Cocyclic Two Circulant Core HMs

Santiago Barrera Acevedo

Department of Mathematical and Physical Sciences La Trobe University - Australia

> This is joint work with **Padraig Ó Catháin** and **Heiko Dietrich** https://link.springer.com/article/10.1007/s10801-021-01033-x

Motivation

In her monography, *Hadamard matrices and their applications*, Kathy Horadam proposes the research question:

Research Problem 42 *Is the 'two circulant cores' construction (6.23) of Hadamard matrices cocyclic?*

We studied this question by examining a permutation representation of the automorphism group of this combinatorial structure.

Motivation

In her monography, *Hadamard matrices and their applications*, Kathy Horadam proposes the research question:

Research Problem 42 *Is the 'two circulant cores' construction (6.23) of Hadamard matrices cocyclic?*

We studied this question by examining a permutation representation of the automorphism group of this combinatorial structure.

In the process, we classified transitive permutation groups of degree 2m+2, with odd $m \ge 1$, containing an element of cycle type 1 + 1 + m + m.

A $\{\pm 1\}$ -matrix H of size $n \times n$ is a **Hadamard matrix** (HM) of order n, if there is a balanced number of matches and miss-matches between entries of distinct rows.

[Two matches (1, 1), (-1, -1) and two mismatches (1, -1), (-1, 1)].

A $\{\pm 1\}$ -matrix *H* of size $n \times n$ is a **Hadamard matrix** (HM) of order *n*, if there is a balanced number of matches and miss-matches between entries of distinct rows.

[Two matches (1, 1), (-1, -1) and two mismatches (1, -1), (-1, 1)].

Let $Mon_n \leq GL((n, \mathbb{C}))$ be the group of $\{\pm 1\}$ -monomial matrices of size $n \times n$.

The group $Mon_n^2 = Mon_n \times Mon_n$ acts on the set of HMs of order *n* via

$$(R,S) \cdot H = RHS^{\mathsf{T}},$$

where H is a HM and $(R, S) \in Mon_n^2$.

The **automorphism group** of H is the stabiliser

$$\mathsf{Aut}(H) = \mathsf{Stab}_{\mathsf{Mon}_n^2}(H) = \{(R, S) \in \mathsf{Mon}_n^2 \colon RHS^{\mathsf{T}} = H\}.$$

[The element $(-I_n, -I_n)$ is an automorphism of H since $-I_nH(-I_n)^{\intercal} = H$].

The automorphism group of H is the stabiliser

$$\mathsf{Aut}(H) = \mathsf{Stab}_{\mathsf{Mon}_n^2}(H) = \{(R, S) \in \mathsf{Mon}_n^2 \colon RHS^{\mathsf{T}} = H\}$$

[The element $(-I_n, -I_n)$ is an automorphism of H since $-I_nH(-I_n)^{\mathsf{T}} = H$].

Observe $Mon_n = Perm_n \ltimes D_n$ where $Perm_n$ and D_n denote the subgroup of permutation matrices and diagonal matrices of order *n*, respectively.

Every element $R \in Mon_n$ can be uniquely written as $P_R D_R$ with $P_R \in Perm_n$ and $D_R \in D_n$.

The **automorphism group** of H is the stabiliser

$$\operatorname{Aut}(H) = \operatorname{Stab}_{\operatorname{Mon}_n^2}(H) = \{(R, S) \in \operatorname{Mon}_n^2 \colon RHS^{\mathsf{T}} = H\}$$

[The element $(-I_n, -I_n)$ is an automorphism of H since $-I_nH(-I_n)^{\mathsf{T}} = H$].

Observe $Mon_n = Perm_n \ltimes D_n$ where $Perm_n$ and D_n denote the subgroup of permutation matrices and diagonal matrices of order *n*, respectively.

Every element $R \in Mon_n$ can be uniquely written as $P_R D_R$ with $P_R \in Perm_n$ and $D_R \in D_n$.

The map

is a homomorphism (this gives us a representation of Aut(H)).

Permutation Representation of Aut(H)

Denote the image of π by $\mathcal{A}(H) = Im(\pi)$.

Under the identification $\operatorname{Perm}_n \equiv S_n$, the group $\mathcal{A}(H)$ is a permutation group, and thus π is a permutation representation of $\operatorname{Aut}(H)$.

The group $\mathcal{A}(H)$ acts on the rows of H via

 $P \cdot H = PH.$

Permutation Representation of Aut(H)

Denote the image of π by $\mathcal{A}(H) = Im(\pi)$.

Under the identification $\operatorname{Perm}_n \equiv S_n$, the group $\mathcal{A}(H)$ is a permutation group, and thus π is a permutation representation of $\operatorname{Aut}(H)$.

The group $\mathcal{A}(H)$ acts on the rows of H via

 $P \cdot H = PH.$

How much information is lost?

Since ker $(\pi) = \langle (-I_n, -I_n) \rangle \cong C_2$ we have that Aut(H) is isomorphic to a central extension of C_2 by $\mathcal{A}(H)$.

Cocyclic Hadamard Matrices

A cocyclic HM is a HM with additional algebraic properties.

All we need to know today about CHMs is the following:

If a HM H is cocyclic then $\mathcal{A}(H)$ is transitive, acting on the rows of H^{\dagger} .

[Given any two rows r_1, r_2 of H there exists $P \in \mathcal{A}(H)$ that maps r_1 to r_2].

[†]de Launey and Flannery, Algebraic Design Theory, 2010.

A cocyclic HM is a HM with additional algebraic properties.

All we need to know today about CHMs is the following:

If a HM H is cocyclic then $\mathcal{A}(H)$ is transitive, acting on the rows of H^{\dagger} .

[Given any two rows r_1, r_2 of H there exists $P \in \mathcal{A}(H)$ that maps r_1 to r_2].

Given a transitive permutation group, one may ask:

Is the group primitive or imprimitive?

If it is primitive, is it n-transitive for some n?

[†]de Launey and Flannery, Algebraic Design Theory, 2010.

Two Circulant Cores Construction

A HM H of order 2m + 2 (with $m \ge 1$ odd) is **two circulant core** (TCC) if it has the form

$$H = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 \\ 1^{\mathsf{T}} & 1^{\mathsf{T}} & A & B \\ 1^{\mathsf{T}} & -1^{\mathsf{T}} & B^{\mathsf{T}} & -A^{\mathsf{T}} \end{bmatrix}$$

where

- 1 = [1...1] denotes the all 1's row vector (whose length will be determined by the context),
- A and B are circulant $\{\pm 1\}$ -matrices of order m.

[The matrix
$$\begin{bmatrix} a & b & c \\ c & a & b \\ b & c & a \end{bmatrix}$$
 is circulant of order 3].

Let P be the permutation matrix associated to the cycle (1, 2, ..., m). The element (P, P) acts trivially on any circulant matrix.

$$\begin{bmatrix} \text{For example} & \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} a & b & c \\ c & a & b \\ b & c & a \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} a & b & c \\ c & a & b \\ b & c & a \end{bmatrix}].$$

Let P be the permutation matrix associated to the cycle (1, 2, ..., m). The element (P, P) acts trivially on any circulant matrix.

$$\begin{bmatrix} \text{For example} & \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} a & b & c \\ c & a & b \\ b & c & a \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} a & b & c \\ c & a & b \\ b & c & a \end{bmatrix}].$$

Let R be the permutation matrix defined by the block matrix

$$R = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0^{\mathsf{T}} & 0^{\mathsf{T}} & P & 0 \\ 0^{\mathsf{T}} & 0^{\mathsf{T}} & 0 & P \end{bmatrix}.$$

If *H* is TCC HM then $(R, R) \in Aut(H)$.

$$RHR^{\mathsf{T}} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 \\ 1^{\mathsf{T}} & 1^{\mathsf{T}} & PAP^{\mathsf{T}} & PBP^{\mathsf{T}} \\ 1^{\mathsf{T}} & -1^{\mathsf{T}} & PB^{\mathsf{T}}P^{\mathsf{T}} & -PA^{\mathsf{T}}P^{\mathsf{T}} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 \\ 1^{\mathsf{T}} & 1^{\mathsf{T}} & A & B \\ 1^{\mathsf{T}} & -1^{\mathsf{T}} & B^{\mathsf{T}} & -A^{\mathsf{T}} \end{bmatrix}$$

$$RHR^{\mathsf{T}} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 \\ 1^{\mathsf{T}} & 1^{\mathsf{T}} & PAP^{\mathsf{T}} & PBP^{\mathsf{T}} \\ 1^{\mathsf{T}} & -1^{\mathsf{T}} & PB^{\mathsf{T}}P^{\mathsf{T}} & -PA^{\mathsf{T}}P^{\mathsf{T}} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 \\ 1^{\mathsf{T}} & 1^{\mathsf{T}} & A & B \\ 1^{\mathsf{T}} & -1^{\mathsf{T}} & B^{\mathsf{T}} & -A^{\mathsf{T}} \end{bmatrix}$$

It follows that the element $\pi(R,R) = R \in \mathcal{A}(H)$ has cycle type 1 + 1 + m + m.

[A permutation $g \in \mathcal{A}(H)$ has cycle type $m_1 + \cdots + m_k$ if the $\langle g \rangle$ -orbits in the set of rows of H have sizes m_1, \ldots, m_k].

$$RHR^{\mathsf{T}} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 \\ 1^{\mathsf{T}} & 1^{\mathsf{T}} & PAP^{\mathsf{T}} & PBP^{\mathsf{T}} \\ 1^{\mathsf{T}} & -1^{\mathsf{T}} & PB^{\mathsf{T}}P^{\mathsf{T}} & -PA^{\mathsf{T}}P^{\mathsf{T}} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 \\ 1^{\mathsf{T}} & 1^{\mathsf{T}} & A & B \\ 1^{\mathsf{T}} & -1^{\mathsf{T}} & B^{\mathsf{T}} & -A^{\mathsf{T}} \end{bmatrix}$$

It follows that the element $\pi(R,R) = R \in \mathcal{A}(H)$ has cycle type 1 + 1 + m + m.

[A permutation $g \in \mathcal{A}(H)$ has cycle type $m_1 + \cdots + m_k$ if the $\langle g \rangle$ -orbits in the set of rows of H have sizes m_1, \ldots, m_k].

Conclusion

If *H* is cocyclic and TCC then $\mathcal{A}(H)$ is a transitive permutation group of degree 2m + 2, with $m \ge 1$ odd, and contains an element of cycle type 1 + 1 + m + m.

We classified these groups.

Let $G \leq \operatorname{Sym}(\Omega)$, the G-action on Ω is *n*-transitive if the induced action on *n*-tuples over Ω with *pairwise distinct* entries is transitive.

Let $G \leq Sym(\Omega)$, the G-action on Ω is *n*-transitive if the induced action on *n*-tuples over Ω with *pairwise distinct* entries is transitive.

A **block** of G (transitive) is a subset $B \subseteq \Omega$ such that for every $g \in G$ either $B = B^g$ or $B \cap B^g = \emptyset$. The *trivial blocks* are $B = \Omega$ and singletons $B = \{\omega\}$.

Let $G \leq Sym(\Omega)$, the G-action on Ω is *n*-transitive if the induced action on *n*-tuples over Ω with *pairwise distinct* entries is transitive.

A **block** of G (transitive) is a subset $B \subseteq \Omega$ such that for every $g \in G$ either $B = B^g$ or $B \cap B^g = \emptyset$. The *trivial blocks* are $B = \Omega$ and singletons $B = \{\omega\}$.

A transitive group is **imprimitive** if there is a nontrivial block, and **primitive** otherwise.

Let $G \leq Sym(\Omega)$, the G-action on Ω is *n*-transitive if the induced action on *n*-tuples over Ω with *pairwise distinct* entries is transitive.

A **block** of G (transitive) is a subset $B \subseteq \Omega$ such that for every $g \in G$ either $B = B^g$ or $B \cap B^g = \emptyset$. The *trivial blocks* are $B = \Omega$ and singletons $B = \{\omega\}$.

A transitive group is **imprimitive** if there is a nontrivial block, and **primitive** otherwise.

If B is a nontrivial block, then G acts transitively on $\{B^g \mid g \in G\}$ and the latter is a system of imprimitivity for G.

 $[\langle (1,2,3,4) \rangle \leq S_4$ is imprimitive with system of imprimitivity $\{\{1,3\},\{2,4\}\}]$.

Let $G \leq \text{Sym}(\Omega)$, the G-action on Ω is *n*-transitive if the induced action on *n*-tuples over Ω with *pairwise distinct* entries is transitive.

A **block** of G (transitive) is a subset $B \subseteq \Omega$ such that for every $g \in G$ either $B = B^g$ or $B \cap B^g = \emptyset$. The *trivial blocks* are $B = \Omega$ and singletons $B = \{\omega\}$.

A transitive group is **imprimitive** if there is a nontrivial block, and **primitive** otherwise.

If B is a nontrivial block, then G acts transitively on $\{B^g \mid g \in G\}$ and the latter is a system of imprimitivity for G.

 $[\langle (1,2,3,4) \rangle \leq S_4$ is imprimitive with system of imprimitivity $\{\{1,3\},\{2,4\}\}]$.

Given a block B, the set-wise stabiliser G_B acts on B transitively.

Let $G \leq \text{Sym}(\Omega)$, the G-action on Ω is *n*-transitive if the induced action on *n*-tuples over Ω with *pairwise distinct* entries is transitive.

A **block** of G (transitive) is a subset $B \subseteq \Omega$ such that for every $g \in G$ either $B = B^g$ or $B \cap B^g = \emptyset$. The *trivial blocks* are $B = \Omega$ and singletons $B = \{\omega\}$.

A transitive group is **imprimitive** if there is a nontrivial block, and **primitive** otherwise.

If B is a nontrivial block, then G acts transitively on $\{B^g \mid g \in G\}$ and the latter is a system of imprimitivity for G.

 $[\langle (1,2,3,4) \rangle \leq S_4$ is imprimitive with system of imprimitivity $\{\{1,3\},\{2,4\}\}]$.

Given a block B, the set-wise stabiliser G_B acts on B transitively.

Thus, G can be identified with a subgroup of $G_B^B \wr G^{\mathcal{P}}$.

Theorem 1 (Jones 2011, Theorem 1.2 and Remark 1.5)

If T is a transitive permutation group of degree k > 2, and contains a cycle fixing exactly one point, then it is 2-transitive and satisfies (up to isomorphism) one of the following:

Theorem 1 (Jones 2011, Theorem 1.2 and Remark 1.5)

If T is a transitive permutation group of degree k > 2, and contains a cycle fixing exactly one point, then it is 2-transitive and satisfies (up to isomorphism) one of the following:

a) $AGL_d(q) \leq T \leq A\Gamma L_d(q)$ with $k = q^d$ for some prime power q,

 $[\mathrm{AGL}_d(q) = \mathbb{F}_q \rtimes \mathrm{GL}_d(q), \mathrm{A}\Gamma \mathrm{L}_d(q) = \mathbb{F}_q \rtimes (\mathrm{GL}_d(q) \rtimes \mathrm{Aut}(\mathbb{F}_q))].$

Theorem 1 (Jones 2011, Theorem 1.2 and Remark 1.5)

If T is a transitive permutation group of degree k > 2, and contains a cycle fixing exactly one point, then it is 2-transitive and satisfies (up to isomorphism) one of the following:

a) $AGL_d(q) \leq T \leq A\Gamma L_d(q)$ with $k = q^d$ for some prime power q,

 $[\operatorname{AGL}_d(q) = \mathbb{F}_q \rtimes \operatorname{GL}_d(q), \operatorname{AFL}_d(q) = \mathbb{F}_q \rtimes (\operatorname{GL}_d(q) \rtimes \operatorname{Aut}(\mathbb{F}_q))].$

b) $T \in {\text{PSL}_2(p), \text{PGL}_2(p)}$ with k = p + 1 for some prime p > 3,

Theorem 1 (Jones 2011, Theorem 1.2 and Remark 1.5)

If T is a transitive permutation group of degree k > 2, and contains a cycle fixing exactly one point, then it is 2-transitive and satisfies (up to isomorphism) one of the following:

a) $AGL_d(q) \leq T \leq A\Gamma L_d(q)$ with $k = q^d$ for some prime power q,

 $[\mathrm{AGL}_d(q) = \mathbb{F}_q \rtimes \mathrm{GL}_d(q), \mathrm{A}\Gamma\mathrm{L}_d(q) = \mathbb{F}_q \rtimes (\mathrm{GL}_d(q) \rtimes \mathrm{Aut}(\mathbb{F}_q))].$

- b) $T \in {\text{PSL}_2(p), \text{PGL}_2(p)}$ with k = p + 1 for some prime p > 3,
- c) $T \in \{M_{11}, M_{12}, M_{24}\}$ with k = 12, 12, 24, respectively,

Theorem 1 (Jones 2011, Theorem 1.2 and Remark 1.5)

If T is a transitive permutation group of degree k > 2, and contains a cycle fixing exactly one point, then it is 2-transitive and satisfies (up to isomorphism) one of the following:

a) $AGL_d(q) \leq T \leq A\Gamma L_d(q)$ with $k = q^d$ for some prime power q,

 $[\mathrm{AGL}_d(q) = \mathbb{F}_q \rtimes \mathrm{GL}_d(q), \mathrm{A}\Gamma\mathrm{L}_d(q) = \mathbb{F}_q \rtimes (\mathrm{GL}_d(q) \rtimes \mathrm{Aut}(\mathbb{F}_q))].$

- b) $T \in {\text{PSL}_2(p), \text{PGL}_2(p)}$ with k = p + 1 for some prime p > 3,
- c) $T \in \{M_{11}, M_{12}, M_{24}\}$ with k = 12, 12, 24, respectively,
- d) $A_k \leq T$.

Theorem 1 (Jones 2011, Theorem 1.2 and Remark 1.5)

If T is a transitive permutation group of degree k > 2, and contains a cycle fixing exactly one point, then it is 2-transitive and satisfies (up to isomorphism) one of the following:

a) $AGL_d(q) \leq T \leq A\Gamma L_d(q)$ with $k = q^d$ for some prime power q,

 $[\mathrm{AGL}_d(q) = \mathbb{F}_q \rtimes \mathrm{GL}_d(q), \mathrm{A}\Gamma\mathrm{L}_d(q) = \mathbb{F}_q \rtimes (\mathrm{GL}_d(q) \rtimes \mathrm{Aut}(\mathbb{F}_q))].$

- b) $T \in {\text{PSL}_2(p), \text{PGL}_2(p)}$ with k = p + 1 for some prime p > 3,
- c) $T \in \{M_{11}, M_{12}, M_{24}\}$ with k = 12, 12, 24, respectively,
- d) $A_k \leq T$.

Every 2-transitive group is primitive; 2-transitive groups form a strict class of primitive groups and are classified (affine or almost-simple).

Groups under a) are affine, and groups under b-d) are almost simple.

Classification

Theorem 2 (BA-OC-D)

Let $G \leq \text{Sym}(\Omega)$ be a transitive permutation group of degree n = 2m + 2 with $m \geq 1$ odd. If G has an element of cycle type 1 + 1 + m + m, then there exists a 2-transitive group T (as in the theorem of Jones) with k = m + 1 such that

Classification

Theorem 2 (BA-OC-D)

Let $G \leq \text{Sym}(\Omega)$ be a transitive permutation group of degree n = 2m + 2 with $m \geq 1$ odd. If G has an element of cycle type 1 + 1 + m + m, then there exists a 2-transitive group T (as in the theorem of Jones) with k = m + 1 such that

a) G is 2-transitive (and thus primitive), or

Classification

Theorem 2 (BA-OC-D)

Let $G \leq \text{Sym}(\Omega)$ be a transitive permutation group of degree n = 2m + 2 with $m \geq 1$ odd. If G has an element of cycle type 1 + 1 + m + m, then there exists a 2-transitive group T (as in the theorem of Jones) with k = m + 1 such that

- a) G is 2-transitive (and thus primitive), or
- b) *G* is imprimitive with m + 1 blocks of size 2, and the induced action of *G* on the system of imprimitivity is *T*, that is, $G \leq C_2 \wr T = C_2^k \rtimes T$, or

Theorem 2 (BA-OC-D)

Let $G \leq \text{Sym}(\Omega)$ be a transitive permutation group of degree n = 2m + 2 with $m \geq 1$ odd. If G has an element of cycle type 1 + 1 + m + m, then there exists a 2-transitive group T (as in the theorem of Jones) with k = m + 1 such that

- a) G is 2-transitive (and thus primitive), or
- b) G is imprimitive with m + 1 blocks of size 2, and the induced action of G on the system of imprimitivity is T, that is, $G \leq C_2 \wr T = C_2^k \rtimes T$, or
- c) G is imprimitive with 2 blocks of size m+1, and the induced action on each block is T, that is $G \leq T \wr C_2 = T^2 \rtimes C_2$.

Let $\sigma \in G$ be the element with cycle type 1 + 1 + m + m.

Let $\sigma \in G$ be the element with cycle type 1 + 1 + m + m.

Let $\alpha \in \Omega$ be a fixed point of σ and note that $\langle \sigma \rangle \leq G_{\alpha}$ has four orbits of size 1, 1, m, m.

Let $\sigma \in G$ be the element with cycle type 1 + 1 + m + m.

Let $\alpha \in \Omega$ be a fixed point of σ and note that $\langle \sigma \rangle \leq G_{\alpha}$ has four orbits of size 1, 1, m, m.

[The rank of G is the number of orbits of the point stabiliser G_{α} ; the subdegrees of G are the sizes of the orbits of the point stabiliser G_{α}].

Let $\sigma \in G$ be the element with cycle type 1 + 1 + m + m.

Let $\alpha \in \Omega$ be a fixed point of σ and note that $\langle \sigma \rangle \leq G_{\alpha}$ has four orbits of size 1, 1, m, m.

[The rank of G is the number of orbits of the point stabiliser G_{α} ; the subdegrees of G are the sizes of the orbits of the point stabiliser G_{α}].

Thus, G has rank $r \in \{2, 3, 4\}$, and we make a case distinction.

Let $\sigma \in G$ be the element with cycle type 1 + 1 + m + m.

Let $\alpha \in \Omega$ be a fixed point of σ and note that $\langle \sigma \rangle \leq G_{\alpha}$ has four orbits of size 1, 1, *m*, *m*.

[The rank of G is the number of orbits of the point stabiliser G_{α} ; the subdegrees of G are the sizes of the orbits of the point stabiliser G_{α}].

Thus, G has rank $r \in \{2, 3, 4\}$, and we make a case distinction.

Suppose G has rank 2 with subdegrees 1, 2m + 1:

 G_{α} -orbits on Ω : $\Omega_1 = \{\alpha\}$ and $\Omega_2 = \{\beta_2, \dots, \beta_{2m+2}\}.$

Let $\sigma \in G$ be the element with cycle type 1 + 1 + m + m.

Let $\alpha \in \Omega$ be a fixed point of σ and note that $\langle \sigma \rangle \leq G_{\alpha}$ has four orbits of size 1, 1, *m*, *m*.

[The rank of G is the number of orbits of the point stabiliser G_{α} ; the subdegrees of G are the sizes of the orbits of the point stabiliser G_{α}].

Thus, G has rank $r \in \{2, 3, 4\}$, and we make a case distinction.

Suppose G has rank 2 with subdegrees 1, 2m + 1:

 G_{α} -orbits on Ω : $\Omega_1 = \{\alpha\}$ and $\Omega_2 = \{\beta_2, \dots, \beta_{2m+2}\}.$

 G_{α} acts transitively on Ω_2 ; this is equivalent to G being 2-transitive on Ω .

Suppose that the rank of G is 3 with subdegrees 1, 1, 2m, or 4 with subdegrees 1, 1, m, m:

 G_{α} -orbits on Ω :

 $\Omega_1 = \{\alpha\}, \quad \Omega_2 = \{\beta\} \text{ and } \Omega_3 = \{\beta_3, \dots, \beta_{2m+2}\}, \text{ or }$

 $\Omega_1 = \{\alpha\}, \ \Omega_2 = \{\beta\}, \ \Omega_3 = \{\beta_3, \dots, \beta_{m+2}\} \ \text{ and } \ \Omega_4 = \{\beta_{m+3}, \dots, \beta_{2m+2}\}.$

Suppose that the rank of G is 3 with subdegrees 1, 1, 2m, or 4 with subdegrees 1, 1, m, m:

 G_{α} -orbits on Ω :

 $\Omega_1 = \{\alpha\}, \quad \Omega_2 = \{\beta\} \text{ and } \Omega_3 = \{\beta_3, \dots, \beta_{2m+2}\}, \text{ or }$

 $\Omega_1 = \{\alpha\}, \ \Omega_2 = \{\beta\}, \ \Omega_3 = \{\beta_3, \dots, \beta_{m+2}\} \text{ and } \Omega_4 = \{\beta_{m+3}, \dots, \beta_{2m+2}\}.$

 G_{α} has exactly two fixed points, namely α, β , which form a block of G.

Suppose that the rank of G is 3 with subdegrees 1, 1, 2m, or 4 with subdegrees 1, 1, m, m:

 G_{α} -orbits on Ω :

 $\Omega_1 = \{\alpha\}, \quad \Omega_2 = \{\beta\} \text{ and } \Omega_3 = \{\beta_3, \dots, \beta_{2m+2}\}, \text{ or }$

 $\Omega_1 = \{\alpha\}, \ \Omega_2 = \{\beta\}, \ \Omega_3 = \{\beta_3, \dots, \beta_{m+2}\} \text{ and } \Omega_4 = \{\beta_{m+3}, \dots, \beta_{2m+2}\}.$

 G_{α} has exactly two fixed points, namely α, β , which form a block of G.

The element σ fixes the block $\{\alpha, \beta\}$ and acts not only transitively but as a cycle on the remaining *m* blocks.

Suppose that the rank of G is 3 with subdegrees 1, 1, 2m, or 4 with subdegrees 1, 1, m, m:

 G_{α} -orbits on Ω :

 $\Omega_1 = \{\alpha\}, \quad \Omega_2 = \{\beta\} \text{ and } \Omega_3 = \{\beta_3, \dots, \beta_{2m+2}\}, \text{ or }$

 $\Omega_1 = \{\alpha\}, \ \Omega_2 = \{\beta\}, \ \Omega_3 = \{\beta_3, \dots, \beta_{m+2}\} \text{ and } \Omega_4 = \{\beta_{m+3}, \dots, \beta_{2m+2}\}.$

 G_{α} has exactly two fixed points, namely α, β , which form a block of G.

The element σ fixes the block $\{\alpha, \beta\}$ and acts not only transitively but as a cycle on the remaining *m* blocks.

The induced action of G on the system of imprimitivity $\{\{\alpha, \beta\}^g \mid g \in G\}$ is 2-transitive and one of the theorem of Jones. This gives the groups $G \leq C_2 \wr T$.

Suppose that the rank of G is 3 with subdegrees 1, m, m + 1:

 G_{α} – orbits on Ω :

 $\Omega_1 = \{\alpha\}, \ \Omega_2 = \{\beta_2, \dots, \beta_{m+1}\} \text{ and } \ \Omega_3 = \{\beta_{m+2}, \dots, \beta_{2m+2}\}.$

Suppose that the rank of G is 3 with subdegrees 1, m, m + 1:

 G_{α} – orbits on Ω :

 $\Omega_1 = \{\alpha\}, \ \Omega_2 = \{\beta_2, \dots, \beta_{m+1}\} \text{ and } \ \Omega_3 = \{\beta_{m+2}, \dots, \beta_{2m+2}\}.$

G is not primitive as violates a condition on the subdegrees for primitive groups, $(gcd(m, m + 1) \neq 1)$.

Suppose that the rank of G is 3 with subdegrees 1, m, m + 1:

 G_{α} – orbits on Ω :

 $\Omega_1 = \{\alpha\}, \ \Omega_2 = \{\beta_2, \dots, \beta_{m+1}\} \text{ and } \ \Omega_3 = \{\beta_{m+2}, \dots, \beta_{2m+2}\}.$

G is not primitive as violates a condition on the subdegrees for primitive groups, $(gcd(m, m + 1) \neq 1)$.

Let B a block containing α and $g \in G_{\alpha}$. Then $B^g = B$ implies Ω_2 or Ω_3 is contained in B. But only $\Omega_2 \subset B$ is possible. Thus |B| = m + 1.

Suppose that the rank of G is 3 with subdegrees 1, m, m + 1:

 G_{α} – orbits on Ω :

 $\Omega_1 = \{\alpha\}, \ \Omega_2 = \{\beta_2, \dots, \beta_{m+1}\} \text{ and } \ \Omega_3 = \{\beta_{m+2}, \dots, \beta_{2m+2}\}.$

G is not primitive as violates a condition on the subdegrees for primitive groups, $(gcd(m, m + 1) \neq 1)$.

Let B a block containing α and $g \in G_{\alpha}$. Then $B^g = B$ implies Ω_2 or Ω_3 is contained in B. But only $\Omega_2 \subset B$ is possible. Thus |B| = m + 1.

G is imprimitive with 2 blocks of size m + 1.

Suppose that the rank of G is 3 with subdegrees 1, m, m + 1:

 G_{α} – orbits on Ω :

 $\Omega_1 = \{\alpha\}, \ \Omega_2 = \{\beta_2, \dots, \beta_{m+1}\} \text{ and } \ \Omega_3 = \{\beta_{m+2}, \dots, \beta_{2m+2}\}.$

G is not primitive as violates a condition on the subdegrees for primitive groups, $(gcd(m, m + 1) \neq 1)$.

Let B a block containing α and $g \in G_{\alpha}$. Then $B^g = B$ implies Ω_2 or Ω_3 is contained in B. But only $\Omega_2 \subset B$ is possible. Thus |B| = m + 1.

G is imprimitive with 2 blocks of size m + 1.

 σ stabilises B and acts on the elements of B as a cycle that fixes exactly one point.

Suppose that the rank of G is 3 with subdegrees 1, m, m + 1:

 G_{α} – orbits on Ω :

 $\Omega_1 = \{\alpha\}, \ \Omega_2 = \{\beta_2, \dots, \beta_{m+1}\} \text{ and } \ \Omega_3 = \{\beta_{m+2}, \dots, \beta_{2m+2}\}.$

G is not primitive as violates a condition on the subdegrees for primitive groups, $(gcd(m, m + 1) \neq 1)$.

Let B a block containing α and $g \in G_{\alpha}$. Then $B^g = B$ implies Ω_2 or Ω_3 is contained in B. But only $\Omega_2 \subset B$ is possible. Thus |B| = m + 1.

G is imprimitive with 2 blocks of size m + 1.

 σ stabilises *B* and acts on the elements of *B* as a cycle that fixes exactly one point. The induced action on blocks is 2-transitive and thus one of the theorem of Jones. This gives the groups $G \leq T \wr C_2$.

Results of Ito^{\dagger}, and Moorehouse^{\ddagger} in combination with Theorem 2 yield:

[†]Hadamard matrices with "doubly transitive" automorphism groups.

[‡]The 2–transitive complex Hadamard matrices.

Results of $\mathsf{Ito}^\dagger,$ and $\mathsf{Moorehouse}^\ddagger$ in combination with Theorem 2 yield:

Theorem 3 (BA-OC-D)

[†]Hadamard matrices with "doubly transitive" automorphism groups.

[‡]The 2–transitive complex Hadamard matrices.

Results of Ito[†], and Moorehouse[‡] in combination with Theorem 2 yield: **Theorem 3 (BA-OC-D)**

Let *H* be a cocyclic TCC HM of order n = 2m + 2 with *m* odd. Then one of the following holds, where *p* denotes a prime and *q* denotes a prime-power:

a) $\mathcal{A}(H)$ is affine 2-transitive and contains $\mathrm{AGL}_n(2)$ as subgroup, or

[†]Hadamard matrices with "doubly transitive" automorphism groups.

[‡]The 2-transitive complex Hadamard matrices.

Results of Ito[†], and Moorehouse[‡] in combination with Theorem 2 yield: **Theorem 3 (BA-OC-D)**

- a) $\mathcal{A}(H)$ is affine 2-transitive and contains $\mathrm{AGL}_n(2)$ as subgroup, or
- b) $\mathcal{A}(H)$ is almost-simple 2-transitive, and contains M_{12} or $\mathrm{PSL}_2(q)$ as a normal subgroup, or

[†]Hadamard matrices with "doubly transitive" automorphism groups.

[‡]The 2-transitive complex Hadamard matrices.

Results of Ito[†], and Moorehouse[‡] in combination with Theorem 2 yield: **Theorem 3 (BA-OC-D)**

- a) $\mathcal{A}(H)$ is affine 2-transitive and contains $\mathrm{AGL}_n(2)$ as subgroup, or
- b) $\mathcal{A}(H)$ is almost-simple 2-transitive, and contains M_{12} or $PSL_2(q)$ as a normal subgroup, or
- c) $\mathcal{A}(H) \leq C_2 \wr T$ and $\operatorname{AGL}_1(q) \leq T \leq \operatorname{A}\Gamma\operatorname{L}_1(q)$.

[†]Hadamard matrices with "doubly transitive" automorphism groups.

[‡]The 2–transitive complex Hadamard matrices.

Results of Ito[†], and Moorehouse[‡] in combination with Theorem 2 yield: **Theorem 3 (BA-OC-D)**

- a) $\mathcal{A}(H)$ is affine 2-transitive and contains $\mathrm{AGL}_n(2)$ as subgroup, or
- b) $\mathcal{A}(H)$ is almost-simple 2-transitive, and contains M_{12} or $PSL_2(q)$ as a normal subgroup, or
- c) $\mathcal{A}(H) \leq C_2 \wr T$ and $\mathrm{AGL}_1(q) \leq T \leq \mathrm{A}\Gamma \mathrm{L}_1(q)$.
- d) $\mathcal{A}(H) \leq C_2 \wr T$ where $T \in \{ PSL_2(p), PGL_2(p) \}$ with m = p a prime, or $T \in \{ M_{11}, M_{12}, M_{24} \}$ with m + 1 = 12, 12, 24, respectively, or,

[†]Hadamard matrices with "doubly transitive" automorphism groups.

[‡]The 2–transitive complex Hadamard matrices.

Order of cocyclic TCC HMs

The order of a cocyclic TCC HM has the form

- (A) q + 1, where $q \equiv 3 \mod 4$ is a prime power, or
- (B) 2p + 2, where $p \ge 3$ is a prime, or
- (C) 2^t , where $t \ge 2$ is an integer.

Order of cocyclic TCC HMs

The order of a cocyclic TCC HM has the form

- (A) q + 1, where $q \equiv 3 \mod 4$ is a prime power, or
- (B) 2p + 2, where $p \ge 3$ is a prime, or
- (C) 2^t , where $t \ge 2$ is an integer.

Existence of cocyclic TCC HMs

There exist cocyclic TCC HMs

- (i) for all orders as in (A): Paley I,
- (ii) for all orders as in (B) for which $p \equiv 1 \mod 4$: Paley II,
- (iii) for all orders as in (B) for which p < 1000: Generalised Legendre pairs,
- (iv) for all orders as in (C) with $t \le 8$: since $2^t 1$ is a prime for t = 3, 5, 7, the first power of two not covered by (i) or (ii) is 512.

Order of cocyclic TCC HMs

The order of a cocyclic TCC HM has the form

- (A) q + 1, where $q \equiv 3 \mod 4$ is a prime power, or
- (B) 2p + 2, where $p \ge 3$ is a prime, or
- (C) 2^t , where $t \ge 2$ is an integer.

Existence of cocyclic TCC HMs

There exist cocyclic TCC HMs

- (i) for all orders as in (A): Paley I,
- (ii) for all orders as in (B) for which $p \equiv 1 \mod 4$: Paley II,
- (iii) for all orders as in (B) for which p < 1000: Generalised Legendre pairs,
- (iv) for all orders as in (C) with $t \le 8$: since $2^t 1$ is a prime for t = 3, 5, 7, the first power of two not covered by (i) or (ii) is 512.

The TCC HMs Stanton-Sprott cyclic difference sets are not cocyclic.

Questions

• What are the automorphism groups of the aforementioned families of cocyclic TCC HMs?

This requires solving the extension problem

$$1 \rightarrow C_2 \rightarrow \operatorname{Aut}(H) \rightarrow \mathcal{A}(H) \rightarrow 1$$

and constructing certain monomial action based on a permutation action.

• A Kimura HM is a HM of order n = 4 + 4m of the form

Γ	1	1	1	1	1	1	1	1]
	1	1	$^{-1}$	-1	1	1	-1	-1
	1	$^{-1}$	1	-1	1	-1	1	-1
	1	$^{-1}$	$^{-1}$	1	-1	1	1	-1
	1 ^T	1 ^T	1 ^T	-1^\intercal	Α	В	С	D
	1 T	1 T	-1T	1 T	-B	Α	D	-C
	1 ^T	-1^\intercal	1 ^T	1 ^T	-C	-D	Α	В
L	1 T	-1^\intercal	-1 ^T	-1^\intercal	D	-C	В	-A

where A, B, C, D are certain $\{\pm 1\}$ -matrices of order m, and 1 denotes the all 1's row vector (whose length is determined by the context).

Research Problem 41 Is the Kimura construction (6.22) of Hadamard matrices cocyclic?

Thank you