}\right), a \neq 0$. Denote by $\mathcal{C}(a, m, d)$ the curve of affine equation $y=a x^{\sqrt{q}}+m x+d$. Then the curves $\mathcal{C}(a, m, d)$ meet the Hermitian curve $y^{q}+y=x^{q+1}$ of $\mathrm{PG}\left(2, q^{2}\right)$ in the following number of points:

$$
q-2 \sqrt{q}+1, q-\sqrt{q}+1, q+1, q+\sqrt{q}+1
$$

We propose a general conjecture.
Conjecture 1
Let p be a prime, $h \geqslant 2$ and $q=p^{2 h}$. Then the affine Hermitian curve $\mathcal{H}\left(q^{2}\right)$ of $\mathrm{AG}\left(2, q^{2}\right)$ meets the curves $X(a, m, d): y=a x^{p}+m x+d$ in 1 modulus p affine points.

- The number of lines with slope $m \neq \infty$ and meeting Γ_{a} in $k_{\alpha}:=(\sqrt{q}+1-\alpha) \sqrt{q}+1, \alpha \in\{0,1,2,3\}$ points depends on the parameter a.
- The number of $k_{0}, k_{1}, k_{2}, k_{3}$-secants of Γ_{a} with slope $m \neq \infty$ respectively is
- either $0,2^{2} \cdot 3,0,2^{2}$, or $2^{2}, 0,2^{2} \cdot 3,0$ when $q=2^{2}$,
- $3^{2} \cdot 2,3^{2} \cdot 3,3^{2} \cdot 3,3^{2}$ when $q=3^{2}$,
- $4^{2} \cdot 4,4^{2} \cdot 6,4^{2} \cdot 4,4^{2} \cdot 2$ when $q=4^{2}$,
- either $5^{2} \cdot 6,5^{2} \cdot 12,5^{2} \cdot 3,5^{2} \cdot 4$, or $5^{2} \cdot 7,5^{2} \cdot 9,5^{2} \cdot 6,5^{2} \cdot 3$, when $q=5^{2}$.
- There are two combinatorially different examples also for $q=11^{2}$ and $q=17^{2}$.
- We apply Theorem 4 to study the projective linear codes associated to Γ_{a}.
- These codes are \sqrt{q}-divisible with only 5 non-zero weights (when $q=4$ then with 2 non-zero weights if Γ_{a} is a unital and with 4 non-zero weights otherwise).
- We apply the usual construction of codes arising from projective systems to the curve Γ_{a}.
- More in detail, we construct a $3 \times\left(q^{3}+1\right)$ generator matrix G for a code by taking as columns the coordinates of the points of the algebraic curve Γ_{a} with Equation (1).
- The order in which the points are taken is not relevant, as all codes thus obtained are equivalent.
- The code $\mathcal{C}\left(\Gamma_{a}\right)$ having G as generator matrix is called the projective code generated from Γ_{a}.
- The spectrum of the intersections of Γ_{a} with the lines of $\operatorname{PG}\left(2, q^{2}\right)$ is related to the list of the weights w_{i} of the associated code;
- furthermore the minimum Hamming weight of $\mathcal{C}\left(\Gamma_{a}\right)$ is

$$
w\left(\Gamma_{a}\right)=\left|\Gamma_{a}\right|-\max \left\{\left|\Gamma_{a} \cap \ell\right|: \ell \text { is a line of } \operatorname{PG}\left(2, q^{2}\right)\right\} .
$$

- Since $\left|\Gamma_{a}\right|=q^{3}+1$ it is now easy to see that $\mathcal{C}\left(\Gamma_{a}\right)$ is a $\left[q^{3}+1,3, q^{3}-q-\sqrt{q}\right]_{q^{2}}$-linear code.
- Also, $\mathcal{C}\left(\Gamma_{a}\right)$ has just 5 weights, that is:

$$
\begin{gathered}
w_{1}=q^{3}-q-\sqrt{q}, w_{2}=q^{3}-q, w_{3}=q^{3}-q+\sqrt{q}, \\
w_{4}=q^{3}-q+2 \sqrt{q}, w_{5}=q^{3}
\end{gathered}
$$

which are all divisible by \sqrt{q}.

- Furthermore, for $q=4, w_{4}=w_{5}$ and the corresponding $\mathcal{C}\left(\Gamma_{a}\right)$ is either a $[65,3,60]_{16}$-linear code with two non-zero weights or a $[65,3,58]_{16}$-linear code with just 4 non-zero weights.
- We define the intersection enumerator of the projective curve arising from Γ_{a} as the polynomial

$$
\iota(x):=\sum_{\ell \text { line of } P G\left(2, q^{2}\right)} x^{\left|\ell \cap \Gamma_{a}\right|}=\sum_{i} e_{i} x^{i}
$$

- Denote by A_{i} the number of codewords of $\mathcal{C}\left(\Gamma_{a}\right)$ with Hamming weight i. The (Hamming) weight enumerator is defined as the polynomial

$$
1+A_{1} x+\cdots+A_{m} x^{m}
$$

- The weight enumerator gives a great deal of information about the code. Also, it is used in order to estimate the probability of a successful decoding when there are more than $2 d+1$ errors, d being the minimum distance of the code.
- If $\imath(x)$ is the intersection enumerator of Γ_{a}, then the weight enumerator of $\mathcal{C}\left(\Gamma_{a}\right)$ is

0

$$
\begin{equation*}
w(x)=1+\left(q^{2}-1\right) \sum e_{i} x^{q^{3}+1-i} \tag{2}
\end{equation*}
$$

- The only non-zero coefficients e_{i} are those for $i \in\{1, q-2 \sqrt{q}+1, q-\sqrt{q}+1, q+1, q+\sqrt{q}+1\}$.
- Also, the only line meeting Γ_{a} in exactly one point is the line at infinity, and the q^{2} vertical lines of $\operatorname{AG}\left(2, q^{2}\right)$ meet Γ_{a} in $q+1$ points; so $e_{1}=1$.
- Observe that the codes $\mathcal{C}\left(\Gamma_{a}\right)$ not only have good parameters, but they turn also out to be \sqrt{q}-divisible.
- Incidentally, as the codes we consider are projective, their duals are $\left[q^{3}+1, q^{3}-2,3\right]$-linear almost MDS codes (however, they are not NMDS).

Open Problem

- Find some new additive functions $f: \operatorname{GF}\left(q^{2}\right) \rightarrow \operatorname{GF}\left(q^{2}\right)$ such that the set of projective points of the algebraic plane curve X of affine equation

$$
\operatorname{Tr}(y+f(x))=\mathrm{N}(x)
$$

which is regular of pointed type, has very few types.

- This work was partially supported by the European Union under the Italian National Recovery and Resilience Plan (NRRP) of NextGenerationEU, partnership on "Telecommunications of the Future" (PE00000001 - program "RESTART", CUP: D93C22000910001).

Thank you

for your attention!

