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(Complex) Hadamard matrices

Let U ⊂ C be the unit circle

U :=
{
e iθ | θ ∈ R

}
= {α ∈ C | |α| = 1}

and call elements of U units.

H ∈ Un×n is a (complex) Hadamard matrix if HH∗ = nI .
(H∗ is the Hermitian adjoint of H).
Denote the set of all such H ∈ Un×n by Hn.

We drop the modifier “complex” as this is the context of
Hadamard’s original (1893) investigation, it is our concern here
and also increasingly so in this field.

The Fourier matrix of order n,

Fn := [γ ij ]0≤i ,j<n, γ = e
πi
n

is a Hadamard matrix of order n. Thus Hn 6= ∅.
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Equivalence and equivalence classes

I If H ∈ Hn and P,Q ∈ (U ∪ {0})n×n are monomial
matrices—meaning exactly one nonzero entry per
row/column—then K = PHQ ∈ Hn

I That is, Hn is invariant under permutation of rows/columns
and multiplication of rows/columns by units.

I Two such H,K are said to be equivalent.

I Every H ∈ Hn is equivalent to one whose first row & column
are 1—that is, it is dephased.

I In each order n = 1, 2, 3 all Hadamard matrices are equivalent.

I Sylvester (1863): The number of equivalence classes of order
n is equal to the number of distinct factorizations of n.

I If true then H4, H6 would each consist of 2 classes.

I But Sylvester was WRONG! Very wrong ... in this claim.
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Where Sylvester went wrong

Fourier matrices give dephased representatives of the unique
classes of H2,H3

F2 =

(
1 1
1 −1

)
F3 =

1 1 1
1 γ γ2

1 γ2 γ

 , γ = e
π
3

If A ∈ Hm,B ∈ Hn, then A⊗ B ∈ Hmn

(where ⊗ = Kronecker product—a tensor product).

Sylvester surmised all classes arise from Fn, n ∈ Z+ and ⊗.

Thus H4 would have dephased representatives

F4 =


1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

 , F2 ⊗ F2 =


1 1 1 1
1 −1 1 −1

1 1 −1 −1
1 −1 −1 1


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Affine families

Unit parameters like λ, α, β above give arrays that cross
equivalence classes, write such an array H ∈ Hn as follows.

H =


h00e

ir00 h01e
ir01 · · · h0(n−1e

ir0(n−1)

h10e
ir10 h11e

ir11
. . . h1(n−1)e

ir1(n−1)

...
. . .

. . .
...

h(n−1)0e
ir(n−1)0 h(n−1)1e

ir(n−1)1 · · · h(n−1)(n−1)e
ir(n−1)(n−1)


First H is dephased (One can always add 2n − 1 parameters by
multiplying rows & columns by unit variables). So hij = 1 and
rij = 0 for i = 0 or j = 0 (first row/column).

hij ∈ U. Taking all rij = 0 must give H0 ∈ Hn. The factors
xij = e irij are regarded as variables, 0 < i , j < n.
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Families as solutions

The variables rij make H ∈ Hn if

n−1∑
k=0

hikhjke
i(rik−rjk ) = 0

for all 0 < i < j < n.

Roughly: a solution set to this system of n2 − n equations in
(n − 1)2 variables rij , 0 < i , j < n,in R(n−1)2 containing
(0, 0, . . . , 0) and forming a manifold of dimension d gives a
d-parameter family containing H0.

That family is affine if it is a d-dimensional subspace of R(n−1)2 .

And roughly speaking such a family can be expressed as an array
with d free multiplicative factors x = eai ∈ U among the entries.
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Weaving Hadamard matrices
RC 1991: method of weaving (generalization of the tensor product)

I builds special matrices out of smaller precursors

I preserves, introduces and controls structure/properties
EG symmetry, regularity, orthogonality.

I Weaving Hadamard matrices is an easy special case.

Given (warp and woof matrices)
A1,A2, . . . ,Am ∈ Hn and B1,B2, . . . ,Bn ∈ Hm,

form m × n array of rank-one blocks CijRij ,

W =

 C11R11 · · · C1nR1n
...

. . .
...

Cm1Rm1 · · · CmnRmn


where Cij is the jth column of Ai

and Rij is the ith row of Bj .

Then W ∈ Hmn (easy exercise).
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I preserves, introduces and controls structure/properties
EG symmetry, regularity, orthogonality.

I Weaving Hadamard matrices is an easy special case.
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Then W ∈ Hmn (easy exercise).



Adding parameters when weaving

Consider woven Hadamard matrix W ,
A1,A2, . . . ,Am ∈ Hn and B1,B2, . . . ,Bn ∈ Hm,

W =

 C11R11 · · · C1nR1n
...

. . .
...

Cm1Rm1 · · · CmnRmn



I Let λ ∈ U

I Multiplying block CijRij by λ amounts to multiplying row i of
Bj or column j of Ai by λ.

I Hm,Hn are invariant under this operation, so the resulting
matrix is also in Hmn.

I Multiplying blocks by independent scalars we may introduce
mn parameters. But only (m − 1)(n − 1) when dephased.
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Hadamard’s 4× 4 array

In general any array of rank 1 blocks may be factored as a weave.

Hadamard’s array may be obtained in precisely this fashion. We
factor it explicitly.

Hλ =


1 1 1 1
1 1 −1 −1

1 −1 λ −λ
1 −1 −λ λ

 =


(

1
1

)(
1 1

) (
1
−1

)(
1 1

)
(

1
1

)(
1 −1

) (
1
−1

)(
λ −λ

)


A1 = A2 =

(
1 1
1 −1

)
, B1 =

(
1 1

1 −1

)
and B2 =

(
1 1

λ −λ

)
(Alternatively we could take A1 = B1 = B2 and the second column
of A2 multiplied by λ.)
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The two-parameter family in H6

(α, β ∈ U, γ = e
πi
3 )

Hα,β =


1 1 1 1 1 1
1 1 γ γ γ2 γ2

1 1 γ2 γ2 γ γ
1 −1 α −α β −β
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, B3 =
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β −β
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Parameters from the component (warp and woof) matrices

Warp & woof matrices are unrelated

. So each may carry into the
weaving construction its own independent parameters.

Use warp matrices A1, . . .Am with a1, . . . , am parameters and woof
matrices B1, . . .Bn with b1, . . . , bn. (All dephased)

I The woven matrix W may have (m − 1)(n − 1) parameters
introduced as scalar multiples of blocks, and remain dephased.

I W also inherits a1 + a2 + · · ·+ am parameters from warp

I and b1 + b2 + · · ·+ bn from the woof matrices.

I By construction W is also dephased.

Theorem (RC 2022) Under the above conditions W ∈ Hmn is a
member of a family of affine dimension at least

(m − 1)(n − 1) +
m∑
i=1

ai +
n∑

j=1

bj .
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Inheriting non-affine parameters

Not fully described here: parametric families of Hadamard matrices
with parameters yielding non-affine higher-dimensional solutions

EG Besides 2-dimensional affine families in H6,
B.R. Karlsson (2010) gives a 3-parameter non-affine family
and F. Szöllosi (also 2010) gives a 4-parameter non-affine family

Weaving construction introduces well-behaved “affine” parameters;
warp and woof matrices may bring non-affine parameters.

Theorem (RC 2022) Given m unphased matrices of Hn and n
unphased families of Hm having a1, . . . , am and and b1, . . . , bn
independent parameters respectively, W ∈ Hmn is a member of a
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and F. Szöllosi (also 2010) gives a 4-parameter non-affine family

Weaving construction introduces well-behaved “affine” parameters;
warp and woof matrices may bring non-affine parameters.

Theorem (RC 2022) Given m unphased matrices of Hn and n
unphased families of Hm having a1, . . . , am and and b1, . . . , bn
independent parameters respectively, W ∈ Hmn is a member of a
family of dimension having at least

(m − 1)(n − 1) +
m∑
i=1

ai +
n∑

j=1

bj .



Inheriting non-affine parameters

Not fully described here: parametric families of Hadamard matrices
with parameters yielding non-affine higher-dimensional solutions

EG Besides 2-dimensional affine families in H6,
B.R. Karlsson (2010) gives a 3-parameter non-affine family
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Maximizing parameters/dimension of constructed classes

Taking warp matrices of uniform max dimension a1 = · · · = am = a

and also for woof, b1 = · · · = bn = b (maximum) reduces the
formula for the number of parameters of woven matrices to

(m − 1)(n − 1) + na + mb.

Compare prior constructions shown in CHM Catalog

I Doubling construction: A ∈ H(n) with a parameters ⇒
H ∈ H2n with 2a + (n − 1) parameters.

Same as weaving with B ∈ H(2) (0 parameters).

I Quadrupling construction: ⇒ 4a + 3(n − 1).

Weaving B ∈ H(4) (1 parameter):
n + 4a + 3(n − 1) = 4(a + n).

I Dită’s “tensor-like” product: A with B ∈ H(m) having b
parameters: ⇒ (m − 1)(n − 1) + a + mb

All three equivalent to constrained versions of weaving
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Some calculations
N = mn ∈ {4, 6, 8}

Weaving doesn’t affect prime orders (no nontrivial factorization)

a = max # parameters for warp matrices ∈ Hm

b = max # parameters for woof ∈ Hn

(m − 1)(n − 1) + na + mb: number of parameters in woven matrix

∗: weaving improves dimension

NA: Non-Affine parametrization
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N = 6 = ab, weave matrix ∈ H6
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N = 8 = ab, weave matrix ∈ H8

2 4 0 1 5 5
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Observation (Trades)

A trade in a matrix configuration is a set of entries which,
changed, produces a distinct configuration of the same type

. In
other words, it is the set of positions in which two configurations
of some type differ.

10 years ago O. Cathain and Wanless showed that no trade in a
(real) Hadamard matrix of order n consists of fewer than n entries.

Further it is conjectured that the same holds for Hn.

A parameter in a Hn corresponds to a trade: the set of positions it
affects.

Every parameter in HN in the Online CHM Catalog satisfies the
above conjecture.

Each of the variables we introduce in the Weaving construction for
H(N), N = mn affect exactly N entries.
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