Cocyclic Two Circulant Core HMs

Santiago Barrera Acevedo

Department of Mathematical and Physical Sciences
La Trobe University - Australia

This is joint work with Padraig Ó Catháin and Heiko Dietrich https://link.springer.com/article/10.1007/s10801-021-01033-x

Motivation

In her monography, Hadamard matrices and their applications, Kathy Horadam proposes the research question:

Research Problem 42 Is the 'two circulant cores' construction (6.23) of Hadamard matrices cocyclic?

We studied this question by examining a permutation representation of the automorphism group of this combinatorial structure.

Motivation

In her monography, Hadamard matrices and their applications, Kathy Horadam proposes the research question:

Research Problem 42 Is the 'two circulant cores' construction (6.23) of Hadamard matrices cocyclic?

We studied this question by examining a permutation representation of the automorphism group of this combinatorial structure.

In the process, we classified transitive permutation groups of degree $2 m+2$, with odd $m \geqslant 1$, containing an element of cycle type $1+1+m+m$.

Definitions

A $\{ \pm 1\}$-matrix H of size $n \times n$ is a Hadamard matrix (HM) of order n, if there is a balanced number of matches and miss-matches between entries of distinct rows.

$$
H=\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & \mathbf{1} & -\mathbf{1} & -1 \\
1 & -\mathbf{1} & \mathbf{1} & -\mathbf{1} \\
1 & -1 & -1 & 1
\end{array}\right]
$$

[Two matches $(1,1),(-1,-1)$ and two mismatches $(1,-1),(-1,1)$].

Definitions

A $\{ \pm 1\}$-matrix H of size $n \times n$ is a Hadamard matrix (HM) of order n, if there is a balanced number of matches and miss-matches between entries of distinct rows.

$$
H=\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
\mathbf{1} & \mathbf{1} & -\mathbf{1} & -\mathbf{1} \\
\mathbf{1} & -\mathbf{1} & \mathbf{1} & -\mathbf{1} \\
1 & -1 & -1 & 1
\end{array}\right]
$$

[Two matches $(1,1),(-1,-1)$ and two mismatches $(1,-1),(-1,1)$].

Let $\operatorname{Mon}_{n} \leqslant \operatorname{GL}((n, \mathbb{C})$ be the group of $\{ \pm 1\}$-monomial matrices of size $n \times n$.

The group Mon $_{n}^{2}=$ Mon $_{n} \times$ Mon $_{n}$ acts on the set of HMs of order n via

$$
(R, S) \cdot H=R H S^{\top},
$$

where H is a HM and $(R, S) \in \mathrm{Mon}_{n}^{2}$.

Definitions

The automorphism group of H is the stabiliser

$$
\operatorname{Aut}(H)=\operatorname{Stab}_{\operatorname{Mon}_{n}^{2}}(H)=\left\{(R, S) \in \operatorname{Mon}_{n}^{2}: R H S^{\top}=H\right\}
$$

[The element $\left(-I_{n},-I_{n}\right)$ is an automorphism of H since $-I_{n} H\left(-I_{n}\right)^{\top}=H$].

Definitions

The automorphism group of H is the stabiliser

$$
\operatorname{Aut}(H)=\operatorname{Stab}_{\operatorname{Mon}_{n}^{2}}(H)=\left\{(R, S) \in \operatorname{Mon}_{n}^{2}: R H S^{\top}=H\right\}
$$

[The element $\left(-I_{n},-I_{n}\right)$ is an automorphism of H since $-I_{n} H\left(-I_{n}\right)^{\top}=H$].

Observe $\mathbf{M o n}_{n}=\operatorname{Perm}_{n} \ltimes \mathbf{D}_{n}$ where Perm $_{n}$ and \mathbf{D}_{n} denote the subgroup of permutation matrices and diagonal matrices of order n, respectively.

Every element $R \in \operatorname{Mon}_{n}$ can be uniquely written as $P_{R} D_{R}$ with $P_{R} \in \operatorname{Perm}_{n}$ and $\mathbf{D}_{R} \in D_{n}$.

Definitions

The automorphism group of H is the stabiliser

$$
\operatorname{Aut}(H)=\operatorname{Stab}_{\operatorname{Mon}_{n}^{2}}(H)=\left\{(R, S) \in \operatorname{Mon}_{n}^{2}: R H S^{\top}=H\right\}
$$

[The element $\left(-I_{n},-I_{n}\right)$ is an automorphism of H since $-I_{n} H\left(-I_{n}\right)^{\top}=H$].

Observe Mon $_{n}=\operatorname{Perm}_{n} \ltimes \mathbf{D}_{n}$ where Perm $_{n}$ and \mathbf{D}_{n} denote the subgroup of permutation matrices and diagonal matrices of order n, respectively.

Every element $R \in \operatorname{Mon}_{n}$ can be uniquely written as $P_{R} D_{R}$ with $P_{R} \in \operatorname{Perm}_{n}$ and $\mathbf{D}_{R} \in D_{n}$.

The map

$$
\begin{array}{rllclc}
\pi: \quad \operatorname{Aut}(H) & \rightarrow & \text { Mon }_{n} & \rightarrow & \operatorname{Perm}_{n} \\
(R, S) & \mapsto & R & \mapsto & P_{R}
\end{array}
$$

is a homomorphism (this gives us a representation of $\operatorname{Aut}(H)$).

Permutation Representation of Aut (H)

Denote the image of π by $\mathcal{A}(H)=\operatorname{Im}(\pi)$.

Under the identification $\operatorname{Perm}_{n} \equiv S_{n}$, the group $\mathcal{A}(H)$ is a permutation group, and thus π is a permutation representation of $\boldsymbol{\operatorname { A u t }}(H)$.

The group $\mathcal{A}(H)$ acts on the rows of H via

$$
P \cdot H=P H .
$$

Permutation Representation of Aut (H)

Denote the image of π by $\mathcal{A}(H)=\operatorname{Im}(\pi)$.

Under the identification $\operatorname{Perm}_{n} \equiv S_{n}$, the group $\mathcal{A}(H)$ is a permutation group, and thus π is a permutation representation of $\boldsymbol{\operatorname { A u t }}(H)$.

The group $\mathcal{A}(H)$ acts on the rows of H via

$$
P \cdot H=P H .
$$

How much information is lost?

Since $\operatorname{ker}(\pi)=\left\langle\left(-I_{n},-I_{n}\right)\right\rangle \cong C_{2}$ we have that $\operatorname{Aut}(H)$ is isomorphic to a central extension of C_{2} by $\mathcal{A}(H)$.

Cocyclic Hadamard Matrices

A cocyclic HM is a HM with additional algebraic properties.

All we need to know today about CHMs is the following:

If a $\mathrm{HM} H$ is cocyclic then $\mathcal{A}(H)$ is transitive, acting on the rows of H^{\dagger}.
[Given any two rows r_{1}, r_{2} of H there exists $P \in \mathcal{A}(H)$ that maps r_{1} to r_{2}].

[^0]
Cocyclic Hadamard Matrices

A cocyclic HM is a HM with additional algebraic properties.

All we need to know today about CHMs is the following:

If a $\mathrm{HM} H$ is cocyclic then $\mathcal{A}(H)$ is transitive, acting on the rows of H^{\dagger}.
[Given any two rows r_{1}, r_{2} of H there exists $P \in \mathcal{A}(H)$ that maps r_{1} to r_{2}].

Given a transitive permutation group, one may ask:

Is the group primitive or imprimitive?

If it is primitive, is it n-transitive for some n ?

[^1]
Two Circulant Cores Construction

A HM H of order $2 m+2$ (with $m \geqslant 1$ odd) is two circulant core (TCC) if it has the form

$$
H=\left[\begin{array}{rrrr}
1 & 1 & \mathbf{1} & \mathbf{1} \\
1 & -1 & \mathbf{1} & -\mathbf{1} \\
\mathbf{1}^{\top} & \mathbf{1}^{\top} & A & B \\
\mathbf{1}^{\top} & -\mathbf{1}^{\top} & B^{\top} & -A^{\top}
\end{array}\right]
$$

where

- $\mathbf{1}=[1 \ldots 1]$ denotes the all 1's row vector (whose length will be determined by the context),
- A and B are circulant $\{ \pm 1\}$-matrices of order m.
[The matrix $\left[\begin{array}{lll}a & b & c \\ c & a & b \\ b & c & a\end{array}\right]$ is circulant of order 3].

A Distinguished Automorphism

Let P be the permutation matrix associated to the cycle $(1,2, \ldots, m)$. The element (P, P) acts trivially on any circulant matrix.
[For example $\left[\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]\left[\begin{array}{lll}a & b & c \\ c & a & b \\ b & c & a\end{array}\right]\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right]=\left[\begin{array}{lll}a & b & c \\ c & a & b \\ b & c & a\end{array}\right]$].

A Distinguished Automorphism

Let P be the permutation matrix associated to the cycle $(1,2, \ldots, m)$. The element (P, P) acts trivially on any circulant matrix.
[For example $\left[\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]\left[\begin{array}{lll}a & b & c \\ c & a & b \\ b & c & a\end{array}\right]\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right]=\left[\begin{array}{lll}a & b & c \\ c & a & b \\ b & c & a\end{array}\right]$].
Let R be the permutation matrix defined by the block matrix

$$
R=\left[\begin{array}{cccc}
1 & 0 & \mathbf{0} & \mathbf{0} \\
0 & 1 & \mathbf{0} & \mathbf{0} \\
\mathbf{0}^{\top} & \mathbf{0}^{\top} & P & \mathbf{0} \\
\mathbf{0}^{\top} & \mathbf{0}^{\top} & \mathbf{0} & P
\end{array}\right]
$$

If H is TCC HM then $(R, R) \in \operatorname{Aut}(H)$.

A Distinguished Automorphism

$$
R H R^{\top}=\left[\begin{array}{rrrr}
1 & 1 & \mathbf{1} & \mathbf{1} \\
1 & -1 & \mathbf{1} & -\mathbf{1} \\
\mathbf{1}^{\top} & \mathbf{1}^{\top} & P A P^{\top} & P B P^{\top} \\
\mathbf{1}^{\top} & -\mathbf{1}^{\top} & P B^{\top} P^{\top} & -P A^{\top} P^{\top}
\end{array}\right]=\left[\begin{array}{rrrr}
1 & 1 & \mathbf{1} & \mathbf{1} \\
1 & -1 & \mathbf{1} & -\mathbf{1} \\
\mathbf{1}^{\top} & \mathbf{1}^{\top} & A & B \\
\mathbf{1}^{\top} & -\mathbf{1}^{\top} & B^{\top} & -A^{\top}
\end{array}\right]
$$

A Distinguished Automorphism

$$
R H R^{\top}=\left[\begin{array}{rrrr}
1 & 1 & \mathbf{1} & \mathbf{1} \\
1 & -1 & \mathbf{1} & -\mathbf{1} \\
\mathbf{1}^{\top} & \mathbf{1}^{\top} & P A P^{\top} & P B P^{\top} \\
\mathbf{1}^{\top} & -\mathbf{1}^{\top} & P B^{\top} P^{\top} & -P A^{\top} P^{\top}
\end{array}\right]=\left[\begin{array}{rrrr}
1 & 1 & \mathbf{1} & \mathbf{1} \\
1 & -1 & \mathbf{1} & -\mathbf{1} \\
\mathbf{1}^{\top} & \mathbf{1}^{\top} & A & B \\
\mathbf{1}^{\top} & -\mathbf{1}^{\top} & B^{\top} & -A^{\top}
\end{array}\right] .
$$

It follows that the element $\pi(R, R)=R \in \mathcal{A}(H)$ has cycle type $1+1+m+m$. [A permutation $g \in \mathcal{A}(H)$ has cycle type $m_{1}+\cdots+m_{k}$ if the $\langle g\rangle$-orbits in the set of rows of H have sizes m_{1}, \ldots, m_{k}].

A Distinguished Automorphism

$$
R H R^{\top}=\left[\begin{array}{rrrr}
1 & 1 & \mathbf{1} & \mathbf{1} \\
1 & -1 & \mathbf{1} & -\mathbf{1} \\
\mathbf{1}^{\top} & \mathbf{1}^{\top} & P A P^{\top} & P B P^{\top} \\
\mathbf{1}^{\top} & -\mathbf{1}^{\top} & P B^{\top} P^{\top} & -P A^{\top} P^{\top}
\end{array}\right]=\left[\begin{array}{rrrr}
1 & 1 & \mathbf{1} & \mathbf{1} \\
1 & -1 & \mathbf{1} & -\mathbf{1} \\
\mathbf{1}^{\top} & \mathbf{1}^{\top} & A & B \\
\mathbf{1}^{\top} & -\mathbf{1}^{\top} & B^{\top} & -A^{\top}
\end{array}\right]
$$

It follows that the element $\pi(R, R)=R \in \mathcal{A}(H)$ has cycle type $1+1+m+m$. [A permutation $g \in \mathcal{A}(H)$ has cycle type $m_{1}+\cdots+m_{k}$ if the $\langle g\rangle$-orbits in the set of rows of H have sizes $\left.m_{1}, \ldots, m_{k}\right]$.

Conclusion

If H is cocyclic and TCC then $\mathcal{A}(H)$ is a transitive permutation group of degree $2 m+2$, with $m \geqslant 1$ odd, and contains an element of cycle type $1+1+m+m$.

We classified these groups.

Permutation Groups (Primer)

Let $G \leq \operatorname{Sym}(\Omega)$, the G-action on Ω is n-transitive if the induced action on n-tuples over Ω with pairwise distinct entries is transitive.

Permutation Groups (Primer)

Let $G \leq \operatorname{Sym}(\Omega)$, the G-action on Ω is n-transitive if the induced action on n-tuples over Ω with pairwise distinct entries is transitive.

A block of G (transitive) is a subset $B \subseteq \Omega$ such that for every $g \in G$ either $B=B^{g}$ or $B \cap B^{g}=\emptyset$. The trivial blocks are $B=\Omega$ and singletons $B=\{\omega\}$.

Permutation Groups (Primer)

Let $G \leq \operatorname{Sym}(\Omega)$, the G-action on Ω is n-transitive if the induced action on n-tuples over Ω with pairwise distinct entries is transitive.

A block of G (transitive) is a subset $B \subseteq \Omega$ such that for every $g \in G$ either $B=B^{g}$ or $B \cap B^{g}=\emptyset$. The trivial blocks are $B=\Omega$ and singletons $B=\{\omega\}$.

A transitive group is imprimitive if there is a nontrivial block, and primitive otherwise.

Permutation Groups (Primer)

Let $G \leq \operatorname{Sym}(\Omega)$, the G-action on Ω is n-transitive if the induced action on n-tuples over Ω with pairwise distinct entries is transitive.

A block of G (transitive) is a subset $B \subseteq \Omega$ such that for every $g \in G$ either $B=B^{g}$ or $B \cap B^{g}=\emptyset$. The trivial blocks are $B=\Omega$ and singletons $B=\{\omega\}$.

A transitive group is imprimitive if there is a nontrivial block, and primitive otherwise.

If B is a nontrivial block, then G acts transitively on $\left\{B^{g} \mid g \in G\right\}$ and the latter is a system of imprimitivity for G.
$\left[\langle(1,2,3,4)\rangle \leqslant S_{4}\right.$ is imprimitive with system of imprimitivity $\left.\{\{1,3\},\{2,4\}\}\right]$.

Permutation Groups (Primer)

Let $G \leq \operatorname{Sym}(\Omega)$, the G-action on Ω is n-transitive if the induced action on n-tuples over Ω with pairwise distinct entries is transitive.

A block of G (transitive) is a subset $B \subseteq \Omega$ such that for every $g \in G$ either $B=B^{g}$ or $B \cap B^{g}=\emptyset$. The trivial blocks are $B=\Omega$ and singletons $B=\{\omega\}$.

A transitive group is imprimitive if there is a nontrivial block, and primitive otherwise.

If B is a nontrivial block, then G acts transitively on $\left\{B^{g} \mid g \in G\right\}$ and the latter is a system of imprimitivity for G.
$\left[\langle(1,2,3,4)\rangle \leqslant S_{4}\right.$ is imprimitive with system of imprimitivity $\left.\{\{1,3\},\{2,4\}\}\right]$.

Given a block B, the set-wise stabiliser G_{B} acts on B transitively.

Permutation Groups (Primer)

Let $G \leq \operatorname{Sym}(\Omega)$, the G-action on Ω is n-transitive if the induced action on n-tuples over Ω with pairwise distinct entries is transitive.

A block of G (transitive) is a subset $B \subseteq \Omega$ such that for every $g \in G$ either $B=B^{g}$ or $B \cap B^{g}=\emptyset$. The trivial blocks are $B=\Omega$ and singletons $B=\{\omega\}$.

A transitive group is imprimitive if there is a nontrivial block, and primitive otherwise.

If B is a nontrivial block, then G acts transitively on $\left\{B^{g} \mid g \in G\right\}$ and the latter is a system of imprimitivity for G.
$\left[\langle(1,2,3,4)\rangle \leqslant S_{4}\right.$ is imprimitive with system of imprimitivity $\left.\{\{1,3\},\{2,4\}\}\right]$.

Given a block B, the set-wise stabiliser G_{B} acts on B transitively.
Thus, G can be identified with a subgroup of $G_{B}^{B} \imath G^{\mathcal{P}}$.

Main Ingredient of our Classification

Theorem 1 (Jones 2011, Theorem 1.2 and Remark 1.5)

If T is a transitive permutation group of degree $k>2$, and contains a cycle fixing exactly one point, then it is 2-transitive and satisfies (up to isomorphism) one of the following:

Main Ingredient of our Classification

Theorem 1 (Jones 2011, Theorem 1.2 and Remark 1.5)

If T is a transitive permutation group of degree $k>2$, and contains a cycle fixing exactly one point, then it is 2-transitive and satisfies (up to isomorphism) one of the following:
a) $\mathrm{AGL}_{d}(q) \leq T \leq \mathrm{A} \mathrm{L}_{d}(q)$ with $k=q^{d}$ for some prime power q,

$$
\left[\operatorname{AGL}_{d}(q)=\mathbb{F}_{q} \rtimes \mathrm{GL}_{d}(q), \mathrm{A}^{\left(L_{d}\right.}(q)=\mathbb{F}_{q} \rtimes\left(\mathrm{GL}_{d}(q) \rtimes \operatorname{Aut}\left(\mathbb{F}_{q}\right)\right)\right]
$$

Main Ingredient of our Classification

Theorem 1 (Jones 2011, Theorem 1.2 and Remark 1.5)

If T is a transitive permutation group of degree $k>2$, and contains a cycle fixing exactly one point, then it is 2-transitive and satisfies (up to isomorphism) one of the following:
a) $\mathrm{AGL}_{d}(q) \leq T \leq \mathrm{A} \mathrm{L}_{d}(q)$ with $k=q^{d}$ for some prime power q,

$$
\left[\mathrm{AGL}_{d}(q)=\mathbb{F}_{q} \rtimes \mathrm{GL}_{d}(q), \mathrm{A}^{2} \mathrm{~L}_{d}(q)=\mathbb{F}_{q} \rtimes\left(\mathrm{GL}_{d}(q) \rtimes \operatorname{Aut}\left(\mathbb{F}_{q}\right)\right)\right]
$$

b) $T \in\left\{\operatorname{PSL}_{2}(p), \operatorname{PGL}_{2}(p)\right\}$ with $k=p+1$ for some prime $p>3$,

Main Ingredient of our Classification

Theorem 1 (Jones 2011, Theorem 1.2 and Remark 1.5)

If T is a transitive permutation group of degree $k>2$, and contains a cycle fixing exactly one point, then it is 2-transitive and satisfies (up to isomorphism) one of the following:
a) $\mathrm{AGL}_{d}(q) \leq T \leq \mathrm{A} \mathrm{L}_{d}(q)$ with $k=q^{d}$ for some prime power q,

$$
\left[\mathrm{AGL}_{d}(q)=\mathbb{F}_{q} \rtimes \mathrm{GL}_{d}(q), \mathrm{A}^{\left(\mathrm{L}_{d}\right.}(q)=\mathbb{F}_{q} \rtimes\left(\mathrm{GL}_{d}(q) \rtimes \operatorname{Aut}\left(\mathbb{F}_{q}\right)\right)\right]
$$

b) $T \in\left\{\operatorname{PSL}_{2}(p), \operatorname{PGL}_{2}(p)\right\}$ with $k=p+1$ for some prime $p>3$,
c) $T \in\left\{M_{11}, M_{12}, M_{24}\right\}$ with $k=12,12,24$, respectively,

Main Ingredient of our Classification

Theorem 1 (Jones 2011, Theorem 1.2 and Remark 1.5)

If T is a transitive permutation group of degree $k>2$, and contains a cycle fixing exactly one point, then it is 2-transitive and satisfies (up to isomorphism) one of the following:
a) $\mathrm{AGL}_{d}(q) \leq T \leq \mathrm{A} \mathrm{L}_{d}(q)$ with $k=q^{d}$ for some prime power q,

$$
\left[\mathrm{AGL}_{d}(q)=\mathbb{F}_{q} \rtimes \mathrm{GL}_{d}(q), \mathrm{A}^{2} \mathrm{~L}_{d}(q)=\mathbb{F}_{q} \rtimes\left(\mathrm{GL}_{d}(q) \rtimes \operatorname{Aut}\left(\mathbb{F}_{q}\right)\right)\right]
$$

b) $T \in\left\{\operatorname{PSL}_{2}(p), \operatorname{PGL}_{2}(p)\right\}$ with $k=p+1$ for some prime $p>3$,
c) $T \in\left\{M_{11}, M_{12}, M_{24}\right\}$ with $k=12,12,24$, respectively,
d) $A_{k} \leq T$.

Main Ingredient of our Classification

Theorem 1 (Jones 2011, Theorem 1.2 and Remark 1.5)

If T is a transitive permutation group of degree $k>2$, and contains a cycle fixing exactly one point, then it is 2-transitive and satisfies (up to isomorphism) one of the following:
a) $\mathrm{AGL}_{d}(q) \leq T \leq \mathrm{A} \Gamma \mathrm{L}_{d}(q)$ with $k=q^{d}$ for some prime power q,

$$
\left[\operatorname{AGL}_{d}(q)=\mathbb{F}_{q} \rtimes \mathrm{GL}_{d}(q), \mathrm{A}^{\left(\mathrm{L}_{d}\right.}(q)=\mathbb{F}_{q} \rtimes\left(\mathrm{GL}_{d}(q) \rtimes \operatorname{Aut}\left(\mathbb{F}_{q}\right)\right)\right]
$$

b) $T \in\left\{\operatorname{PSL}_{2}(p), \operatorname{PGL}_{2}(p)\right\}$ with $k=p+1$ for some prime $p>3$,
c) $T \in\left\{M_{11}, M_{12}, M_{24}\right\}$ with $k=12,12,24$, respectively,
d) $A_{k} \leq T$.

Every 2-transitive group is primitive; 2-transitive groups form a strict class of primitive groups and are classified (affine or almost-simple).

Groups under a) are affine, and groups under b-d) are almost simple.

Classification

Theorem 2 (BA-OC-D)

Let $G \leq \operatorname{Sym}(\Omega)$ be a transitive permutation group of degree $n=2 m+2$ with $m \geq 1$ odd. If G has an element of cycle type $1+1+m+m$, then there exists a 2-transitive group T (as in the theorem of Jones) with $k=m+1$ such that

Classification

Theorem 2 (BA-OC-D)

Let $G \leq \operatorname{Sym}(\Omega)$ be a transitive permutation group of degree $n=2 m+2$ with $m \geq 1$ odd. If G has an element of cycle type $1+1+m+m$, then there exists a 2-transitive group T (as in the theorem of Jones) with $k=m+1$ such that
a) G is 2-transitive (and thus primitive), or

Classification

Theorem 2 (BA-OC-D)

Let $G \leq \operatorname{Sym}(\Omega)$ be a transitive permutation group of degree $n=2 m+2$ with $m \geq 1$ odd. If G has an element of cycle type $1+1+m+m$, then there exists a 2-transitive group T (as in the theorem of Jones) with $k=m+1$ such that
a) G is 2-transitive (and thus primitive), or
b) G is imprimitive with $m+1$ blocks of size 2 , and the induced action of G on the system of imprimitivity is T, that is, $G \leq C_{2} \prec T=C_{2}^{k} \rtimes T$, or

Classification

Theorem 2 (BA-OC-D)

Let $G \leq \operatorname{Sym}(\Omega)$ be a transitive permutation group of degree $n=2 m+2$ with $m \geq 1$ odd. If G has an element of cycle type $1+1+m+m$, then there exists a 2-transitive group T (as in the theorem of Jones) with $k=m+1$ such that
a) G is 2-transitive (and thus primitive), or
b) G is imprimitive with $m+1$ blocks of size 2 , and the induced action of G on the system of imprimitivity is T, that is, $G \leq C_{2} \prec T=C_{2}^{k} \rtimes T$, or
c) G is imprimitive with 2 blocks of size $m+1$, and the induced action on each block is T, that is $G \leq T\} C_{2}=T^{2} \rtimes C_{2}$.

Sketch of Classification

Let $\sigma \in G$ be the element with cycle type $1+1+m+m$.

Sketch of Classification

Let $\sigma \in G$ be the element with cycle type $1+1+m+m$.

Let $\alpha \in \Omega$ be a fixed point of σ and note that $\langle\sigma\rangle \leq G_{\alpha}$ has four orbits of size $1,1, m$, m.

Sketch of Classification

Let $\sigma \in G$ be the element with cycle type $1+1+m+m$.

Let $\alpha \in \Omega$ be a fixed point of σ and note that $\langle\sigma\rangle \leq G_{\alpha}$ has four orbits of size $1,1, m$, m.
[The rank of G is the number of orbits of the point stabiliser G_{α}; the subdegrees of G are the sizes of the orbits of the point stabiliser G_{α}].

Sketch of Classification

Let $\sigma \in G$ be the element with cycle type $1+1+m+m$.

Let $\alpha \in \Omega$ be a fixed point of σ and note that $\langle\sigma\rangle \leq G_{\alpha}$ has four orbits of size $1,1, m$, m.
[The rank of G is the number of orbits of the point stabiliser G_{α}; the subdegrees of G are the sizes of the orbits of the point stabiliser G_{α}].

Thus, G has rank $r \in\{2,3,4\}$, and we make a case distinction.

Sketch of Classification

Let $\sigma \in G$ be the element with cycle type $1+1+m+m$.

Let $\alpha \in \Omega$ be a fixed point of σ and note that $\langle\sigma\rangle \leq G_{\alpha}$ has four orbits of size $1,1, m$, m.
[The rank of G is the number of orbits of the point stabiliser G_{α}; the subdegrees of G are the sizes of the orbits of the point stabiliser G_{α}].

Thus, G has rank $r \in\{2,3,4\}$, and we make a case distinction.

Suppose G has rank 2 with subdegrees $1,2 m+1$:
G_{α}-orbits on $\Omega: \quad \Omega_{1}=\{\alpha\} \quad$ and $\quad \Omega_{2}=\left\{\beta_{2}, \ldots, \beta_{2 m+2}\right\}$.

Sketch of Classification

Let $\sigma \in G$ be the element with cycle type $1+1+m+m$.

Let $\alpha \in \Omega$ be a fixed point of σ and note that $\langle\sigma\rangle \leq G_{\alpha}$ has four orbits of size $1,1, m$, m.
[The rank of G is the number of orbits of the point stabiliser G_{α}; the subdegrees of G are the sizes of the orbits of the point stabiliser G_{α}].

Thus, G has rank $r \in\{2,3,4\}$, and we make a case distinction.

Suppose G has rank 2 with subdegrees $1,2 m+1$:
G_{α}-orbits on $\Omega: \quad \Omega_{1}=\{\alpha\} \quad$ and $\quad \Omega_{2}=\left\{\beta_{2}, \ldots, \beta_{2 m+2}\right\}$.
G_{α} acts transitively on Ω_{2}; this is equivalent to G being 2-transitive on Ω.

Sketch of Classification

Suppose that the rank of G is 3 with subdegrees $1,1,2 m$, or 4 with subdegrees $1,1, m, m$:
G_{α}-orbits on Ω :

$$
\begin{gathered}
\Omega_{1}=\{\alpha\}, \quad \Omega_{2}=\{\beta\} \quad \text { and } \quad \Omega_{3}=\left\{\beta_{3}, \ldots, \beta_{2 m+2}\right\}, \text { or } \\
\Omega_{1}=\{\alpha\}, \Omega_{2}=\{\beta\}, \Omega_{3}=\left\{\beta_{3}, \ldots, \beta_{m+2}\right\} \text { and } \Omega_{4}=\left\{\beta_{m+3}, \ldots, \beta_{2 m+2}\right\} .
\end{gathered}
$$

Sketch of Classification

Suppose that the rank of G is 3 with subdegrees $1,1,2 m$, or 4 with subdegrees $1,1, m, m$:
G_{α}-orbits on Ω :

$$
\begin{gathered}
\Omega_{1}=\{\alpha\}, \quad \Omega_{2}=\{\beta\} \quad \text { and } \quad \Omega_{3}=\left\{\beta_{3}, \ldots, \beta_{2 m+2}\right\}, \text { or } \\
\Omega_{1}=\{\alpha\}, \Omega_{2}=\{\beta\}, \Omega_{3}=\left\{\beta_{3}, \ldots, \beta_{m+2}\right\} \text { and } \Omega_{4}=\left\{\beta_{m+3}, \ldots, \beta_{2 m+2}\right\} .
\end{gathered}
$$

G_{α} has exactly two fixed points, namely α, β, which form a block of G.

Sketch of Classification

Suppose that the rank of G is 3 with subdegrees $1,1,2 m$, or 4 with subdegrees $1,1, m, m$:
G_{α}-orbits on Ω :

$$
\begin{gathered}
\Omega_{1}=\{\alpha\}, \quad \Omega_{2}=\{\beta\} \quad \text { and } \quad \Omega_{3}=\left\{\beta_{3}, \ldots, \beta_{2 m+2}\right\}, \text { or } \\
\Omega_{1}=\{\alpha\}, \quad \Omega_{2}=\{\beta\}, \Omega_{3}=\left\{\beta_{3}, \ldots, \beta_{m+2}\right\} \text { and } \Omega_{4}=\left\{\beta_{m+3}, \ldots, \beta_{2 m+2}\right\} .
\end{gathered}
$$

G_{α} has exactly two fixed points, namely α, β, which form a block of G.

The element σ fixes the block $\{\alpha, \beta\}$ and acts not only transitively but as a cycle on the remaining m blocks.

Sketch of Classification

Suppose that the rank of G is 3 with subdegrees $1,1,2 m$, or 4 with subdegrees $1,1, m, m$:
G_{α}-orbits on Ω :

$$
\begin{gathered}
\Omega_{1}=\{\alpha\}, \quad \Omega_{2}=\{\beta\} \quad \text { and } \quad \Omega_{3}=\left\{\beta_{3}, \ldots, \beta_{2 m+2}\right\}, \text { or } \\
\Omega_{1}=\{\alpha\}, \quad \Omega_{2}=\{\beta\}, \Omega_{3}=\left\{\beta_{3}, \ldots, \beta_{m+2}\right\} \text { and } \Omega_{4}=\left\{\beta_{m+3}, \ldots, \beta_{2 m+2}\right\} .
\end{gathered}
$$

G_{α} has exactly two fixed points, namely α, β, which form a block of G.

The element σ fixes the block $\{\alpha, \beta\}$ and acts not only transitively but as a cycle on the remaining m blocks.

The induced action of G on the system of imprimitivity $\left\{\{\alpha, \beta\}^{g} \mid g \in G\right\}$ is 2-transitive and one of the theorem of Jones. This gives the groups $G \leqslant C_{2}$ l T.

Sketch of Classification

Suppose that the rank of G is 3 with subdegrees $1, m, m+1$:
G_{α} - orbits on Ω :

$$
\Omega_{1}=\{\alpha\}, \Omega_{2}=\left\{\beta_{2}, \ldots, \beta_{m+1}\right\} \text { and } \Omega_{3}=\left\{\beta_{m+2}, \ldots, \beta_{2 m+2}\right\} .
$$

Sketch of Classification

Suppose that the rank of G is 3 with subdegrees $1, m, m+1$:
G_{α} - orbits on Ω :

$$
\Omega_{1}=\{\alpha\}, \Omega_{2}=\left\{\beta_{2}, \ldots, \beta_{m+1}\right\} \text { and } \Omega_{3}=\left\{\beta_{m+2}, \ldots, \beta_{2 m+2}\right\} .
$$

G is not primitive as violates a condition on the subdegrees for primitive groups, $(\operatorname{gcd}(m, m+1) \neq 1)$.

Sketch of Classification

Suppose that the rank of G is 3 with subdegrees $1, m, m+1$:
G_{α} - orbits on Ω :

$$
\Omega_{1}=\{\alpha\}, \Omega_{2}=\left\{\beta_{2}, \ldots, \beta_{m+1}\right\} \text { and } \Omega_{3}=\left\{\beta_{m+2}, \ldots, \beta_{2 m+2}\right\} .
$$

G is not primitive as violates a condition on the subdegrees for primitive groups, $(\operatorname{gcd}(m, m+1) \neq 1)$.

Let B a block containing α and $g \in G_{\alpha}$. Then $B^{g}=B$ implies Ω_{2} or Ω_{3} is contained in B. But only $\Omega_{2} \subset B$ is possible. Thus $|B|=m+1$.

Sketch of Classification

Suppose that the rank of G is 3 with subdegrees $1, m, m+1$:
G_{α} - orbits on Ω :

$$
\Omega_{1}=\{\alpha\}, \Omega_{2}=\left\{\beta_{2}, \ldots, \beta_{m+1}\right\} \text { and } \Omega_{3}=\left\{\beta_{m+2}, \ldots, \beta_{2 m+2}\right\} .
$$

G is not primitive as violates a condition on the subdegrees for primitive groups, $(\operatorname{gcd}(m, m+1) \neq 1)$.

Let B a block containing α and $g \in G_{\alpha}$. Then $B^{g}=B$ implies Ω_{2} or Ω_{3} is contained in B. But only $\Omega_{2} \subset B$ is possible. Thus $|B|=m+1$.
G is imprimitive with 2 blocks of size $m+1$.

Sketch of Classification

Suppose that the rank of G is 3 with subdegrees $1, m, m+1$:
G_{α} - orbits on Ω :

$$
\Omega_{1}=\{\alpha\}, \Omega_{2}=\left\{\beta_{2}, \ldots, \beta_{m+1}\right\} \text { and } \Omega_{3}=\left\{\beta_{m+2}, \ldots, \beta_{2 m+2}\right\} .
$$

G is not primitive as violates a condition on the subdegrees for primitive groups, $(\operatorname{gcd}(m, m+1) \neq 1)$.

Let B a block containing α and $g \in G_{\alpha}$. Then $B^{g}=B$ implies Ω_{2} or Ω_{3} is contained in B. But only $\Omega_{2} \subset B$ is possible. Thus $|B|=m+1$.
G is imprimitive with 2 blocks of size $m+1$.
σ stabilises B and acts on the elements of B as a cycle that fixes exactly one point.

Sketch of Classification

Suppose that the rank of G is 3 with subdegrees $1, m, m+1$:
G_{α} - orbits on Ω :

$$
\Omega_{1}=\{\alpha\}, \Omega_{2}=\left\{\beta_{2}, \ldots, \beta_{m+1}\right\} \text { and } \Omega_{3}=\left\{\beta_{m+2}, \ldots, \beta_{2 m+2}\right\} .
$$

G is not primitive as violates a condition on the subdegrees for primitive groups, $(\operatorname{gcd}(m, m+1) \neq 1)$.

Let B a block containing α and $g \in G_{\alpha}$. Then $B^{g}=B$ implies Ω_{2} or Ω_{3} is contained in B. But only $\Omega_{2} \subset B$ is possible. Thus $|B|=m+1$.
G is imprimitive with 2 blocks of size $m+1$.
σ stabilises B and acts on the elements of B as a cycle that fixes exactly one point. The induced action on blocks is 2-transitive and thus one of the theorem of Jones. This gives the groups $G \leqslant T$) C_{2}.

Classification $-\mathcal{A}(H)$ for cocyclic TCC HMs

Results of Ito^{\dagger}, and Moorehouse ${ }^{\ddagger}$ in combination with Theorem 2 yield:
${ }^{\dagger}$ Hadamard matrices with "doubly transitive" automorphism groups.
${ }^{\ddagger}$ The 2-transitive complex Hadamard matrices.

Classification $-\mathcal{A}(H)$ for cocyclic TCC HMs

Results of Ito^{\dagger}, and Moorehouse ${ }^{\ddagger}$ in combination with Theorem 2 yield:

Theorem 3 (BA-OC-D)

Let H be a cocyclic TCC HM of order $n=2 m+2$ with m odd. Then one of the following holds, where p denotes a prime and q denotes a prime-power:

[^2]
Classification $-\mathcal{A}(H)$ for cocyclic TCC HMs

Results of Ito^{\dagger}, and Moorehouse ${ }^{\ddagger}$ in combination with Theorem 2 yield:

Theorem 3 (BA-OC-D)

Let H be a cocyclic TCC HM of order $n=2 m+2$ with m odd. Then one of the following holds, where p denotes a prime and q denotes a prime-power:
a) $\mathcal{A}(H)$ is affine 2-transitive and contains $\mathrm{AGL}_{n}(2)$ as subgroup, or

[^3]
Classification $-\mathcal{A}(H)$ for cocyclic TCC HMs

Results of tto †, and Moorehouse ${ }^{\ddagger}$ in combination with Theorem 2 yield:

Theorem 3 (BA-OC-D)

Let H be a cocyclic TCC HM of order $n=2 m+2$ with m odd. Then one of the following holds, where p denotes a prime and q denotes a prime-power:
a) $\mathcal{A}(H)$ is affine 2-transitive and contains $\mathrm{AGL}_{n}(2)$ as subgroup, or
b) $\mathcal{A}(H)$ is almost-simple 2-transitive, and contains M_{12} or $\operatorname{PSL}_{2}(q)$ as a normal subgroup, or

[^4]
Classification $-\mathcal{A}(H)$ for cocyclic TCC HMs

Results of Ito^{\dagger}, and Moorehouse ${ }^{\ddagger}$ in combination with Theorem 2 yield:

Theorem 3 (BA-OC-D)

Let H be a cocyclic TCC HM of order $n=2 m+2$ with m odd. Then one of the following holds, where p denotes a prime and q denotes a prime-power:
a) $\mathcal{A}(H)$ is affine 2-transitive and contains $\mathrm{AGL}_{n}(2)$ as subgroup, or
b) $\mathcal{A}(H)$ is almost-simple 2-transitive, and contains M_{12} or $\operatorname{PSL}_{2}(q)$ as a normal subgroup, or
c) $\mathcal{A}(H) \leq C_{2} \backslash T$ and $\operatorname{AGL}_{1}(q) \leq T \leq \operatorname{A\Gamma L}_{1}(q)$.

[^5]
Classification $-\mathcal{A}(H)$ for cocyclic TCC HMs

Results of Ito^{\dagger}, and Moorehouse ${ }^{\ddagger}$ in combination with Theorem 2 yield:

Theorem 3 (BA-OC-D)

Let H be a cocyclic TCC HM of order $n=2 m+2$ with m odd. Then one of the following holds, where p denotes a prime and q denotes a prime-power:
a) $\mathcal{A}(H)$ is affine 2-transitive and contains $\mathrm{AGL}_{n}(2)$ as subgroup, or
b) $\mathcal{A}(H)$ is almost-simple 2-transitive, and contains M_{12} or $\operatorname{PSL}_{2}(q)$ as a normal subgroup, or
c) $\mathcal{A}(H) \leq C_{2} \backslash T$ and $\operatorname{AGL}_{1}(q) \leq T \leq \operatorname{A\Gamma L}_{1}(q)$.
d) $\left.\mathcal{A}(H) \leq C_{2}\right\} T$ where $T \in\left\{\operatorname{PSL}_{2}(p), \mathrm{PGL}_{2}(p)\right\}$ with $m=p$ a prime, or $T \in\left\{M_{11}, M_{12}, M_{24}\right\}$ with $m+1=12,12,24$, respectively, or,

[^6]
Order of cocyclic TCC HMs

The order of a cocyclic TCC HM has the form
(A) $q+1$, where $q \equiv 3 \bmod 4$ is a prime power, or
(B) $2 p+2$, where $p \geq 3$ is a prime, or
(C) 2^{t}, where $t \geq 2$ is an integer.

Order of cocyclic TCC HMs

The order of a cocyclic TCC HM has the form
(A) $q+1$, where $q \equiv 3 \bmod 4$ is a prime power, or
(B) $2 p+2$, where $p \geq 3$ is a prime, or
(C) 2^{t}, where $t \geq 2$ is an integer.

Existence of cocyclic TCC HMs

There exist cocyclic TCC HMs
(i) for all orders as in (A): Paley I,
(ii) for all orders as in (B) for which $p \equiv 1 \bmod 4$: Paley II,
(iii) for all orders as in (B) for which $p<1000$: Generalised Legendre pairs,
(iv) for all orders as in (C) with $t \leq 8$: since $2^{t}-1$ is a prime for $t=3,5,7$, the first power of two not covered by (i) or (ii) is 512 .

Order of cocyclic TCC HMs

The order of a cocyclic TCC HM has the form
(A) $q+1$, where $q \equiv 3 \bmod 4$ is a prime power, or
(B) $2 p+2$, where $p \geq 3$ is a prime, or
(C) 2^{t}, where $t \geq 2$ is an integer.

Existence of cocyclic TCC HMs

There exist cocyclic TCC HMs
(i) for all orders as in (A): Paley I,
(ii) for all orders as in (B) for which $p \equiv 1 \bmod 4$: Paley II,
(iii) for all orders as in (B) for which $p<1000$: Generalised Legendre pairs, (iv) for all orders as in (C) with $t \leq 8$: since $2^{t}-1$ is a prime for $t=3,5,7$, the first power of two not covered by (i) or (ii) is 512 .

The TCC HMs Stanton-Sprott cyclic difference sets are not cocyclic.

Questions

- What are the automorphism groups of the aforementioned families of cocyclic TCC HMs?

This requires solving the extension problem

$$
1 \rightarrow C_{2} \rightarrow \operatorname{Aut}(H) \rightarrow \mathcal{A}(H) \rightarrow 1
$$

and constructing certain monomial action based on a permutation action.

- A Kimura HM is a HM of order $n=4+4 m$ of the form

$$
\left[\begin{array}{rrrrrrrr}
1 & 1 & 1 & 1 & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} \\
1 & 1 & -1 & -1 & \mathbf{1} & \mathbf{1} & -\mathbf{1} & -\mathbf{1} \\
1 & -1 & 1 & -1 & \mathbf{1} & -\mathbf{1} & \mathbf{1} & -\mathbf{1} \\
1 & -1 & -1 & 1 & -\mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{- 1} \\
\mathbf{1}^{\top} & \mathbf{1}^{\top} & \mathbf{1}^{\top} & -\mathbf{1}^{\top} & A & B & C & D \\
\mathbf{1}^{\top} & \mathbf{1}^{\top} & -\mathbf{1}^{\top} & \mathbf{1}^{\top} & -B & A & D & -C \\
\mathbf{1}^{\top} & -\mathbf{1}^{\top} & \mathbf{1}^{\top} & \mathbf{1}^{\top} & -C & -D & A & B \\
\mathbf{1}^{\top} & -\mathbf{1}^{\top} & -\mathbf{1}^{\top} & -\mathbf{1}^{\top} & D & -C & B & -A
\end{array}\right]
$$

where A, B, C, D are certain $\{ \pm 1\}$-matrices of order m, and 1 denotes the all 1's row vector (whose length is determined by the context).

Research Problem 41 Is the Kimura construction (6.22) of Hadamard matrices cocyclic?

Thank you

[^0]: $\dagger_{\text {de Launey }}$ and Flannery, Algebraic Design Theory, 2010.

[^1]: $\dagger_{\text {de Launey and Flannery, Algebraic Design Theory, } 2010 .}$

[^2]: ${ }^{\dagger}$ Hadamard matrices with "doubly transitive" automorphism groups.
 ${ }^{\ddagger}$ The 2-transitive complex Hadamard matrices.

[^3]: ${ }^{\dagger}$ Hadamard matrices with "doubly transitive" automorphism groups.
 ${ }^{\ddagger}$ The 2-transitive complex Hadamard matrices.

[^4]: ${ }^{\dagger}$ Hadamard matrices with "doubly transitive" automorphism groups.
 ${ }^{\ddagger}$ The 2-transitive complex Hadamard matrices.

[^5]: ${ }^{\dagger}$ Hadamard matrices with "doubly transitive" automorphism groups.
 ${ }^{\ddagger}$ The 2-transitive complex Hadamard matrices.

[^6]: ${ }^{\dagger}$ Hadamard matrices with "doubly transitive" automorphism groups.
 ${ }^{\ddagger}$ The 2-transitive complex Hadamard matrices.

