Linear Systems of Conics over Finite Fields

Nour Alnajjarine
(Joint work with Michel Lavrauw)

University of Rijeka

Combinatorial Designs and Codes
(CODESCO'24)
University of Seville
July 8, 2024

Linear Systems of Conics:

Non-empty conics in $\operatorname{PG}(2, \mathbb{F})$:

Linear systems of conics := Subspaces(PG(2-forms in the projective plane)).

- a pencil of conic $\mathcal{P}=\left\langle C_{1}, C_{2}\right\rangle$ or $\left(f_{1}, f_{2}\right)$.
- a net of conics $\mathcal{N}=\left\langle C_{1}, C_{2}, C_{3}\right\rangle$ or $\left(f_{1}, f_{2}, f_{3}\right)$.
- a web of conics $\mathcal{W}=\left\langle C_{1}, C_{2}, C_{3}, C_{4}\right\rangle$ or $\left(f_{1}, f_{2}, f_{3}, f_{4}\right)$.
- a squab of conics $\mathcal{W}=\left\langle C_{1}, C_{2}, C_{3}, C_{4}, C_{5}\right\rangle$ or $\left(f_{1}, f_{2}, f_{3}, f_{4}, f_{5}\right)$.

History:

- Jordan (1906): Classified pencils of conics over \mathbb{R}.
- Jordan (1907): Classified pencils of conics over \mathbb{C}.
- Wall (1977): Classified nets of conics over \mathbb{R} and \mathbb{C}.
- Dickson (1908): Classified pencils of conics over \mathbb{F}_{q}, q odd.
- Wilson (1914): Partially classified rank-one nets of conics (nets with at least a //) over \mathbb{F}_{q}, q odd.
- Campbell (1927): Partially classified pencils of conics over \mathbb{F}_{q}, q even.
- Campbell (1928): Partially classified nets of conics over \mathbb{F}_{q}, q even.

For an explanation of some of the shortcomings of Wilson's and Campbell's treatments, we refer to [M. Lavrauw, T. Popiel, J. Sheekey, 2020] for q odd, and to [NA, M. Lavrauw, T. Popiel, 2022] and [NA, M. Lavrauw, 2023] for q even. (Example: Pencils of conics with conic distribution $[0,0,1, q], q$ even).

Embracing a New Approach!

- A purely computational approach will unlikely lead to much further progress.
- Projectively inequivalent linear systems of conics in $\mathrm{PG}(2, q) \Longleftrightarrow$ representatives of the K-orbits of subspaces of $\operatorname{PG}(5, q)$.
- $K \cong \operatorname{PGL}(3, q), q \neq 2$, is the subgroup of $\operatorname{PGL}(6, q)$ stabilizing the Veronese surface $\mathcal{V}\left(\mathbb{F}_{q}\right)$:

$$
\nu:\left(x_{0}, x_{1}, x_{2}\right) \mapsto\left(x_{0}^{2}, x_{0} x_{1}, x_{0} x_{2}, x_{1}^{2}, x_{1} x_{2}, x_{2}^{2}\right)
$$

- $C=\mathcal{Z}\left(a_{00} X_{0}^{2}+a_{01} X_{0} X_{1}+a_{02} X_{0} X_{2}+a_{11} X_{1}^{2}+a_{12} X_{1} X_{2}+a_{22} X_{2}^{2}\right)$ $\Longleftrightarrow H\left[a_{00}, a_{01}, a_{02}, a_{11}, a_{12}, a_{22}\right] \cap \mathcal{V}\left(\mathbb{F}_{q}\right)$.
- a pencil of conic in $\mathrm{PG}(2, q) \Longleftrightarrow$ a solid of $\operatorname{PG}(5, q)$.
- a net of conics in $\mathrm{PG}(2, q) \Longleftrightarrow$ a plane of $\operatorname{PG}(5, q)$.
- a web of conics in $\operatorname{PG}(2, q) \Longleftrightarrow$ a line of $\operatorname{PG}(5, q)$.
- a squab of conics in $\operatorname{PG}(2, q) \Longleftrightarrow$ a point of $\operatorname{PG}(5, q)$.

Progress!

- lines, for all $q: \sqrt{ }$ [M. Lavrauw, T. Popiel, 2020]
- solids, for q odd: $\sqrt{ }$ [M. Lavrauw, T. Popiel, 2020]
\rightarrow planes meeting $\mathcal{V}\left(\mathbb{F}_{q}\right)$ non-trivially, for q odd: $\sqrt{ }$ [M. Lavrauw, T. Popiel, J. Sheekey, 2020]
- solids, for q even: $\sqrt{ }$ [NA, M. Lavrauw, T. Popiel, 2022]
\rightarrow planes meeting $\mathcal{V}\left(\mathbb{F}_{q}\right)$ non-trivially, for q even: $\sqrt{ }$ [NA, M. Lavrauw, 2023]

Remaining case:

- Planes meeting $\mathcal{V}\left(\mathbb{F}_{q}\right)$ trivially.
- Nets in $\operatorname{PG}(2, q)$:
- q odd: Nets having no double lines (\exists a polarity: the set of conic planes of $\mathcal{V}\left(\mathbb{F}_{q}\right) \rightarrow$ the set of tangent planes of $\left.\mathcal{V}\left(\mathbb{F}_{q}\right)\right)$.
- q even: Nets with empty bases.

More than a classification!

We seek:

- a representative,
- a uniqueness argument,

MORE THAN A CLASSIFICATION!

We seek:

- a representative,
- a uniqueness argument,
- a set of geometric and combinatorial invariants that completely distinguish between different orbits. \checkmark

MORE THAN A CLASSIFICATION!

We seek:

- a representative,
- a uniqueness argument,
- a set of geometric and combinatorial invariants that completely distinguish between different orbits. \checkmark
- understanding interrelations between different orbits: linear systems/subspaces. $\sqrt{ } \sqrt{ }$

REPRESENTATIONS:

- Every point $x=\left(x_{0}, . ., x_{5}\right) \in \mathrm{PG}(5, q)$ can be represented by

$$
M_{x}=\left[\begin{array}{lll}
x_{0} & x_{1} & x_{2} \\
x_{1} & x_{3} & x_{4} \\
x_{2} & x_{4} & x_{5}
\end{array}\right]
$$

- The line $\ell \subset \mathrm{PG}(5, q)$ spanned by the 1 st two points of the standard frame is

$$
\ell=\left[\begin{array}{lll}
x & y & . \\
y & \cdot & \cdot \\
. & . & .
\end{array}\right]:=\left\{\left[\begin{array}{lll}
x & y & 0 \\
y & 0 & 0 \\
0 & 0 & 0
\end{array}\right]:(x, y) \in \operatorname{PG}(1, q)\right\} .
$$

- We denote by $\mathcal{W}=\left(f_{1}, f_{2}, f_{3}, f_{4}\right)$ the web of conics

$$
\mathcal{Z}\left(a f_{1}+b f_{2}+c f_{3}+d f_{4}\right),(a, b, c, d) \in \mathrm{PG}(3, q)
$$

- Example: The web of conics associated with the above line is

$$
\left(X_{0} X_{2}, X_{1}^{2}, X_{1} X_{2}, X_{2}^{2}\right)
$$

- Its associated cubic surface is the zero locus $\mathcal{Z}\left(\Delta_{f}\right)$ in $\operatorname{PG}(3, q)$ of the discriminant $\Delta_{f} \in \mathbb{F}_{q}[a, b, c, d]$ of the quadratic form

$$
\begin{gathered}
f=a f_{1}+b f_{2}+c f_{3}+d f_{4} . \\
\Delta_{f}=4 a_{00} a_{11} a_{22}+a_{01} a_{02} a_{12}-a_{00} a_{12}^{2}-a_{11} a_{02}^{2}-a_{22} a_{01}^{2}
\end{gathered}
$$

K-ORBITS INVARIANTS:

Let W be a subspace of $\operatorname{PG}(5, q)$.
Let $U_{1}, U_{2}, \ldots, U_{m}$ denote the distinct K-orbits of r-spaces in $\operatorname{PG}(5, q)$.

- The rank distribution of W is

$$
\left[r_{1}, r_{2}, r_{3}\right]
$$

where

$$
r_{i}=\# \text { of rank } i \text { points in } W .
$$

- The r-space orbit-distribution of W is

$$
\left[u_{1}, u_{2}, \ldots, u_{m}\right]
$$

where
$u_{i}=\#$ of r-spaces incident with W which belong to the orbit U_{i}.

Lines in $\operatorname{PG}(5, q), q$ ODD:

Orbits	Point-OD's :[r $\left., r_{2 e}, r_{2 i}, r_{3}\right]$
o_{5}	$\left[2, \frac{q-1}{2}, \frac{q-1}{2}, 0\right]$
o_{6}	$[1, q, 0,0]$
$o_{8,1}$	$[1,1,0, q-1]$
$o_{8,2}$	$[1,0,1, q-1]$
o_{9}	$[1,0,0, q]$
o_{10}	$\left[0, \frac{q+1}{2}, \frac{q+1}{2}, 0\right]$
$o_{12,1}$	$[0, q+1,0,0]$
$o_{13,1}$	$[0,2,0, q-1]$
$o_{13,2}$	$[0,1,1, q-1]$
$o_{14,1}$	$[0,3,0, q-2]$
$o_{14,2}$	$[0,1,2, q-2]$
$o_{15,1}$	$[0,1,0, q]$
$o_{15,2}$	$[0,0,1, q]$
$o_{16,1}$	$[0,1,0, q]$
o_{17}	$[0,0,0, q+1]$

Table: K-orbits of lines in $\operatorname{PG}(5, q), q$ odd [M. Lavrauw, T. Popiel, 2020].

Lines in PG $(5, q), q$ EVEN:

Orbits	Point-OD's : $\left[r_{1}, r_{2 n}, r_{2 s}, r_{3}\right]$
o_{5}	$[2,0, q-1,0]$
o_{6}	$[1,1, q-1,0]$
$o_{8,1}$	$[1,0,1, q-1]$
$o_{8,3}$	$[1,1,0, q-1]$
o_{9}	$[1,0,0, q]$
o_{10}	$[0,0, q+1,0]$
$o_{12,1}$	$[0, q+1,0,0]$
$o_{12,3}$	$[0,1, q, 0]$
$o_{13,1}$	$[0,1,1, q-1]$
$o_{13,3}$	$[0,0,2, q-1]$
$o_{14,1}$	$[0,0,3, q-2]$
$o_{15,1}$	$[0,0,1, q]$
$o_{16,1}$	$[0,1,0, q]$
$o_{16,3}$	$[0,0,1, q]$
o_{17}	$[0,0,0, q+1]$

Table: K-orbits of lines in $\operatorname{PG}(5, q), q$ even [M. Lavrauw, T. Popiel, 2020].

Main results:

Subspaces of $\operatorname{PG}(5, q)$:
The determination of the distribution of the different types of hyperplanes incident with the K-orbit representatives of points and lines of $\mathrm{PG}(5, q)$.

Linear systems in $\mathrm{PG}(2, q)$:

The determination of the distribution of the different types of conics contained in projectively inequivalent webs and squabs of conics in $\operatorname{PG}(2, q)$.

In the remaining part of the talk, we will discuss various results concerning webs and their connections.

WEBS OF CONICS, q ODD:

L^{K}	Webs of Conics	$O D_{4}(L)$
o_{5}	$\left(X_{0} X_{1}, X_{0} X_{2}, X_{1} X_{2}, X_{2}^{2}\right)$	$\left[1,2 q^{2}+q, 0, q^{3}-q^{2}\right]$
o_{6}	$\left(X_{0} X_{2}, X_{1}^{2}, X_{1} X_{2}, X_{2}^{2}\right)$	$\left[q+1, \frac{3 q^{2}+q}{2}, \frac{q^{2}-q}{2}, q^{3}-q^{2}\right]$
$o_{8,1}$	$\left(X_{0} X_{1}, X_{0} X_{2}, X_{1} X_{2}, X_{1}^{2}+X_{2}^{2}\right)$	$\left[2, q^{2}+\frac{3 q-1}{2}, \frac{q-1}{2}, q^{3}-q\right]$
$o_{8,2}$	$\left(X_{0} X_{1}, X_{0} X_{2}, X_{1} X_{2}, \delta X_{1}^{2}+X_{2}^{2}\right)$	$\left[0, q^{2}+\frac{3 q+1}{2}, \frac{q+1}{2}, q^{3}-q\right]$
o_{9}	$\left(X_{0} X_{1}, X_{0} X_{2}-X_{1}^{2}, X_{1} X_{2}, X_{2}^{2}\right)$	$\left[1, q^{2}+q, 0, q^{3}\right]$
o_{10}	$\left(v_{0}^{-1} X_{0}^{2}+u X_{0} X_{1}-X_{1}^{2}, X_{0} X_{2}, X_{1} X_{2}, X_{2}^{2}\right)$	$\left[1, q^{2}+q, q^{2}, q^{3}-q^{2}\right]$
$o_{12,1}$	$\left(X_{0}^{2}, X_{0} X_{2}, X_{1}^{2}, X_{2}^{2}\right)$	$\left[q+2, q^{2}+\frac{q-1}{2}, q^{2}-\frac{q+1}{2}, q^{3}-q^{2}\right]$
$o_{13,1}$	$\left(X_{0}^{2}, X_{0} X_{2}, X_{1}^{2}+X_{2}^{2}, X_{1} X_{2}\right)$	$\left[3, \frac{q^{2}+3 q-2}{2}, \frac{q^{2}+q-2}{2}, q^{3}-q\right]$
$o_{13,2}$	$\left(X_{0}^{2}, X_{0} X_{2}, \delta X_{1}^{2}+X_{2}^{2}, X_{1} X_{2}\right)$	$\left[1, \frac{q^{2}+3 q}{2}, \frac{q^{2}+q}{2}, q^{3}-q\right]$
$o_{14,1}$	$\left(X_{0} X_{1}, X_{0} X_{2}, X_{0}^{2}+X_{1}^{2}+X_{2}^{2}, X_{1} X_{2}\right)$	$\left[4, \frac{q^{2}-1}{2}+2 q-1, \frac{q^{2}-1}{2}+q-1, q^{3}-2 q\right]$
$o_{14,2}$	$\left(X_{0} X_{1}, X_{0} X_{2}, \delta X_{0}^{2}+X_{1}^{2}+\delta X_{2}^{2}, X_{1} X_{2}\right)$	$\left[0, \frac{q^{2}+1}{2}+2 q, \frac{q^{2}+1}{2}+q, q^{3}-2 q\right]$
$o_{15,1}$	$\left(X_{0} X_{2}, X_{1} X_{2}, X_{0} X_{1}-X_{2}^{2}, v_{1}^{-1} X_{0}^{2}+u X_{0} X_{1}-X_{1}^{2}\right)$	$\left[2, \frac{q^{2}-1}{2}+q, \frac{q^{2}-1}{2}, q^{3}\right]$
$o_{15,2}$	$\left(X_{0} X_{2}, X_{1} X_{2}, X_{0} X_{1}-X_{2}^{2}, v_{2}^{-1} X_{0}^{2}+u X_{0} X_{1}-X_{1}^{2}\right)$	$\left[0, \frac{q^{2}+1}{2}+q, \frac{q^{2}+1}{2}, q^{3}\right]$
$o_{16,1}$	$\left(X_{0}^{2}, X_{0} X_{1}, X_{0} X_{2}-X_{1}^{2}, X_{2}^{2}\right)$	$\left[2, \frac{q^{2}-1}{2}+q, \frac{q^{2}-1}{2}, q^{3}\right]$
o_{17}	$\left(X_{0} X_{2}, X_{0} X_{1}-X_{2}^{2}, \alpha X_{0}^{2}-X_{1} X_{2}, \beta X_{0} X_{1}-X_{1}^{2}-\gamma X_{1} X_{2}\right)$	$\left[1, \frac{q^{2}+q}{2}, \frac{q^{2}-q}{2}, q^{3}+q\right]$

Webs of conics, q EVEN:

L^{K}	Webs of Conics	$O D_{4}(L)$
o_{5}	$\left(X_{0} X_{1}, X_{0} X_{2}, X_{1} X_{2}, X_{2}^{2}\right)$	$\left[1,2 q^{2}+q, 0, q^{3}-q^{2}\right]$
o_{6}	$\left(X_{0} X_{2}, X_{1}^{2}, X_{1} X_{2}, X_{2}^{2}\right)$	$\left[q+1, \frac{3 q^{2}+q}{2}, \frac{q^{2}-q}{2}, q^{3}-q^{2}\right]$
$o_{8,1}$	$\left(X_{0} X_{1}, X_{0} X_{2}, X_{1} X_{2}, X_{1}^{2}+X_{2}^{2}\right)$	$\left[1, q^{2}+\frac{3}{2} q, \frac{q}{2}, q^{3}-q\right]$
$o_{8,3}$	$\left(X_{0} X_{1}, X_{0} X_{2}, X_{1}^{2}, X_{2}^{2}\right)$	$\left[q+1, q^{2}+q, 0, q^{3}-q\right]$
o_{9}	$\left(X_{0} X_{1}, X_{0} X_{2}+X_{1}^{2}, X_{1} X_{2}, X_{2}^{2}\right)$	$\left[1, q^{2}+q, 0, q^{3}\right]$
o_{10}	$\left(v_{0}^{-1} X_{0}^{2}+u X_{0} X_{1}+X_{1}^{2}, X_{0} X_{2}, X_{1} X_{2}, X_{2}^{2}\right)$	$\left[1, q^{2}+q, q^{2}, q^{3}-q^{2}\right]$
$o_{12,1}$	$\left(X_{0}^{2}, X_{0} X_{2}, X_{1}^{2}, X_{2}^{2}\right)$	$\left[q^{2}+q+1, \frac{q^{2}+q}{2}, \frac{q^{2}-q}{2}, q^{3}-q^{2}\right]$
$o_{12,3}$	$\left(X_{0}^{2}, X_{0} X_{2}, X_{0} X_{1}+X_{1} X_{2}+X_{1}^{2}, X_{2}^{2}\right)$	$\left[q+1, q^{2}+\frac{q}{2}, q^{2}-\frac{q}{2}, q^{3}-q^{2}\right]$
$o_{13,1}$	$\left(X_{0}^{2}, X_{0} X_{2}, X_{1}^{2}+X_{2}^{2}, X_{1} X_{2}\right)$	$\left[q+1, \frac{q^{2}}{2}+q, \frac{q^{2}}{2}, q^{3}-q\right]$
$o_{13,3}$	$\left(X_{0}^{2}, X_{0} X_{2}, X_{1}^{2}+X_{0} X_{1}+X_{2}^{2}, X_{1} X_{2}\right)$	$\left[1, \frac{q^{2}+3 q}{2}, \frac{q^{2}+q}{2}, q^{3}-q\right]$
$o_{14,1}$	$\left(X_{0} X_{1}, X_{0} X_{2}, X_{0}^{2}+X_{1}^{2}+X_{2}^{2}, X_{1} X_{2}\right)$	$\left[1, \frac{q^{2}}{2}+2 q, \frac{q^{2}}{2}+q, q^{3}-2 q\right]$
$o_{15,1}$	$\left(X_{0} X_{2}, X_{1} X_{2}, X_{0} X_{1}+X_{2}^{2}, v_{1}^{-1} X_{0}^{2}+u X_{0} X_{1}+X_{1}^{2}\right)$	$\left[1, \frac{q^{2}}{2}+q, \frac{q^{2}}{2}, q^{3}\right]$
$o_{16,1}$	$\left(X_{0}^{2}, X_{0} X_{1}, X_{0} X_{2}+X_{1}^{2}, X_{2}^{2}\right)$	$\left[1, \frac{q^{2}}{2}+q, \frac{q^{2}+\frac{q^{2}}{2}, q^{2}-q}{2}, q^{3}\right]$
$o_{16,3}$	$\left(X_{0}^{2}, X_{0} X_{1}, X_{0} X_{2}+X_{1}^{2}, X_{1} X_{2}+X_{2}^{2}\right)$	$\left[1, \frac{\left.q^{2}+q, \frac{q^{2}-q}{2}, q^{3}+q\right]}{o_{17}}\right.$
$\left(X_{0} X_{2}, X_{0} X_{1}+X_{2}^{2}, \alpha_{0}^{2}+X_{1} X_{2}, \beta X_{0} X_{1}+X_{1}^{2}+\gamma X_{1} X_{2}\right)$		

THE \mathcal{W}_{17} CASE:

Theorem

The hyperplane-orbit distribution of a line in o_{17} (lines having $q+1$ rank-3 points) is $\left[1, \frac{q^{2}+q}{2}, \frac{q^{2}-q}{2}, q^{3}+q\right]$.

Remarks:

- Initial computations for small q were done using the FinInG package in GAP.
- A purely computational proof presents significant challenges: Let ℓ_{17} be the representative of o_{17} from [M. Lavrauw, T. Popiel, 2020]. Singular conics in \mathcal{W}_{17} correspond to points of the cubic surface in $\operatorname{PG}(3, q)$:
$4 \alpha b c d+a(b+d \beta)(c+d \gamma)-\alpha c(c+d \gamma)^{2}-d a^{2}-b(b+d \beta)^{2}=0$, where $\lambda^{3}+\gamma \lambda^{2}-\beta \lambda+\alpha \neq 0$ for all $\lambda \in \mathbb{F}_{q}$.

Sketch of the proof:

- Each conic plane π of $\mathcal{V}\left(\mathbb{F}_{q}\right)$ determines a hyperplane $H_{\pi}=\left\langle\pi, \ell_{17}\right\rangle \in \mathcal{H}_{1} \cup \mathcal{H}_{2, r}$.
- Counting flags $\left(\pi, H_{\pi}\right): h_{1}+2 h_{2, r}=q^{2}+q+1 \Longrightarrow h_{1} \geq 1$ and odd.
- Claim $h_{1}=1$: If $H_{\pi} \neq H_{\pi^{\prime}} \Longrightarrow H_{\pi} \cap H_{\pi^{\prime}}=S \supset \kappa_{\pi \cap \pi^{\prime}} \Longrightarrow$
- Thus, $h_{1}=1 \Longrightarrow h_{2, r}=\frac{q^{2}+q}{2}$.
- Each tangent plane π of $\mathcal{V}\left(\mathbb{F}_{q}\right)$ determines a hyperplane $H_{\pi}=\left\langle\pi, \ell_{17}\right\rangle \in \mathcal{H}_{1} \cup \mathcal{H}_{2, r} \cup \mathcal{H}_{2, i}$.
- By the first part of the proof, exactly one such hyperplane H_{π} with π a tangent plane of $\mathcal{V}\left(\mathbb{F}_{q}\right)$ belongs to \mathcal{H}_{1} and $\frac{q^{2}+q}{2}$ belongs to $\mathcal{H}_{2, r}$.
- Counting flags $\left(\rho, H_{\pi}\right)$, where ρ and π are tangent planes of $\mathcal{V}\left(\mathbb{F}_{q}\right): q+1+\frac{q^{2}+q}{2}+h_{2, i}=q^{2}+q+1 \Longrightarrow h_{2, i}=\frac{q^{2}-q}{2} . \square$

Consequences:

1) Lemma: We differentiate between lines/webs that have the same point-orbit/conic distribution using the following geometric configurations:

2) Theorem: A line L in $\operatorname{PG}(5, q)$ intersects the secant variety of $\mathcal{V}\left(\mathbb{F}_{q}\right)$ in i points \Longleftrightarrow its associated cubic surface has $q^{2}+i q+1$ points, $i \in\{0,1,2,3, q+1\}$.
3) Theorem: The number of lines of type o_{i} in a fixed $H \in \mathcal{H}_{j}$ is

$$
\frac{\left|o_{i}\right| \times h_{j}}{\left|\mathcal{H}_{j}\right|}
$$

Orbits	\mathcal{H}_{1}	$\mathcal{H}_{2, r}$	$\mathcal{H}_{2, i}$	\mathcal{H}_{3}
o_{5}	$\frac{1}{2} q(q+1)$	$2 q^{2}+q$	0	$\frac{1}{2} q(q+1)$
o_{6}	$(q+1)^{2}$	$3 q+1$	$q+1$	$q+1$
$o_{8,1}$	$q^{3}(q+1)$	$\frac{1}{2} q^{2}\left(2 q^{2}+3 q-1\right)$	$\frac{1}{2} q^{2}(q+1)$	$\frac{1}{2} q^{2}(q+1)^{2}$
$o_{8,2}$	0	$\frac{q^{2}(q-1)\left(2 q^{2}+3 q+1\right)}{2(q+1)}$	$\frac{1}{2} q^{2}(q+1)$	$\frac{1}{2} q^{2}\left(q^{2}-1\right)$
o_{9}	$q\left(q^{2}-1\right)$	$2 q\left(q^{2}-1\right)$	0	$q^{2}(q+1)$
o_{10}	$\frac{1}{2} q(q-1)$	$q(q-1)$	q^{2}	$\frac{1}{2} q(q-1)$
$o_{12,1}$	$q+2$	$\frac{2 q^{2}+q-1}{q(q+1)}$	$\frac{2 q^{2}-q-1}{q(q-1)}$	1
$o_{13,1}$	$\frac{3}{2} q^{3}\left(q^{2}-1\right)$	$\frac{1}{2} q^{2}(q-1)\left(q^{2}+3 q-2\right)$	$\frac{1}{2} q^{2}(q+1)\left(q^{2}+q-2\right)$	$\frac{1}{2} q^{2}(q+1)\left(q^{2}-1\right)$
$o_{13,2}$	$\frac{1}{2} q^{3}\left(q^{2}-1\right)$	$\frac{1}{2} q^{3}(q-1)(q+3)$	$\frac{1}{2} q^{3}(q+1)^{2}$	$\frac{1}{2} q^{2}(q+1)\left(q^{2}-1\right)$
$o_{14,1}$	$\frac{1}{6} q^{3}(q-1)\left(q^{2}-1\right)$	$\frac{1}{24} q^{2}(q-1)^{2}\left(q^{2}+4 q-3\right)$	$\frac{1}{24} q^{2}\left(q^{2}-1\right)\left(q^{2}+2 q-3\right)$	$\frac{1}{24} q^{2}\left(q^{2}-1\right)\left(q^{2}-2\right)$
$o_{14,2}$	0	$\frac{1}{8} q^{2}(q-1)^{2}\left(q^{2}+4 q+1\right)$	$\frac{1}{8} q^{2}\left(q^{2}-1\right)\left(q^{2}+2 q+1\right)$	$\frac{1}{8} q^{2}\left(q^{2}-1\right)\left(q^{2}-2\right)$
$o_{15,1}$	$\frac{1}{2} q^{3}(q-1)\left(q^{2}-1\right)$	$\frac{1}{4} q^{2}(q-1)^{2}\left(q^{2}+2 q-1\right)$	$\frac{1}{4} q^{2}\left(q^{2}-1\right)^{2}$	$\frac{1}{4} q^{4}\left(q^{2}-1\right)$
$o_{15,2}$	0	$\frac{1}{4} q^{2}(q-1)^{2}\left(q^{2}+2 q+1\right)$	$\frac{1}{4} q^{2}\left(q^{4}-1\right)$	$\frac{1}{4} q^{4}\left(q^{2}-1\right)$
$o_{16,1}$	$2 q^{2}\left(q^{2}-1\right)$	$q(q-1)\left(q^{2}+2 q-1\right)$	$q(q+1)\left(q^{2}-1\right)$	$q^{3}(q+1)$
o_{17}	$\frac{1}{3} q^{3}(q-1)\left(q^{2}-1\right)$	$\frac{1}{3} q^{3}(q-1)\left(q^{2}-1\right)$	$\frac{1}{3} q^{3}(q-1)\left(q^{2}-1\right)$	$\frac{1}{3} q^{2}\left(q^{4}-1\right)$

Table 3: Line-orbits distributions of hyperplanes in $\mathrm{PG}(5, q), q$ odd.

Orbits	\mathcal{H}_{1}	$\mathcal{H}_{2, r}$	$\mathcal{H}_{2, i}$	\mathcal{H}_{3}
o_{5}	$\frac{1}{2} q(q+1)$	$2 q^{2}+q$	0	$\frac{1}{2} q(q+1)$
o_{6}	$(q+1)^{2}$	$3 q+1$	$q+1$	$q+1$
$o_{8,1}$	$q^{2}\left(q^{2}-1\right)$	$(2 q+3)(q-1) q^{2}$	$q^{2}(q+1)$	$q(q+1)\left(q^{2}-1\right)$
$o_{8,3}$	$q^{2}(q+1)$	$2 q^{2}$	0	$q(q+1)$
o_{9}	$q\left(q^{2}-1\right)$	$2 q\left(q^{2}-1\right)$	0	$q^{2}(q+1)$
o_{10}	$\frac{1}{2} q(q-1)$	$q(q-1)$	q^{2}	$\frac{1}{2} q(q-1)$
$o_{12,1}$	$q^{2}+q+1$	1	1	1
$o_{12,3}$	$(q+1)\left(q^{2}-1\right)$	$(q-1)(2 q+1)$	$(q+1)(2 q-1)$	$q^{2}-1$
$o_{13,1}$	$q^{2}(q+1)\left(q^{2}-1\right)$	$q^{2}(q-1)(q+2)$	$q^{3}(q+1)$	$q(q+1)\left(q^{2}-1\right)$
$o_{13,3}$	$q^{2}(q-1)\left(q^{2}-1\right)$	$q^{2}(q+3)(q-1)^{2}$	$q^{2}(q+1)\left(q^{2}-1\right)$	$q\left(q^{2}-1\right)^{2}$
$o_{14,1}$	$\frac{1}{6} q^{3}(q-1)\left(q^{2}-1\right)$	$\frac{1}{6} q^{3}(q-1)^{2}(q+4)$	$\frac{1}{6} q^{3}\left(q^{2}-1\right)(q+2)$	$\frac{1}{6} q^{2}\left(q^{2}-1\right)\left(q^{2}-2\right)$
$o_{15,1}$	$\frac{1}{2} q^{3}(q-1)\left(q^{2}-1\right)$	$\frac{1}{2} q^{3}(q-1)^{2}(q+2)$	$\frac{1}{2} q^{4}\left(q^{2}-1\right)$	$\frac{1}{2} q^{4}\left(q^{2}-1\right)$
$o_{16,1}$	$q(q+1)\left(q^{2}-1\right)$	$q\left(q^{2}-1\right)$	$q\left(q^{2}-1\right)$	$q^{2}(q+1)$
$o_{16,3}$	$q(q-1)\left(q^{2}-1\right)$	$q(q-1)^{2}(q+2)$	$q^{2}\left(q^{2}-1\right)$	$q^{2}\left(q^{2}-1\right)$
o_{17}	$\frac{1}{3} q^{3}(q-1)\left(q^{2}-1\right)$	$\frac{1}{3} q^{3}(q-1)\left(q^{2}-1\right)$	$\frac{1}{3} q^{3}(q-1)\left(q^{2}-1\right)$	$\frac{1}{3} q^{2}\left(q^{4}-1\right)$

Table 4: Line-orbits distributions of hyperplanes in $\mathrm{PG}(5, q), q$ even.

MRD codes, Segre Varieties and their secant

 VARIETIES:[Sheekey, 2019]

- We can view an $\mathbb{F}_{q^{-}}[n \times m, k, d]$ linear rank-metric code as a subspace in the projective space $\mathrm{PG}(m n-1, q)$.
- Equivalence of \mathbb{F}_{q}-linear rank-metric codes corresponds to equivalence of subspaces of $\operatorname{PG}(m n-1, q)$ under the setwise stabilizer of the Segre variety in $\mathrm{PGL}(m n, q)$.
- The set of elements of rank at most i corresponds to the $(i-1)$-st secant variety of the Segre variety in $\mathrm{PG}(m n-1, q)$.
- An MRD code in $M_{n \times m}\left(\mathbb{F}_{q}\right)$ corresponds to a maximal subspace disjoint from one of the secant varieties of the Segre variety in $\mathrm{PG}(m n-1, q)$.

In particular, 3×3 symmetric MRD-codes over \mathbb{F}_{q} correspond to solids of $\mathrm{PG}(5, q)$ disjoint from one of the secant varieties of the Veronese variety $\mathcal{V}\left(\mathbb{F}_{q}\right)$.

Connection with MRD codes:

- In [M. Lavrauw, T. Popiel, 2020] and [NA, M. Lavrauw, T. Popiel, 2022] solids were completely classified in $\operatorname{PG}(5, q)$ and the intersection of the different K-orbits of solids with the secant variety $\mathcal{V}^{(2)}\left(\mathbb{F}_{q}\right)$ were computed.
- It follows that there are three equivalence classes of 3×3 symmetric MRD-codes over \mathbb{F}_{q}.
- For q even, these classes correspond to the K-orbits of solids: Ω_{7}, Ω_{13} and Ω_{14} described in [NA, M. Lavrauw, T. Popiel, 2022].
- For q odd, these classes correspond to the K-orbits of solids: $\Omega_{8,2}$, $\Omega_{14,2}$ and $\Omega_{15,2}$ described in [M. Lavrauw, T. Popiel, 2020].

Over finite fields of odd order, webs in $\mathcal{W}_{8,2} \cup \mathcal{W}_{14,2} \cup \mathcal{W}_{15,2}$ are equivalent to 3×3 symmetric MRD-codes.

Thank you!

References I

\square N. Alnajjarine, M. Lavrauw. Webs and squabs of Conics over Finite Fields. Submitted.
N. Alnajjarine, M. Lavrauw, T. Popiel. Solids in the space of the Veronese surface in even characteristic. Finite Fields and Their Applications, 83: 102068, 2022.

N. Alnajjarine and M. Lavrauw. A classification of planes intersecting the Veronese surface over finite fields of even order, Designs, Codes and Cryptography. 10.1007, 2023.
A. Campbell. Nets of conics in the Galois field of order 2^{n}. it Bull. Amer. Math. Soc, 34: 481-489, 1928.

M. Lavrauw and J. Sheekey. Canonical forms of $2 \times 3 \times 3$ tensors over the real field, algebraically closed fields, and finite fields, Linear Algebra Appl. 476, 133-147, 2015.

M. Lavrauw and T. Popiel. The symmetric representation of lines in $\operatorname{PG}\left(\mathbb{F}_{q}^{3} \otimes \mathbb{F}_{q}^{3}\right)$, Discrete Math. 343: 111775, 2020.

J. Sheekey. MRD codes: constructions and connections. In Combinatorics and finite fields: Difference sets, polynomials, pseudorandomness and applications, 23: 255-286, 2019.
A. Wilson. The canonical Types of Nets of Modular Conics. Amer. J. Math., 36:187-210, 1914.

