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Motivation

In her monography, Hadamard matrices and their appli-
cations, Kathy Horadam proposes the research question:

Research Problem 42 Is the ‘two circulant cores’ construction (6.23) of Hada-
mard matrices cocyclic?

We studied this question by examining a permutation
representation of the automorphism group of this com-
binatorial structure.
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We studied this question by examining a permutation
representation of the automorphism group of this com-

binatorial structure.

In the process, we classified transitive permutation groups of degree 2m+-2, with
odd m > 1, containing an element of cycle type 1 +1+ m+ m.



Definitions

A {+1}-matrix H of size n X n is a Hadamard matrix (HM) of order n, if there
is a balanced number of matches and miss-matches between entries of distinct

rows.
1 1 1 1
1 1 -1 -1
H =
1 -1 1 -1
1 -1 -1 1

[Two matches (1,1),(—1, —1) and two mismatches (1, —1), (-1, 1)].



Definitions

A {+1}-matrix H of size n X n is a Hadamard matrix (HM) of order n, if there
is a balanced number of matches and miss-matches between entries of distinct
rows.
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[Two matches (1,1),(—1, —1) and two mismatches (1, —1), (-1, 1)].
Let Mon, < GL((n, C) be the group of {£1}-monomial matrices of size n x n.

The group Mon2 = Mon, x Mon, acts on the set of HMs of order n via
(R,S)-H=RHST,

where H is a HM and (R, S) € Mon?.
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The automorphism group of H is the stabiliser

Aut(H) = Stabyge2 (H) = {(R, S) € Mon;;: RHST = H}.

[The element (—1,, —1,) is an automorphism of H since —I,H(—1,)T = H].
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Definitions
The automorphism group of H is the stabiliser
Aut(H) = Stabyge2 (H) = {(R, S) € Mon;;: RHST = H}.
[The element (—1I,, —1,) is an automorphism of H since —I,H(—1,)T = H].

Observe Mon, = Perm, x D, where Perm, and D, denote the subgroup of
permutation matrices and diagonal matrices of order n, respectively.

Every element R € Mon, can be uniquely written as PrDgr with Pz € Perm,
and Dgr € D,.

The map
m: Aut(H) — Mon, — Perm,

(R,S) — R — Pr

is a homomorphism (this gives us a representation of Aut(H)).



Permutation Representation of Aut(H)

Denote the image of 7 by A(H) = Im(7).

Under the identification Perm, = S,, the group A(H) is a permutation group,
and thus 7 is a permutation representation of Aut(H).

The group A(H) acts on the rows of H via

P-H=PH.



Permutation Representation of Aut(H)

Denote the image of 7 by A(H) = Im(7).

Under the identification Perm, = S,, the group A(H) is a permutation group,
and thus 7 is a permutation representation of Aut(H).

The group A(H) acts on the rows of H via

P-H=PH.

How much information is lost?

Since ker(m) = ((—In, —1»)) = G, we have that Aut(H) is isomorphic to a central
extension of G, by A(H).



Cocyclic Hadamard Matrices

A cocyclic HM is a HM with additional algebraic properties.
All we need to know today about CHMs is the following:

If a HM H is cocyclic then A(H) is transitive, acting on the rows of HT.

[Given any two rows r1, r» of H there exists P € A(H) that maps 1 to r].

Tde Launey and Flannery, Algebraic Design Theory, 2010.



Cocyclic Hadamard Matrices

A cocyclic HM is a HM with additional algebraic properties.
All we need to know today about CHMs is the following:

If a HM H is cocyclic then A(H) is transitive, acting on the rows of H'.
[Given any two rows ri, r» of H there exists P € A(H) that maps r to r].
Given a transitive permutation group, one may ask:

Is the group primitive or imprimitive?

If it is primitive, is it n-transitive for some n?

Tde Launey and Flannery, Algebraic Design Theory, 2010.



Two Circulant Cores Construction

A HM H of order 2m + 2 (with m > 1 odd) is two circulant core (TCC) if it
has the form

1 1 1 1
H— 1 -1 1 -1
1 1T A B

where

e 1 =[1...1] denotes the all 1's row vector (whose length will be
determined by the context),

e A and B are circulant {£1}-matrices of order m.

[The matrix is circulant of order 3].

o 0 v
0 o o
L T 0O



A Distinguished Automorphism

Let P be the permutation matrix associated to the cycle (1,2,...,m). The
element (P, P) acts trivially on any circulant matrix.

[For example

o = O
= O O
o O =
o 0 v
0 v o
L T 0
= O O
o O =
o = O
I

o0 v
0O o o
L T 0O



A Distinguished Automorphism

Let P be the permutation matrix associated to the cycle (1,2,...,m). The
element (P, P) acts trivially on any circulant matrix.

0 0 1 a b c 0 1 0 a b c
[For example | 1 0 0 c a b 0 01|=|c a b]|]
0 1 0 b ¢ a 1 0 0 b ¢ a

Let R be the permutation matrix defined by the block matrix

=)
=
o
=
o v oo
v o oo

If His TCC HM then (R, R) € Aut(H).



A Distinguished Automorphism

1 1 1 1
1 -1 1 -1
RHRT = =
17 17 PAPT PBPT 17

1" —17 PBTPT —PATPT 17



A Distinguished Automorphism

11 1 1 11 1 1

A 1 1| _| 1 -1 1 -1
1" 17 PAPT  PBPT ' 1" A B

1" —17 PBTPT —PATPT 1T —17 BT AT

It follows that the element (R, R) = R € A(H) has cycle type 1 +1+ m+ m.

[ A permutation g € A(H) has cycle type m1 + - - - + my if the (g)-orbits in the
set of rows of H have sizes m, ..., mg].



A Distinguished Automorphism

11 1 1 11 1 1

A 1 1| _| 1 -1 1 -1
1" 17 PAPT  PBPT ' 1" A B

1" —17 PBTPT —PATPT 1T —17 BT AT

It follows that the element (R, R) = R € A(H) has cycle type 1 +1+ m+ m.

[ A permutation g € A(H) has cycle type m1 + - - - + my if the (g)-orbits in the
set of rows of H have sizes m, ..., mg].

Conclusion

If H is cocyclic and TCC then A(H) is a transitive permutation group of degree
2m+2, with m > 1 odd, and contains an element of cycle type 1+ 1+ m+ m.

We classified these groups.
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Permutation Groups (Primer)

Let G < Sym(Q), the G-action on Q is n-transitive if the induced action on
n-tuples over Q with pairwise distinct entries is transitive.

A block of G (transitive) is a subset B C € such that for every g € G either
B = B# or BN B® = ). The trivial blocks are B = Q and singletons B = {w}.

A transitive group is imprimitive if there is a nontrivial block, and primitive
otherwise.

If B is a nontrivial block, then G acts transitively on {B¢ | g € G} and the
latter is a system of imprimitivity for G.

[((1,2,3,4)) < S4 is imprimitive with system of imprimitivity {{1, 3}, {2,4}}].
Given a block B, the set-wise stabiliser Gg acts on B transitively.

Thus, G can be identified with a subgroup of G5 G”.



Main Ingredient of our Classification

Theorem 1 (Jones 2011, Theorem 1.2 and Remark 1.5)

If T is a transitive permutation group of degree k > 2, and contains a cycle
fixing exactly one point, then it is 2-transitive and satisfies (up to isomorphism)

one of the following:
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Main Ingredient of our Classification

Theorem 1 (Jones 2011, Theorem 1.2 and Remark 1.5)

If T is a transitive permutation group of degree k > 2, and contains a cycle
fixing exactly one point, then it is 2-transitive and satisfies (up to isomorphism)
one of the following:

a) AGLy(q) < T < ATLgy(q) with k = g? for some prime power g,
[AGL4(q) = Fq x GL4(q), ATL4(q) = Fq x (GL4(q) x Aut(Fy))]-

b) T € {PSLy(p), PGL2(p)} with k = p + 1 for some prime p > 3,

c) T € {Mi1, Mo, Moy} with k = 12,12, 24, respectively,

d) A < T.

Every 2-transitive group is primitive; 2-transitive groups form a strict class of
primitive groups and are classified (affine or almost-simple).

Groups under a) are affine, and groups under b-d) are almost simple.
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Let G < Sym(Q) be a transitive permutation group of degree n = 2m + 2 with
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Classification

Theorem 2 (BA-OC-D)

Let G < Sym(Q) be a transitive permutation group of degree n = 2m + 2 with
m > 1 odd. If G has an element of cycle type 1 + 1+ m + m, then there exists
a 2-transitive group T (as in the theorem of Jones) with k = m + 1 such that

a) G is 2-transitive (and thus primitive), or

b) G is imprimitive with m + 1 blocks of size 2, and the induced action of G
on the system of imprimitivity is T, thatis, G < G T = Cf x T, or

¢) G is imprimitive with 2 blocks of size m+1, and the induced action on each
block is T, thatis G < T2 G = T2 x G.
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Let o € G be the element with cycle type 1 + 1+ m+ m.
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Sketch of Classification

Let o € G be the element with cycle type 1 + 1+ m+ m.

Let @ € Q be a fixed point of o and note that (o) < G, has four orbits of size
1,1, m m.

[The rank of G is the number of orbits of the point stabiliser G, ; the subdegrees
of G are the sizes of the orbits of the point stabiliser G,].

Thus, G has rank r € {2,3,4}, and we make a case distinction.

Suppose G has rank 2 with subdegrees 1,2m + 1:
Gq-orbits on Q : 0 = {Oé} and b = {52, .. ,ﬁ2m+2}.

G, acts transitively on Q»; this is equivalent to G being 2-transitive on Q.
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Sketch of Classification

Suppose that the rank of G is 3 with subdegrees 1,1,2m, or 4 with subdegrees
1,1, m m:

Gq-orbits on Q :
0 = {05}, Q) = {ﬁ} and Q3 = {ﬂ3, o0 .,ﬁ2m+2}, or

0 = {OL}, Q2 = {6}7 Q3 = {535 ce 7ﬂm+2} and 4 = {5m+3, cee 752m+2}-

G, has exactly two fixed points, namely «, 5, which form a block of G.

The element o fixes the block {«, 5} and acts not only transitively but as a cycle
on the remaining m blocks.

The induced action of G on the system of imprimitivity {{c,8}¢ | g € G} is
2-transitive and one of the theorem of Jones. This gives the groups G < G T.



Sketch of Classification

Suppose that the rank of G is 3 with subdegrees 1, m, m + 1:

G, — orbits on Q :

Ql = {C(}, Q2 = {527' oo 7ﬁm+1} and Q3 = {ﬂm+2a oo '752m+2}'



Sketch of Classification

Suppose that the rank of G is 3 with subdegrees 1, m, m + 1:

G, — orbits on Q :

Ql = {CZ}, Q2 = {/827 ©coo 7ﬂm+1} and Q3 = {ﬂm+2a oo '7ﬂ2m+2}'

G is not primitive as violates a condition on the subdegrees for primitive groups,
(ged(m, m + 1) # 1).



Sketch of Classification

Suppose that the rank of G is 3 with subdegrees 1, m, m + 1:
Go — orbits on Q :

Ql = {CZ}, Q2 = {/827 ©coo 7ﬂm+1} and Q3 = {ﬂm+2a oo '7ﬂ2m+2}'

G is not primitive as violates a condition on the subdegrees for primitive groups,
(ged(m, m + 1) # 1).

Let B a block containing « and g € G,. Then B® = B implies 2, or Q3 is
contained in B. But only Q2 C B is possible. Thus |B| = m+ 1.



Sketch of Classification

Suppose that the rank of G is 3 with subdegrees 1, m, m + 1:
Go — orbits on Q :

Ql = {CZ}, Q2 = {/827 ©coo 7ﬂm+1} and Q3 = {ﬂm+2a oo '7ﬂ2m+2}'

G is not primitive as violates a condition on the subdegrees for primitive groups,
(ged(m, m + 1) # 1).

Let B a block containing « and g € G,. Then B® = B implies 2, or Q3 is
contained in B. But only Q2 C B is possible. Thus |B| = m+ 1.

G is imprimitive with 2 blocks of size m + 1.



Sketch of Classification

Suppose that the rank of G is 3 with subdegrees 1, m, m + 1:
Go — orbits on Q :

Ql = {CZ}, Q2 = {/827 ©coo 7ﬂm+1} and Q3 = {ﬂm+2a oo '7ﬂ2m+2}'

G is not primitive as violates a condition on the subdegrees for primitive groups,
(ged(m, m + 1) # 1).

Let B a block containing « and g € G,. Then B® = B implies 2, or Q3 is
contained in B. But only Q2 C B is possible. Thus |B| = m+ 1.

G is imprimitive with 2 blocks of size m + 1.

o stabilises B and acts on the elements of B as a cycle that fixes exactly one
point.



Sketch of Classification

Suppose that the rank of G is 3 with subdegrees 1, m, m + 1:
Go — orbits on Q :

Ql = {CZ}, Q2 = {/827 ©coo 7ﬂm+1} and Q3 = {ﬂm+2a oo '7ﬂ2m+2}'

G is not primitive as violates a condition on the subdegrees for primitive groups,
(ged(m, m + 1) # 1).

Let B a block containing « and g € G,. Then B® = B implies 2, or Q3 is
contained in B. But only Q2 C B is possible. Thus |B| = m+ 1.

G is imprimitive with 2 blocks of size m + 1.
o stabilises B and acts on the elements of B as a cycle that fixes exactly one

point. The induced action on blocks is 2-transitive and thus one of the theorem
of Jones. This gives the groups G < T G.
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Classification — A(H) for cocyclic TCC HMs

Results of Itof, and Moorehouse? in combination with Theorem 2 yield:
Theorem 3 (BA-OC-D)

Let H be a cocyclic TCC HM of order n = 2m + 2 with m odd. Then one of
the following holds, where p denotes a prime and g denotes a prime-power:

a) A(H) is affine 2-transitive and contains AGL,(2) as subgroup, or

b) A(H) is almost-simple 2-transitive, and contains M1, or PSL2(q) as a normal
subgroup, or

c¢) A(H) < G T and AGL1(q) < T < ATL41(q).

d) A(H) < G T where T € {PSLa(p),PGL2(p)} with m = p a prime, or
T € {Mi1, Mio, Moy} with m+ 1 = 12,12, 24, respectively, or,

THadamard matrices with “doubly transitive” automorphism groups.
$The 2-transitive complex Hadamard matrices.



Order of cocyclic TCC HMs

The order of a cocyclic TCC HM has the form

(A) g+ 1, where g =3 mod 4 is a prime power, or
(B) 2p + 2, where p > 3 is a prime, or
(C) 2, where t > 2 is an integer.
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The order of a cocyclic TCC HM has the form

(A) g+ 1, where g =3 mod 4 is a prime power, or
(B) 2p + 2, where p > 3 is a prime, or
(C) 2, where t > 2 is an integer.

Existence of cocyclic TCC HMs

There exist cocyclic TCC HMs

(i) for all orders as in (A

(A): Paley |,
(ii) for all orders as in (B
(

for which p =1 mod 4: Paley II,

(iii) for all orders as in (B) for which p < 1000: Generalised Legendre pairs,

-

with t < 8: since 2" — 1 is a prime for t = 3,5,7,
the first power of two not covered by (i) or (ii) is 512.

(iv) for all orders as in (C



Order of cocyclic TCC HMs

The order of a cocyclic TCC HM has the form

(A) g+ 1, where g =3 mod 4 is a prime power, or
(B) 2p + 2, where p > 3 is a prime, or
(C) 2, where t > 2 is an integer.

Existence of cocyclic TCC HMs

There exist cocyclic TCC HMs

(i) for all orders as in (A): Paley I,

(
(ii) for all orders as in (B) for which p =1 mod 4: Paley II,
(

(iii) for all orders as in (B) for which p < 1000: Generalised Legendre pairs,

-

(iv) for all orders as in (C) with t < 8: since 2* — 1 is a prime for t = 3,5,7,

the first power of two not covered by (i) or (ii) is 512.

The TCC HMs Stanton-Sprott cyclic difference sets are not cocyclic.



Questions

e What are the automorphism groups of the aforementioned families of
cocyclic TCC HMs?

This requires solving the extension problem

1— G — Aut(H) — A(H) —» 1

and constructing certain monomial action based on a permutation action.



e A Kimura HM is a HM of order n = 4 + 4m of the form

M1 1 1 1 1 1 1 1
1 R T |
1 il 1 =i L =1 0 =il
1 =i =il 1 -1 1 1 -1
T 1r 1T 1T A B C D
T 1T 17 1T -B A D —C
T 1T 1T 1T -C -D A B

1T 1T 1T 1T D —-C B -A |

where A, B, C, D are certain {£1}-matrices of order m, and 1 denotes the
all 1's row vector (whose length is determined by the context).

Research Problem 41 Is the Kimura construction (6.22) of Hadamard matrices
cocyclic?



Thank you



