New advances on graph families associated with graphicable algebras

Manuel Ceballos

CODESCO 24

July 9th, 2024

Contents

(1) Introduction
(2) Preliminaries
(3) Associating graphicable algebras and graphs

4 New families of graphicable algebras
(5) Type of graphicable algebras
(6) Algorithmic methods in Maple

Introduction

- Graph theory.
- Evolution algebras.
- Relation between graph theory and evolution algebras.
- The case of graphicable algebras.

Introduction

- Graph theory.
- Evolution algebras.
- Relation between graph theory and evolution algebras.
- The case of graphicable algebras.

Introduction

- Graph theory.
- Evolution algebras.
- Relation between graph theory and evolution algebras.
- The case of graphicable algebras.

Introduction

- Graph theory.
- Evolution algebras.
- Relation between graph theory and evolution algebras.
- The case of graphicable algebras.

Historical introduction

Introduction of evolution algebras.
Connection between evolution algebras and graphs
Path, cycle and complete granhicable algebras
Complete n-partite, friendship, star, snark, wheel and

Historical introduction

Introduction of evolution algebras.
Connection between evolution algebras and graphs
Path, cycle and complete graphicable algebras
Complete n-partite, friendship, star, snark, wheel and

Historical introduction

Introduction of evolution algebras.
Connection between evolution algebras and graphs
Path, cycle and complete graphicable algebras
Complete n-partite, friendship, star, snark, wheel and

Historical introduction

Introduction of evolution algebras.
Connection between evolution algebras and graphs
Path, cycle and complete graphicable algebras
Complete n-partite, friendship, star, snark, wheel and

Historical introduction

Introduction of evolution algebras.
Connection between evolution algebras and graphs
Path, cycle and complete graphicable algebras
Complete n-partite, friendship, star, snark, wheel and Petersen generalized graphicable algebras.

Preliminaries on evolution algebras

Evolution algebra

Let $\mathcal{E} \equiv(\mathcal{E},+, \cdot)$ be an algebra over a field \mathbb{K}. The algebra \mathcal{E} will be called n-dimensional evolution algebra if we can find a basis $B=\left\{e_{i}\right\}_{i=1}^{n}$ of \mathcal{E} such that

1) $e_{i}^{2}=\sum_{k=1}^{n} c_{i, k} e_{k}, \forall 1 \leq i \leq n$; and
2) $e_{i} \cdot e_{j}=0, \forall 1 \leq i \neq j \leq n$.
B is known as a natural basis of $\mathcal{E}, c_{i, k}$ are called the structure constants and $A=\left(c_{i, k}\right)$ is named as the structure matrix. We will consider evolution algebras over the complex numbers field with natural basis B (also called set of generators).

Proposition

Evolution algebras are flexible and commutative, but they are not associative either power-associative.

Proposition

Evolution algebras are flexible and commutative, but they are not associative either power-associative.

Derived series

The derived series of an evolution algebra \mathcal{E} is defined as follows:
$\mathcal{E}^{(1)}=\mathcal{E}, \mathcal{E}^{(2)}=\mathcal{E} \cdot \mathcal{E}, \ldots, \mathcal{E}^{(k)}=\mathcal{E}^{(k-1)} \cdot \mathcal{E}^{(k-1)}, \ldots$

Proposition

Evolution algebras are flexible and commutative, but they are not associative either power-associative.

Derived series

The derived series of an evolution algebra \mathcal{E} is defined as follows:
$\mathcal{E}^{(1)}=\mathcal{E}, \mathcal{E}^{(2)}=\mathcal{E} \cdot \mathcal{E}, \ldots, \mathcal{E}^{(k)}=\mathcal{E}^{(k-1)} \cdot \mathcal{E}^{(k-1)}, \ldots$
Solvable evolution algebra
\mathcal{E} is called $(m-1)$-step solvable if there exists $m \in \mathbb{N}$ such that $\mathcal{E}^{(m)}=\{0\}$ and $\mathcal{E}^{(m-1)} \neq\{0\}$.
m is known as the solvability index or solvindex of \mathcal{E}.

Perfect evolution algebra

The derived algebra of an evolution algebra \mathcal{E} will be denoted by $D \mathcal{E}=\mathcal{E}^{(2)}$. An evolution algebra \mathcal{E} is perfect if \mathcal{E} and $D \mathcal{E}$ are isomorphic.

> Graphicable algebra
> An n-dimensional graphicable algebra is an evolution algebra where the structure constants are $c_{i, j} \in\{0,1\}, \forall 1 \leq i, j \leq n$ for a natural basis B.

Perfect evolution algebra

The derived algebra of an evolution algebra \mathcal{E} will be denoted by $D \mathcal{E}=\mathcal{E}^{(2)}$. An evolution algebra \mathcal{E} is perfect if \mathcal{E} and $D \mathcal{E}$ are isomorphic.

Graphicable algebra
An n-dimensional graphicable algebra is an evolution algebra where the structure constants are $c_{i, j} \in\{0,1\}, \forall 1 \leq i, j \leq n$ for a natural basis B.

Preliminaries on Graph Theory

Graph

A graph is defined as a pair $G=(V, E)$, where V is a non-empty set known as the vertex-set (or node-set) and E is called the edge-set, that is determined by unordered pairs of elements from V.

> Neighbours and neighbourhood
> A pair of vertices in a graph G are adjacent or neighbours if they determine an edge on G. The neighbourhood of v, $N(v)$, are the neighbours of v. The adjacency matrix of G is a matrix $A=\left(a_{i j}\right)$, where $a_{i, j}=1$ if v_{i} and v_{j} are adjacent and $a_{i, j}=0$ otherwise.

Preliminaries on Graph Theory

Graph

A graph is defined as a pair $G=(V, E)$, where V is a non-empty set known as the vertex-set (or node-set) and E is called the edge-set, that is determined by unordered pairs of elements from V.

Neighbours and neighbourhood
A pair of vertices in a graph G are adjacent or neighbours if they determine an edge on G. The neighbourhood of v, $N(v)$, are the neighbours of v. The adjacency matrix of G is a matrix $A=\left(a_{i j}\right)$, where $a_{i, j}=1$ if v_{i} and v_{j} are adjacent and $a_{i, j}=0$ otherwise.

Degree

The number of vertices adjacent to a vertex v is known as the degree of v.

> Example (Types of graphs)
> Regular graphs, Cubic graphs, Path graph, Cycle graph, Complete graph, Wheel graph, Complete n-partite graph, Friendship graph, n-cubes, fullerene, platonic solid Blanusa and Pappus graph

Degree

The number of vertices adjacent to a vertex v is known as the degree of v.

Example (Types of graphs)

Regular graphs, Cubic graphs, Path graph, Cycle graph, Complete graph, Wheel graph, Complete n-partite graph, Friendship graph, n-cubes, fullerene, platonic solid Blanusa and Pappus graph

Graphicable algebra associated with a given graph

Let $G=(V, E)$ be a graph. Then, G can be associated with a graphicable algebra by considering the generators
$V=\left\{e_{1}, e_{2}, \ldots, e_{r}\right\}$ and relations

$$
e_{i}^{2}=\sum_{e_{k} \in N\left(e_{i}\right)} e_{k}, \quad e_{i} \cdot e_{j}=0, i \neq j
$$

Graphicable algebra associated with a given graph

Let $G=(V, E)$ be a graph. Then, G can be associated with a graphicable algebra by considering the generators
$V=\left\{e_{1}, e_{2}, \ldots, e_{r}\right\}$ and relations

$$
e_{i}^{2}=\sum_{e_{k} \in N\left(e_{i}\right)} e_{k}, \quad e_{i} \cdot e_{j}=0, i \neq j
$$

This graph is associated with the graphicable algebra with $B=\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ and products $e_{1}^{2}=e_{2}+e_{3}+e_{4}, e_{2}^{2}=e_{1}+e_{3}$, $e_{3}^{2}=e_{1}+e_{2}, e_{4}^{2}=e_{1}$

What is the graph associated with the graphicable algebra with $B=\left\{e_{1}, e_{2}, e_{3}\right\}$ and $e_{1}^{2}=e_{2}+e_{3}, e_{2}^{2}=e_{1}+e_{2}, e_{3}^{2}=e_{2}$?

\$-Graphicable algebras

S-graphicable algebras are those which have a simple graph associated $\left(c_{i, j}=c_{j, i}, c_{i, i}=0\right.$, for $\left.1 \leq i \neq j \leq n\right)$.

What is the graph associated with the graphicable algebra with $B=\left\{e_{1}, e_{2}, e_{3}\right\}$ and $e_{1}^{2}=e_{2}+e_{3}, e_{2}^{2}=e_{1}+e_{2}, e_{3}^{2}=e_{2}$?

S-Graphicable algebras

S-graphicable algebras are those which have a simple graph associated $\left(c_{i, j}=c_{j, i}, c_{i, i}=0\right.$, for $\left.1 \leq i \neq j \leq n\right)$.

Hypercube graphicable algebra

The hypercube graphicable algebra, $A\left(Q_{4}\right)$, associated to the hypercube graph Q_{4} has natural basis $\left\{e_{1}, \ldots, e_{16}\right\}$ and law

$$
\begin{array}{ll}
e_{i}^{2}=e_{i-1}+e_{i+1}+e_{i+7}+e_{i+9}(\bmod 16), & 1 \leq i \leq 8 ; \\
e_{i}^{2}=e_{i-9}+e_{i-7}+e_{i+3}+e_{i+5}(\bmod 16), & i=10,11 ; \\
e_{i}^{2}=e_{i-9}+e_{i-7}+e_{i-3}+e_{i+3}(\bmod 16), & i=12,13 ; \\
e_{i}^{2}=e_{i-9}+e_{i-7}+e_{i-5}+e_{i-3}(\bmod 16), & i=14,15 ; \\
e_{i}^{2}=e_{i-7}+e_{i-1}(\bmod 8)+e_{i+3}+e_{i+5}(\bmod 16), & i=9,16
\end{array}
$$

20-fullerene graphicable algebra

The 20-fullerene graphicable algebra, $A\left(F_{20}\right)$, associated to the 20-fullerene, F_{20}, has natural basis $\left\{e_{1}, \ldots, e_{20}\right\}$ and law

$$
\begin{array}{rlrl}
e_{i}^{2}= & \sum_{j=1}^{3} e_{i+j}, & & i=1,5 ; \\
e_{i}^{2}= & e_{i-1-2 \delta_{i, 4}-2 \delta_{i, 8}}+e_{i+7-\delta_{i, 4}-\delta_{i, 8}} & & \\
& +e_{i+9-\delta_{i, 4}-\delta_{i, 8},}, & i=2,4,6,8 \\
e_{i}^{2}= & e_{i-2}+e_{i+12+2 \delta_{i, 3}}+e_{i+13+2 \delta_{i, 3}}, & i=3,7 \\
e_{i}^{2}= & e_{i-9+\delta_{i, 12}+\delta_{i, 16}}+e_{i+4}+e_{i+6-10 \delta_{i, 15}-\delta_{i, 16},}, & i=11,12,15,16 ; \\
e_{i}^{2}= & e_{i-7+\delta_{i, 10}+\delta_{i, 14}}+e_{i+9+\delta_{i, 9}+4 \delta_{i, 14}+5 \delta_{i, 13}} & & i=9,10,13,14 ; \\
& +e_{i+10-6 \delta_{i, 13}-6 \delta_{i, 14},}, \\
e_{i}^{2}= & e_{3+4 \delta_{i, 19}+4 \delta_{i, 20}}+e_{i-6-4 \delta_{i, 19}-4 \delta_{i, 20}}+e_{i-4}, & & i=17, \ldots, 20
\end{array}
$$

Platonic solid graphicable algebras

Tetrahedron graphicable algebra
The Tetrahedron graphicable algebra, $A(T)$, associated to the tetrahedron T has natural basis $\left\{e_{1}, \ldots, e_{4}\right\}$ and law

$$
e_{i}^{2}=\sum_{j=1, j \neq i}^{4} e_{j}, \text { for } 1 \leq i \leq 4
$$

Cube graphicable algebra

The Cube graphicable algebra, $A\left(Q_{3}\right)$, associated to the cube graph Q_{3} has natural basis $\left\{e_{1}, \ldots, e_{8}\right\}$ and law

$$
\begin{array}{ll}
e_{i}^{2}=e_{i+1}+e_{i+3}+e_{i+4}(\bmod 8), & \text { for } i=1,5 \\
e_{i}^{2}=e_{i-1}+e_{i+1}+e_{i+4}(\bmod 8), & \text { for } i=2,3,6,7 \\
e_{i}^{2}=e_{i-3}+e_{i-1}+e_{i+4}(\bmod 8), & \text { for } i=4,8
\end{array}
$$

Octahedral graphicable algebra

The octahedral graphicable algebra, $A(O)$, associated to the octahedral graph O has natural basis $\left\{e_{1}, \ldots, e_{6}\right\}$ and law

$$
e_{i}^{2}=\sum_{j=1, i \neq j \neq i+3(\bmod 6)}^{6} e_{j}
$$

Dodecahedral graphicable algebra

The dodecahedral graphicable algebra, $A(D)$, associated to the dodecahedral graph D has natural basis $\left\{e_{1}, \ldots, e_{20}\right\}$ and law

$$
\begin{array}{ll}
e_{i}^{2}=e_{i+1}+e_{i-1}(\bmod 10)+e_{i+10}, & \forall 1 \leq i \leq 10 \\
e_{i}^{2}=e_{i-10}+e_{\varphi(i)}+e_{\phi(i)}, & \text { for } 10 \leq i \leq 20
\end{array}
$$

$$
\text { where } \varphi(i)=\left\{\begin{array}{lll}
i+8 & \text { if } & i+8 \leq 20 \\
i-2 & \text { if } & i+8>20
\end{array}\right.
$$

$$
\phi(i)=\left\{\begin{array}{lll}
i+2 & \text { if } & i+2 \leq 20 \\
i-8 & \text { if } & i+2>20
\end{array}\right.
$$

Icosahedral graphicable algebra

The icosahedral graphicable algebra, $A(I)$, associated to the icosahedral graph I has natural basis $\left\{e_{1}, \ldots, e_{12}\right\}$ and law

$$
\begin{array}{ll}
e_{i}^{2}=\sum_{j=1}^{5} e_{i+j}, & \text { for } i=1,7 ; \\
e_{i}^{2}=e_{1}+e_{12}+e_{i+2}+e_{i+8}+e_{2+\delta_{2, i}}, & \text { for } i=2,3 ; \\
e_{i}^{2}=e_{1}+e_{6}+e_{i-2}+e_{i+4}+e_{i+6}, & \text { for } i=4,5 ; \\
e_{i}^{2}=e_{6}+e_{7}+e_{i+2}+e_{i-4}+e_{8+\delta_{8, i}}, & \text { for } i=8,9 ; \\
e_{i}^{2}=e_{7}+e_{12}+e_{i-2}+e_{i-6}+e_{i-8}, & \text { for } i=10,11 ; \\
e_{i}^{2}=e_{2}+e_{3}+e_{i-5}+e_{i-2}+e_{i-1}, & \text { for } i=6,12 .
\end{array}
$$

Blanusa graphicable algebra

The Blanusa graphicable algebra, $A(B)$, associated to the Blanusa graph B has natural basis $\left\{e_{1}, \ldots, e_{18}\right\}$ and law

$$
\begin{array}{ll}
e_{i}^{2}=e_{i-1}+e_{i+1}+e_{i+12}, & \text { for } i=2,5 ; \\
e_{i}^{2}=e_{i-1}+e_{i+1}+e_{i+5}(\bmod 18), & \text { for } i=3,7,11 \\
e_{i}^{2}=e_{i-1}+e_{i+1}+e_{i+14}(\bmod 18), & \text { for } i=4,10,1 \\
e_{i}^{2}=e_{i-1}+e_{i+1}+e_{i+4}(\bmod 16), & \text { for } i=6,9,14 \\
e_{i}^{2}=e_{i-1}+e_{i+1}+e_{i-5}(\bmod 18), & \text { for } i=8,12,1 \\
e_{i}^{2}=e_{i-1}+e_{i+1}+e_{i+3+3 \delta_{i, 14}+12 \delta_{i, 1}(\bmod 18),} & \text { for } i=1,14,1 \\
e_{i}^{2}=e_{1}+e_{i-3+2 \delta_{i, 17}}+e_{i+4+2 \delta i, 17}(\bmod 18), & \text { for } i=17,18 ;
\end{array}
$$

Pappus graphicable algebra

The Pappus graphicable algebra, $A(P)$, associated to the Pappus graph P has natural basis $\left\{e_{1}, \ldots, e_{18}\right\}$ and law

$$
\begin{array}{ll}
e_{i}^{2}=e_{i+1}+e_{i+7}+e_{i+17}(\bmod 18), & \text { for } i=1,3,7,9,13,15 ; \\
e_{i}^{2}=e_{i-1}+e_{i+1}+e_{i+11}(\bmod 18), & \text { for } i=2,4,8,10,14,16 ; \\
e_{i}^{2}=e_{i-1}+e_{i+1}+e_{i+13}(\bmod 18), & \text { for } i=5,11,17 ; \\
e_{i}^{2}=e_{i-1}+e_{i+1}+e_{i+5}(\bmod 18), & \text { for } i=6,12,18
\end{array}
$$

Path, cycle, n-partite, friendship, complete and wheel graphs

- The graphicable path algebra with n vertices, $A\left(P_{n}\right)$, is perfect if n is even and non-solvable if n is odd.
- The graphicable cycle algebra with n vertices, $A\left(C_{n}\right)$, is non-solvable if $n=4$ and it is perfect otherwise.
- The complete n-partite graphicable algebra $A\left(K_{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}}\right)$ with $\alpha_{1}+\alpha_{2}+\ldots+\alpha_{n}$ vertices is non-solvable.
- The graphicable friendship algebra with $2 n+1$ vertices, $A\left(F_{n}\right)$, is perfect.
- The graphicable complete algebra with n vertices, $A\left(K_{n}\right)$, is perfect.
- The graphicable wheel algebra with n vertices, $A\left(W_{n}\right)$, is non-solvable if $n=5$ and it is perfect otherwise.

Path, cycle, n-partite, friendship, complete and wheel graphs

- The graphicable path algebra with n vertices, $A\left(P_{n}\right)$, is perfect if n is even and non-solvable if n is odd.
- The graphicable cycle algebra with n vertices, $A\left(C_{n}\right)$, is non-solvable if $n=4$ and it is perfect otherwise.
- The complete n-partite graphicable algebra $A\left(K_{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}}\right)$ with $\alpha_{1}+\alpha_{2}+\ldots+\alpha_{n}$ vertices is
non-solvable.
- The graphicable friendship algebra with $2 n+1$ vertices, $A\left(F_{n}\right)$, is perfect.
- The graphicable cornplete algebra with n vertices, $A\left(K_{n}\right)$, is perfect.
- The graphicable wheel algebra with n vertices, $A\left(W_{n}\right)$, is non-solvable if $n=5$ and it is perfect otherwise.

Path, cycle, n-partite, friendship, complete and wheel graphs

- The graphicable path algebra with n vertices, $A\left(P_{n}\right)$, is perfect if n is even and non-solvable if n is odd.
- The graphicable cycle algebra with n vertices, $A\left(C_{n}\right)$, is non-solvable if $n=4$ and it is perfect otherwise.
- The complete n-partite graphicable algebra
$A\left(K_{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}}\right)$ with $\alpha_{1}+\alpha_{2}+\ldots+\alpha_{n}$ vertices is non-solvable.
- The graphicable friendship algebra with $2 n+1$ vertices, $A\left(F_{n}\right)$, is perfect.
- The graphicable cornplete algebra with n vertices, $A\left(K_{n}\right)$, is perfect.
- The graphicable wheel algebra with n vertices, $A\left(W_{n}\right)$, is non-solvable if $n=5$ and it is perfect otherwise.

Path, cycle, n-partite, friendship, complete and wheel graphs

- The graphicable path algebra with n vertices, $A\left(P_{n}\right)$, is perfect if n is even and non-solvable if n is odd.
- The graphicable cycle algebra with n vertices, $A\left(C_{n}\right)$, is non-solvable if $n=4$ and it is perfect otherwise.
- The complete n-partite graphicable algebra
$A\left(K_{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}}\right)$ with $\alpha_{1}+\alpha_{2}+\ldots+\alpha_{n}$ vertices is non-solvable.
- The graphicable friendship algebra with $2 n+1$ vertices, $A\left(F_{n}\right)$, is perfect.
- The graphicable complete algebra with n vertices, $A\left(K_{n}\right)$, is perfect.
- The graphicable wheel algebra with n vertices, $A\left(W_{n}\right)$, is non-solvable if $n=5$ and it is perfect otherwise.

Path, cycle, n-partite, friendship, complete and wheel graphs

- The graphicable path algebra with n vertices, $A\left(P_{n}\right)$, is perfect if n is even and non-solvable if n is odd.
- The graphicable cycle algebra with n vertices, $A\left(C_{n}\right)$, is non-solvable if $n=4$ and it is perfect otherwise.
- The complete n-partite graphicable algebra
$A\left(K_{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}}\right)$ with $\alpha_{1}+\alpha_{2}+\ldots+\alpha_{n}$ vertices is non-solvable.
- The graphicable friendship algebra with $2 n+1$ vertices, $A\left(F_{n}\right)$, is perfect.
- The graphicable complete algebra with n vertices, $A\left(K_{n}\right)$, is perfect.
 non-solvable if $n=5$ and it is perfect otherwise.

Path, cycle, n-partite, friendship, complete and wheel graphs

- The graphicable path algebra with n vertices, $A\left(P_{n}\right)$, is perfect if n is even and non-solvable if n is odd.
- The graphicable cycle algebra with n vertices, $A\left(C_{n}\right)$, is non-solvable if $n=4$ and it is perfect otherwise.
- The complete n-partite graphicable algebra
$A\left(K_{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}}\right)$ with $\alpha_{1}+\alpha_{2}+\ldots+\alpha_{n}$ vertices is non-solvable.
- The graphicable friendship algebra with $2 n+1$ vertices, $A\left(F_{n}\right)$, is perfect.
- The graphicable complete algebra with n vertices, $A\left(K_{n}\right)$, is perfect.
- The graphicable wheel algebra with n vertices, $A\left(W_{n}\right)$, is non-solvable if $n=5$ and it is perfect otherwise.

Tetrahedron, cube, octahedral, dodecahedral, icosahedral and 20-fullerene graphs

- The tetrahedral, cube and icosahedral graphicable algebras $A(T), A\left(Q_{3}\right)$ and $A(I)$ are perfect.
- The octahedral and dodecahedral graphicable algebras $A(O)$ and $A(D)$ are non-solvable.
- The 20-fullerene graptilcable algebra, $A\left(F_{20}\right)$, is non-solvable.

Tetrahedron, cube, octahedral, dodecahedral, icosahedral and 20-fullerene graphs

- The tetrahedral, cube and icosahedral graphicable algebras $A(T), A\left(Q_{3}\right)$ and $A(I)$ are perfect.
- The octahedral and dodecahedral graphicable algebras $A(O)$ and $A(D)$ are non-solvable.
- The 20-fullerene graphicable algebra, $A\left(F_{20}\right)$, is non-solvable.

Tetrahedron, cube, octahedral, dodecahedral, icosahedral and 20-fullerene graphs

- The tetrahedral, cube and icosahedral graphicable algebras $A(T), A\left(Q_{3}\right)$ and $A(I)$ are perfect.
- The octahedral and dodecahedral graphicable algebras $A(O)$ and $A(D)$ are non-solvable.
- The 20-fullerene graphicable algebra, $A\left(F_{20}\right)$, is non-solvable.

Subprocedure prod

```
> restart: with(LinearAlgebra): with(GraphTheory): with(ListTools):
> assign(dim,...):
> prod:=proc(i)
> if i=... then ...;
> elif ... then ...;
> ...
> elif ... then ...;
> else 0; fi;
> end proc;
```


Subprocedure Sgraphicable

```
> Sgraphicable:=proc(n)
> local L;
> L:=[];
> forifrom 1 to n do
> L:=[op(L),coeff(prod(i),e[i])];
>for j from i+1 to n do
> L:=[op(L),coeff(prod(i),e[j])-coeff(prod(j),e[i])];
> od;
> od;
> L:=MakeUnique(L);
> if L=[0] then print(The algebra is S-graphicable)
> else print(The algebra is not S-graphicable)
> fi;
> end proc:
```


Subprocedure drawingraph

```
> drawingraph:=proc(n)
> local V,E;
>V:=[seq(i,i=1..n)];
> E:=;
forifrom 1 to n do
> if prod(i)<>0 then
for j from 1 to n do
> if j<>i then
> if coeff(prod(i),e[j])<>0 then
> E:=op(E),i,j;
> fi;
> fi;
> od;
> fi;
> od;
> DrawGraph(Graph(V,E));
> end proc:
```

We consider the evolution algebra \mathcal{E} with dimension 5 , natural basis $\left\{e_{i}\right\}_{i=1}^{5}$ and law

$$
e_{1}^{2}=2 e_{2}+e_{3}, e_{3}^{2}=2 e_{1}-e_{3}+2 e_{5}, e_{4}^{2}=e_{1}, e_{5}^{2}=3 e_{2}-e_{3}
$$

Compleing subprocedure prod

$>$ restart: with(LinearAlgebra): with(GraphTheory): with(ListTools):
$>$ assign(dim,5):
$>$ prod:=proc(i)
$>$ if $\mathrm{i}=1$ then ${ }^{*}{ }^{*} \mathrm{e}[2]+\mathrm{e}[3]$;
$>$ elif $\mathrm{i}=3$ then $2^{*} \mathrm{e}[1]-\mathrm{e}[3]+2 * \mathrm{e}[5]$;
$>$ elif $\mathrm{i}=4$ then $\mathrm{e}[1]$;
$>$ elif $\mathrm{i}=5$ then $3^{*} \mathrm{e}$ [2]-e[3];
$>$ else 0 ; \mathbf{f};

Executing subprocedure Sgraphicable

$>$ Sgraphicable(dim); The algebra is not S-graphicable

We consider the evolution algebra \mathcal{E} with dimension 5 , natural basis $\left\{e_{i}\right\}_{i=1}^{5}$ and law
$e_{1}^{2}=e_{3}+e_{4}, e_{2}^{2}=e_{4}+e_{5}, e_{3}^{2}=e_{1}+e_{5}, e_{4}^{2}=e_{1}+e_{2}, e_{5}^{2}=e_{2}+e_{3}$

Completing subprocedure prod

$>$ restart: with(LinearAlgebra): with(GraphTheory): with(List Tools):
$>$ assign(dim,5):
$>$ prod:=proc(i)
$>$ if $\mathbf{i}=\mathbf{1}$ then $\mathrm{e}[3]+\mathrm{e}[4]$;
$>$ elif $\mathrm{i}=2$ then e[4]+e[5];
$>$ elif $\mathrm{i}=3$ then e[1]+e[5];
$>$ elif $i=4$ then e[1]+e[2];
$>$ elif $i=5$ then e[2]+e[3];
$>$ else 0 ; fi ;

Executing subprocedure Sgraphicable

$>$ Sgraphicable(dim); The algebra is \mathbf{S}-graphicable
$>$ drawingraph(dim);

Introduction
Preliminaries

Open problems

(1) Using the graphicable algebras $A\left(P_{n}\right), A\left(C_{n}\right), A\left(F_{n}\right)$, $A\left(K_{n}\right), A\left(W_{n}\right), A(T), A\left(Q_{3}\right), A(I)$ to compute perfect subalgebras of evolution algebras.
(2) Introducing other graph notions attached to graphicable algebras such as planar graphicable algebra.
(3) Studying the type of graphicable algebra under graph operations such as union, intersection, join, products, etc.
(4) Translating general concepts of graph theory such us colorability and connectivity to the language of graphicable algebras.

Open problems

(1) Using the graphicable algebras $A\left(P_{n}\right), A\left(C_{n}\right), A\left(F_{n}\right)$, $A\left(K_{n}\right), A\left(W_{n}\right), A(T), A\left(Q_{3}\right), A(I)$ to compute perfect subalgebras of evolution algebras.
(2) Introducing other graph notions attached to graphicable algebras such as planar graphicable algebra.
(3) Studying the type of graphicable algebra under graph operations such as union, intersection, join, products, etc.
© Translating general concepts of graph theory such us colorability and connectivity to the language of graphicable algebras.

Open problems

(1) Using the graphicable algebras $A\left(P_{n}\right), A\left(C_{n}\right), A\left(F_{n}\right)$, $A\left(K_{n}\right), A\left(W_{n}\right), A(T), A\left(Q_{3}\right), A(I)$ to compute perfect subalgebras of evolution algebras.
(2) Introducing other graph notions attached to graphicable algebras such as planar graphicable algebra.
(3) Studying the type of graphicable algebra under graph operations such as union, intersection, join, products, etc.
(9) Translating general concepts of graph theory such us colorability and connectivity to the language of graphicable algebras.

Open problems

(1) Using the graphicable algebras $A\left(P_{n}\right), A\left(C_{n}\right), A\left(F_{n}\right)$, $A\left(K_{n}\right), A\left(W_{n}\right), A(T), A\left(Q_{3}\right), A(I)$ to compute perfect subalgebras of evolution algebras.
(2) Introducing other graph notions attached to graphicable algebras such as planar graphicable algebra.
(3) Studying the type of graphicable algebra under graph operations such as union, intersection, join, products, etc.
(9) Translating general concepts of graph theory such us colorability and connectivity to the language of graphicable algebras.

Thank you very much!

