Weaving High-Dimension (affine) classes of (Complex) Hadamard matrices

R. Craigen
Dept of Mathematics
University of Manitoba

Sevilla 2024
(Complex) Hadamard matrices
Let $U \subset \mathbb{C}$ be the unit circle

(Complex) Hadamard matrices

Let $U \subset \mathbb{C}$ be the unit circle

$$
U:=\left\{e^{i \theta} \mid \theta \in \mathbb{R}\right\}
$$

(Complex) Hadamard matrices

Let $U \subset \mathbb{C}$ be the unit circle

$$
U:=\left\{e^{i \theta} \mid \theta \in \mathbb{R}\right\}=\{\alpha \in \mathbb{C}| | \alpha \mid=1\}
$$

(Complex) Hadamard matrices

Let $U \subset \mathbb{C}$ be the unit circle

$$
U:=\left\{e^{i \theta} \mid \theta \in \mathbb{R}\right\}=\{\alpha \in \mathbb{C}| | \alpha \mid=1\}
$$

and call elements of U units.

(Complex) Hadamard matrices

Let $U \subset \mathbb{C}$ be the unit circle

$$
U:=\left\{e^{i \theta} \mid \theta \in \mathbb{R}\right\}=\{\alpha \in \mathbb{C}| | \alpha \mid=1\}
$$

and call elements of U units.
$H \in U^{n \times n}$ is a (complex) Hadamard matrix if $H H^{*}=n l$.

(Complex) Hadamard matrices

Let $U \subset \mathbb{C}$ be the unit circle

$$
U:=\left\{e^{i \theta} \mid \theta \in \mathbb{R}\right\}=\{\alpha \in \mathbb{C}| | \alpha \mid=1\}
$$

and call elements of U units.
$H \in U^{n \times n}$ is a (complex) Hadamard matrix if $H H^{*}=n l$.
(H^{*} is the Hermitian adjoint of H)

(Complex) Hadamard matrices

Let $U \subset \mathbb{C}$ be the unit circle

$$
U:=\left\{e^{i \theta} \mid \theta \in \mathbb{R}\right\}=\{\alpha \in \mathbb{C}| | \alpha \mid=1\}
$$

and call elements of U units.
$H \in U^{n \times n}$ is a (complex) Hadamard matrix if $H H^{*}=n l$.
(H^{*} is the Hermitian adjoint of H).
Denote the set of all such $H \in U^{n \times n}$ by \mathcal{H}_{n}.

(Complex) Hadamard matrices

Let $U \subset \mathbb{C}$ be the unit circle

$$
U:=\left\{e^{i \theta} \mid \theta \in \mathbb{R}\right\}=\{\alpha \in \mathbb{C}| | \alpha \mid=1\}
$$

and call elements of U units.
$H \in U^{n \times n}$ is a (complex) Hadamard matrix if $H H^{*}=n l$.
(H^{*} is the Hermitian adjoint of H).
Denote the set of all such $H \in U^{n \times n}$ by \mathcal{H}_{n}.
We drop the modifier "complex"

(Complex) Hadamard matrices

Let $U \subset \mathbb{C}$ be the unit circle

$$
U:=\left\{e^{i \theta} \mid \theta \in \mathbb{R}\right\}=\{\alpha \in \mathbb{C}| | \alpha \mid=1\}
$$

and call elements of U units.
$H \in U^{n \times n}$ is a (complex) Hadamard matrix if $H H^{*}=n l$.
(H^{*} is the Hermitian adjoint of H).
Denote the set of all such $H \in U^{n \times n}$ by \mathcal{H}_{n}.
We drop the modifier "complex" as this is the context of Hadamard's original (1893) investigation

(Complex) Hadamard matrices

Let $U \subset \mathbb{C}$ be the unit circle

$$
U:=\left\{e^{i \theta} \mid \theta \in \mathbb{R}\right\}=\{\alpha \in \mathbb{C}| | \alpha \mid=1\}
$$

and call elements of U units.
$H \in U^{n \times n}$ is a (complex) Hadamard matrix if $H H^{*}=n l$.
(H^{*} is the Hermitian adjoint of H).
Denote the set of all such $H \in U^{n \times n}$ by \mathcal{H}_{n}.
We drop the modifier "complex" as this is the context of Hadamard's original (1893) investigation, it is our concern here

(Complex) Hadamard matrices

Let $U \subset \mathbb{C}$ be the unit circle

$$
U:=\left\{e^{i \theta} \mid \theta \in \mathbb{R}\right\}=\{\alpha \in \mathbb{C}| | \alpha \mid=1\}
$$

and call elements of U units.
$H \in U^{n \times n}$ is a (complex) Hadamard matrix if $H H^{*}=n l$.
(H^{*} is the Hermitian adjoint of H).
Denote the set of all such $H \in U^{n \times n}$ by \mathcal{H}_{n}.
We drop the modifier "complex" as this is the context of Hadamard's original (1893) investigation, it is our concern here and also increasingly so in this field.

The Fourier matrix of order n,

(Complex) Hadamard matrices

Let $U \subset \mathbb{C}$ be the unit circle

$$
U:=\left\{e^{i \theta} \mid \theta \in \mathbb{R}\right\}=\{\alpha \in \mathbb{C}| | \alpha \mid=1\}
$$

and call elements of U units.
$H \in U^{n \times n}$ is a (complex) Hadamard matrix if $H H^{*}=n l$.
(H^{*} is the Hermitian adjoint of H).
Denote the set of all such $H \in U^{n \times n}$ by \mathcal{H}_{n}.
We drop the modifier "complex" as this is the context of Hadamard's original (1893) investigation, it is our concern here and also increasingly so in this field.

The Fourier matrix of order n,

$$
F_{n}:=\left[\gamma^{i j}\right]_{0 \leq i, j<n}, \gamma=e^{\frac{\pi i}{n}}
$$

(Complex) Hadamard matrices

Let $U \subset \mathbb{C}$ be the unit circle

$$
U:=\left\{e^{i \theta} \mid \theta \in \mathbb{R}\right\}=\{\alpha \in \mathbb{C}| | \alpha \mid=1\}
$$

and call elements of U units.
$H \in U^{n \times n}$ is a (complex) Hadamard matrix if $H H^{*}=n l$.
(H^{*} is the Hermitian adjoint of H).
Denote the set of all such $H \in U^{n \times n}$ by \mathcal{H}_{n}.
We drop the modifier "complex" as this is the context of Hadamard's original (1893) investigation, it is our concern here and also increasingly so in this field.

The Fourier matrix of order n,

$$
F_{n}:=\left[\gamma^{i j}\right]_{0 \leq i, j<n}, \gamma=e^{\frac{\pi i}{n}}
$$

is a Hadamard matrix of order n

(Complex) Hadamard matrices

Let $U \subset \mathbb{C}$ be the unit circle

$$
U:=\left\{e^{i \theta} \mid \theta \in \mathbb{R}\right\}=\{\alpha \in \mathbb{C}| | \alpha \mid=1\}
$$

and call elements of U units.
$H \in U^{n \times n}$ is a (complex) Hadamard matrix if $H H^{*}=n l$.
(H^{*} is the Hermitian adjoint of H).
Denote the set of all such $H \in U^{n \times n}$ by \mathcal{H}_{n}.
We drop the modifier "complex" as this is the context of Hadamard's original (1893) investigation, it is our concern here and also increasingly so in this field.

The Fourier matrix of order n,

$$
F_{n}:=\left[\gamma^{i j}\right]_{0 \leq i, j<n}, \gamma=e^{\frac{\pi i}{n}}
$$

is a Hadamard matrix of order n. Thus $\mathcal{H}_{n} \neq \emptyset$.

Equivalence and equivalence classes

Equivalence and equivalence classes

- If $H \in \mathcal{H}_{n}$ and $P, Q \in(U \cup\{0\})^{n \times n}$ are monomial matrices

Equivalence and equivalence classes

- If $H \in \mathcal{H}_{n}$ and $P, Q \in(U \cup\{0\})^{n \times n}$ are monomial matrices-meaning exactly one nonzero entry per row/column

Equivalence and equivalence classes

- If $H \in \mathcal{H}_{n}$ and $P, Q \in(U \cup\{0\})^{n \times n}$ are monomial matrices-meaning exactly one nonzero entry per row/column-then $K=P H Q \in \mathcal{H}_{n}$

Equivalence and equivalence classes

- If $H \in \mathcal{H}_{n}$ and $P, Q \in(U \cup\{0\})^{n \times n}$ are monomial matrices-meaning exactly one nonzero entry per row/column-then $K=P H Q \in \mathcal{H}_{n}$
- That is, \mathcal{H}_{n} is invariant under permutation of rows/columns and multiplication of rows/columns by units.

Equivalence and equivalence classes

- If $H \in \mathcal{H}_{n}$ and $P, Q \in(U \cup\{0\})^{n \times n}$ are monomial matrices-meaning exactly one nonzero entry per row/column-then $K=P H Q \in \mathcal{H}_{n}$
- That is, \mathcal{H}_{n} is invariant under permutation of rows/columns and multiplication of rows/columns by units.
- Two such H, K are said to be equivalent.

Equivalence and equivalence classes

- If $H \in \mathcal{H}_{n}$ and $P, Q \in(U \cup\{0\})^{n \times n}$ are monomial matrices-meaning exactly one nonzero entry per row/column-then $K=P H Q \in \mathcal{H}_{n}$
- That is, \mathcal{H}_{n} is invariant under permutation of rows/columns and multiplication of rows/columns by units.
- Two such H, K are said to be equivalent.
- Every $H \in \mathcal{H}_{n}$ is equivalent to one whose first row \& column are 1

Equivalence and equivalence classes

- If $H \in \mathcal{H}_{n}$ and $P, Q \in(U \cup\{0\})^{n \times n}$ are monomial matrices-meaning exactly one nonzero entry per row/column-then $K=P H Q \in \mathcal{H}_{n}$
- That is, \mathcal{H}_{n} is invariant under permutation of rows/columns and multiplication of rows/columns by units.
- Two such H, K are said to be equivalent.
- Every $H \in \mathcal{H}_{n}$ is equivalent to one whose first row \& column are 1 -that is, it is dephased.

Equivalence and equivalence classes

- If $H \in \mathcal{H}_{n}$ and $P, Q \in(U \cup\{0\})^{n \times n}$ are monomial matrices-meaning exactly one nonzero entry per row/column-then $K=P H Q \in \mathcal{H}_{n}$
- That is, \mathcal{H}_{n} is invariant under permutation of rows/columns and multiplication of rows/columns by units.
- Two such H, K are said to be equivalent.
- Every $H \in \mathcal{H}_{n}$ is equivalent to one whose first row \& column are 1 -that is, it is dephased.
- In each order $n=1,2,3$ all Hadamard matrices are equivalent.

Equivalence and equivalence classes

- If $H \in \mathcal{H}_{n}$ and $P, Q \in(U \cup\{0\})^{n \times n}$ are monomial matrices-meaning exactly one nonzero entry per row/column-then $K=P H Q \in \mathcal{H}_{n}$
- That is, \mathcal{H}_{n} is invariant under permutation of rows/columns and multiplication of rows/columns by units.
- Two such H, K are said to be equivalent.
- Every $H \in \mathcal{H}_{n}$ is equivalent to one whose first row \& column are 1 -that is, it is dephased.
- In each order $n=1,2,3$ all Hadamard matrices are equivalent.
- Sylvester (1863): The number of equivalence classes of order n is equal to the number of distinct factorizations of n.

Equivalence and equivalence classes

- If $H \in \mathcal{H}_{n}$ and $P, Q \in(U \cup\{0\})^{n \times n}$ are monomial matrices-meaning exactly one nonzero entry per row/column-then $K=P H Q \in \mathcal{H}_{n}$
- That is, \mathcal{H}_{n} is invariant under permutation of rows/columns and multiplication of rows/columns by units.
- Two such H, K are said to be equivalent.
- Every $H \in \mathcal{H}_{n}$ is equivalent to one whose first row \& column are 1 -that is, it is dephased.
- In each order $n=1,2,3$ all Hadamard matrices are equivalent.
- Sylvester (1863): The number of equivalence classes of order n is equal to the number of distinct factorizations of n.
- If true then $\mathcal{H}_{4}, \mathcal{H}_{6}$ would each consist of 2 classes.

Equivalence and equivalence classes

- If $H \in \mathcal{H}_{n}$ and $P, Q \in(U \cup\{0\})^{n \times n}$ are monomial matrices-meaning exactly one nonzero entry per row/column-then $K=P H Q \in \mathcal{H}_{n}$
- That is, \mathcal{H}_{n} is invariant under permutation of rows/columns and multiplication of rows/columns by units.
- Two such H, K are said to be equivalent.
- Every $H \in \mathcal{H}_{n}$ is equivalent to one whose first row \& column are 1 -that is, it is dephased.
- In each order $n=1,2,3$ all Hadamard matrices are equivalent.
- Sylvester (1863): The number of equivalence classes of order n is equal to the number of distinct factorizations of n.
- If true then $\mathcal{H}_{4}, \mathcal{H}_{6}$ would each consist of 2 classes.
- But Sylvester was WRONG! Very wrong ... in this claim.

Where Sylvester went wrong

Where Sylvester went wrong

Fourier matrices give dephased representatives of the unique classes of $\mathcal{H}_{2}, \mathcal{H}_{3}$

Where Sylvester went wrong

Fourier matrices give dephased representatives of the unique classes of $\mathcal{H}_{2}, \mathcal{H}_{3}$

$$
F_{2}=\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
$$

Where Sylvester went wrong

Fourier matrices give dephased representatives of the unique classes of $\mathcal{H}_{2}, \mathcal{H}_{3}$

$$
F_{2}=\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) \quad F_{3}=\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & \gamma & \gamma^{2} \\
1 & \gamma^{2} & \gamma
\end{array}\right)
$$

Where Sylvester went wrong

Fourier matrices give dephased representatives of the unique classes of $\mathcal{H}_{2}, \mathcal{H}_{3}$

$$
F_{2}=\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) \quad F_{3}=\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & \gamma & \gamma^{2} \\
1 & \gamma^{2} & \gamma
\end{array}\right), \gamma=e^{\frac{\pi}{3}}
$$

Where Sylvester went wrong

Fourier matrices give dephased representatives of the unique classes of $\mathcal{H}_{2}, \mathcal{H}_{3}$

$$
F_{2}=\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) \quad F_{3}=\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & \gamma & \gamma^{2} \\
1 & \gamma^{2} & \gamma
\end{array}\right), \gamma=e^{\frac{\pi}{3}}
$$

If $A \in \mathcal{H}_{m}, B \in \mathcal{H}_{n}$

Where Sylvester went wrong

Fourier matrices give dephased representatives of the unique classes of $\mathcal{H}_{2}, \mathcal{H}_{3}$

$$
F_{2}=\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) \quad F_{3}=\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & \gamma & \gamma^{2} \\
1 & \gamma^{2} & \gamma
\end{array}\right), \gamma=e^{\frac{\pi}{3}}
$$

If $A \in \mathcal{H}_{m}, B \in \mathcal{H}_{n}$, then $A \otimes B \in \mathcal{H}_{m n}$

Where Sylvester went wrong

Fourier matrices give dephased representatives of the unique classes of $\mathcal{H}_{2}, \mathcal{H}_{3}$

$$
F_{2}=\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) \quad F_{3}=\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & \gamma & \gamma^{2} \\
1 & \gamma^{2} & \gamma
\end{array}\right), \gamma=e^{\frac{\pi}{3}}
$$

If $A \in \mathcal{H}_{m}, B \in \mathcal{H}_{n}$, then $A \otimes B \in \mathcal{H}_{m n}$
(where $\otimes=$ Kronecker product

Where Sylvester went wrong

Fourier matrices give dephased representatives of the unique classes of $\mathcal{H}_{2}, \mathcal{H}_{3}$

$$
F_{2}=\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) \quad F_{3}=\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & \gamma & \gamma^{2} \\
1 & \gamma^{2} & \gamma
\end{array}\right), \gamma=e^{\frac{\pi}{3}}
$$

If $A \in \mathcal{H}_{m}, B \in \mathcal{H}_{n}$, then $A \otimes B \in \mathcal{H}_{m n}$
(where $\otimes=$ Kronecker product-a tensor product).

Where Sylvester went wrong

Fourier matrices give dephased representatives of the unique classes of $\mathcal{H}_{2}, \mathcal{H}_{3}$

$$
F_{2}=\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) \quad F_{3}=\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & \gamma & \gamma^{2} \\
1 & \gamma^{2} & \gamma
\end{array}\right), \gamma=e^{\frac{\pi}{3}}
$$

If $A \in \mathcal{H}_{m}, B \in \mathcal{H}_{n}$, then $A \otimes B \in \mathcal{H}_{m n}$
(where $\otimes=$ Kronecker product-a tensor product).
Sylvester surmised all classes arise from $F_{n}, n \in \mathbb{Z}^{+}$and \otimes.

Where Sylvester went wrong

Fourier matrices give dephased representatives of the unique classes of $\mathcal{H}_{2}, \mathcal{H}_{3}$

$$
F_{2}=\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) \quad F_{3}=\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & \gamma & \gamma^{2} \\
1 & \gamma^{2} & \gamma
\end{array}\right), \gamma=e^{\frac{\pi}{3}}
$$

If $A \in \mathcal{H}_{m}, B \in \mathcal{H}_{n}$, then $A \otimes B \in \mathcal{H}_{m n}$
(where $\otimes=$ Kronecker product—a tensor product).
Sylvester surmised all classes arise from $F_{n}, n \in \mathbb{Z}^{+}$and \otimes.
Thus \mathcal{H}_{4} would have dephased representatives
$F_{4}=\left(\begin{array}{cccc}1 & 1 & 1 & 1 \\ 1 & i & -1 & -i \\ 1 & -1 & 1 & -1 \\ 1 & -i & -1 & i\end{array}\right)$

Where Sylvester went wrong

Fourier matrices give dephased representatives of the unique classes of $\mathcal{H}_{2}, \mathcal{H}_{3}$

$$
F_{2}=\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) \quad F_{3}=\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & \gamma & \gamma^{2} \\
1 & \gamma^{2} & \gamma
\end{array}\right), \gamma=e^{\frac{\pi}{3}}
$$

If $A \in \mathcal{H}_{m}, B \in \mathcal{H}_{n}$, then $A \otimes B \in \mathcal{H}_{m n}$
(where $\otimes=$ Kronecker product-a tensor product).
Sylvester surmised all classes arise from $F_{n}, n \in \mathbb{Z}^{+}$and \otimes.
Thus \mathcal{H}_{4} would have dephased representatives
$F_{4}=\left(\begin{array}{cccc}1 & 1 & 1 & 1 \\ 1 & i & -1 & -i \\ 1 & -1 & 1 & -1 \\ 1 & -i & -1 & i\end{array}\right), \quad F_{2} \otimes F_{2}=\left(\begin{array}{rr|rr}1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 \\ \hline 1 & 1 & -1 & -1 \\ 1 & -1 & -1 & 1\end{array}\right)$

Hadamard's rebuttal (1893), and parameterized families

Hadamard's rebuttal (1893), and parameterized families

Hadamard produced

Hadamard's rebuttal (1893), and parameterized families

Hadamard produced

$$
H_{\lambda}=\left(\begin{array}{rr|rr}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
\hline 1 & -1 & \lambda & -\lambda \\
1 & -1 & -\lambda & \lambda
\end{array}\right), \lambda \in U
$$

Hadamard's rebuttal (1893), and parameterized families

Hadamard produced

$$
H_{\lambda}=\left(\begin{array}{rr|rr}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
\hline 1 & -1 & \lambda & -\lambda \\
1 & -1 & -\lambda & \lambda
\end{array}\right), \lambda \in U
$$

—uncountably many inequivalent dephased matrices in \mathcal{H}_{4}.

Hadamard's rebuttal (1893), and parameterized families

Hadamard produced

$$
H_{\lambda}=\left(\begin{array}{rr|rr}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
\hline 1 & -1 & \lambda & -\lambda \\
1 & -1 & -\lambda & \lambda
\end{array}\right), \lambda \in U
$$

—uncountably many inequivalent dephased matrices in \mathcal{H}_{4}.
Worse, in \mathcal{H}_{6} (RC 1991):

Hadamard's rebuttal (1893), and parameterized families

Hadamard produced

$$
H_{\lambda}=\left(\begin{array}{rr|rr}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
\hline 1 & -1 & \lambda & -\lambda \\
1 & -1 & -\lambda & \lambda
\end{array}\right), \lambda \in U
$$

—uncountably many inequivalent dephased matrices in \mathcal{H}_{4}.
Worse, in \mathcal{H}_{6} (RC 1991):

$$
H_{\alpha, \beta}=\left(\begin{array}{cc|cc|cc}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & \gamma & \gamma & \gamma^{2} & \gamma^{2} \\
1 & 1 & \gamma^{2} & \gamma^{2} & \gamma & \gamma \\
\hline 1 & -1 & \alpha & -\alpha & \beta & -\beta \\
1 & -1 & \alpha \gamma & -\alpha \gamma & \beta \gamma^{2} & -\beta \gamma^{2} \\
1 & -1 & \alpha \gamma^{2} & -\alpha \gamma^{2} & \beta \gamma & -\beta \gamma
\end{array}\right), \alpha, \beta \in U, \gamma=e^{\frac{\pi i}{3}}
$$

Affine families

Unit parameters like λ, α, β above give arrays that cross equivalence classes, write such an array $H \in \mathcal{H}_{n}$ as follows.

Affine families

Unit parameters like λ, α, β above give arrays that cross equivalence classes, write such an array $H \in \mathcal{H}_{n}$ as follows.

$$
H=\left(\begin{array}{cccc}
h_{00} e^{i r_{00}} & h_{01} e^{i r_{01}} & \cdots & h_{0(n-1} e^{i r_{0(n-1)}} \\
h_{10} e^{i r_{10}} & h_{11} e^{i r_{11}} & \ddots & h_{1(n-1)} e^{i r_{1(n-1)}} \\
\vdots & \ddots & \ddots & \vdots \\
h_{(n-1) 0} e^{i r_{(n-1) 0}} & h_{(n-1) 1} e^{i r_{(n-1) 1}} & \cdots & h_{(n-1)(n-1)} e^{i r_{(n-1)(n-1)}}
\end{array}\right)
$$

Affine families

Unit parameters like λ, α, β above give arrays that cross equivalence classes, write such an array $H \in \mathcal{H}_{n}$ as follows.

$$
H=\left(\begin{array}{cccc}
h_{00} e^{i r_{00}} & h_{01} e^{i r_{01}} & \cdots & h_{0(n-1} e^{i r_{0(n-1)}} \\
h_{10} e^{i r_{10}} & h_{11} e^{i r_{11}} & \ddots & h_{1(n-1)} e^{i r_{1(n-1)}} \\
\vdots & \ddots & \ddots & \vdots \\
h_{(n-1) 0} e^{i r_{(n-1) 0}} & h_{(n-1) 1} e^{i r_{(n-1) 1}} & \cdots & h_{(n-1)(n-1)} e^{i r_{(n-1)(n-1)}}
\end{array}\right)
$$

First H is dephased (One can always add $2 n-1$ parameters by multiplying rows \& columns by unit variables)

Affine families

Unit parameters like λ, α, β above give arrays that cross equivalence classes, write such an array $H \in \mathcal{H}_{n}$ as follows.

$$
H=\left(\begin{array}{cccc}
h_{00} e^{i r_{00}} & h_{01} e^{i r_{01}} & \cdots & h_{0(n-1} e^{i r_{0(n-1)}} \\
h_{10} e^{i r_{10}} & h_{11} e^{i r_{11}} & \ddots & h_{1(n-1)} e^{i r_{1(n-1)}} \\
\vdots & \ddots & \ddots & \vdots \\
h_{(n-1) 0} e^{i r_{(n-1) 0}} & h_{(n-1) 1} e^{i r_{(n-1) 1}} & \cdots & h_{(n-1)(n-1)} e^{i r_{(n-1)(n-1)}}
\end{array}\right)
$$

First H is dephased (One can always add $2 n-1$ parameters by multiplying rows \& columns by unit variables). So $h_{i j}=1$ and $r_{i j}=0$ for $i=0$ or $j=0$ (first row/column).

Affine families

Unit parameters like λ, α, β above give arrays that cross equivalence classes, write such an array $H \in \mathcal{H}_{n}$ as follows.

$$
H=\left(\begin{array}{cccc}
h_{00} e^{i r_{00}} & h_{01} e^{i r_{01}} & \cdots & h_{0(n-1} e^{i r_{0(n-1)}} \\
h_{10} e^{i r_{10}} & h_{11} e^{i r_{11}} & \ddots & h_{1(n-1)} e^{i r_{1(n-1)}} \\
\vdots & \ddots & \ddots & \vdots \\
h_{(n-1) 0} e^{i r_{(n-1) 0}} & h_{(n-1) 1} e^{i r_{(n-1) 1}} & \cdots & h_{(n-1)(n-1)} e^{i r_{(n-1)(n-1)}}
\end{array}\right)
$$

First H is dephased (One can always add $2 n-1$ parameters by multiplying rows \& columns by unit variables). So $h_{i j}=1$ and $r_{i j}=0$ for $i=0$ or $j=0$ (first row/column).
$h_{i j} \in U$

Affine families

Unit parameters like λ, α, β above give arrays that cross equivalence classes, write such an array $H \in \mathcal{H}_{n}$ as follows.

$$
H=\left(\begin{array}{cccc}
h_{00} e^{i r_{00}} & h_{01} e^{i r_{01}} & \cdots & h_{0(n-1} e^{i r_{0(n-1)}} \\
h_{10} e^{i r_{10}} & h_{11} e^{i r_{11}} & \ddots & h_{1(n-1)} e^{i r_{1(n-1)}} \\
\vdots & \ddots & \ddots & \vdots \\
h_{(n-1) 0} e^{i r_{(n-1) 0}} & h_{(n-1) 1} e^{i r_{(n-1) 1}} & \cdots & h_{(n-1)(n-1)} e^{i r_{(n-1)(n-1)}}
\end{array}\right)
$$

First H is dephased (One can always add $2 n-1$ parameters by multiplying rows \& columns by unit variables). So $h_{i j}=1$ and $r_{i j}=0$ for $i=0$ or $j=0$ (first row/column).
$h_{i j} \in U$. Taking all $r_{i j}=0$ must give $H_{0} \in \mathcal{H}_{n}$

Affine families

Unit parameters like λ, α, β above give arrays that cross equivalence classes, write such an array $H \in \mathcal{H}_{n}$ as follows.

$$
H=\left(\begin{array}{cccc}
h_{00} e^{i r_{00}} & h_{01} e^{i r_{01}} & \cdots & h_{0(n-1} e^{i r_{0(n-1)}} \\
h_{10} e^{i r_{10}} & h_{11} e^{i r_{11}} & \ddots & h_{1(n-1)} e^{i r_{1(n-1)}} \\
\vdots & \ddots & \ddots & \vdots \\
h_{(n-1) 0} e^{i r_{(n-1) 0}} & h_{(n-1) 1} e^{i r_{(n-1) 1}} & \cdots & h_{(n-1)(n-1)} e^{i r_{(n-1)(n-1)}}
\end{array}\right)
$$

First H is dephased (One can always add $2 n-1$ parameters by multiplying rows \& columns by unit variables). So $h_{i j}=1$ and $r_{i j}=0$ for $i=0$ or $j=0$ (first row/column).
$h_{i j} \in U$. Taking all $r_{i j}=0$ must give $H_{0} \in \mathcal{H}_{n}$. The factors $x_{i j}=e^{i r_{i j}}$ are regarded as variables, $0<i, j<n$.

Families as solutions

The variables $r_{i j}$ make $H \in \mathcal{H}_{n}$ if

$$
\sum_{k=0}^{n-1} h_{i k} \overline{h_{j k}} e^{i\left(r_{i k}-r_{j k}\right)}=0
$$

for all $0<i<j<n$.

Families as solutions

The variables $r_{i j}$ make $H \in \mathcal{H}_{n}$ if

$$
\sum_{k=0}^{n-1} h_{i k} \overline{h_{j k}} e^{i\left(r_{i k}-r_{j k}\right)}=0
$$

for all $0<i<j<n$.
Roughly: a solution set to this system of $n^{2}-n$ equations in $(n-1)^{2}$ variables $r_{i j}, 0<i, j<n$, in $\mathbb{R}^{(n-1)^{2}}$ containing $(0,0, \ldots, 0)$

Families as solutions

The variables $r_{i j}$ make $H \in \mathcal{H}_{n}$ if

$$
\sum_{k=0}^{n-1} h_{i k} \overline{h_{j k}} e^{i\left(r_{i k}-r_{j k}\right)}=0
$$

for all $0<i<j<n$.
Roughly: a solution set to this system of $n^{2}-n$ equations in $(n-1)^{2}$ variables $r_{i j}, 0<i, j<n$, in $\mathbb{R}^{(n-1)^{2}}$ containing $(0,0, \ldots, 0)$ and forming a manifold of dimension d gives a d-parameter family containing H_{0}.

Families as solutions

The variables $r_{i j}$ make $H \in \mathcal{H}_{n}$ if

$$
\sum_{k=0}^{n-1} h_{i k} \overline{h_{j k}} e^{i\left(r_{i k}-r_{j k}\right)}=0
$$

for all $0<i<j<n$.
Roughly: a solution set to this system of $n^{2}-n$ equations in $(n-1)^{2}$ variables $r_{i j}, 0<i, j<n$, in $\mathbb{R}^{(n-1)^{2}}$ containing $(0,0, \ldots, 0)$ and forming a manifold of dimension d gives a d-parameter family containing H_{0}.

That family is affine if it is a d-dimensional subspace of $R^{(n-1)^{2}}$.

Families as solutions

The variables $r_{i j}$ make $H \in \mathcal{H}_{n}$ if

$$
\sum_{k=0}^{n-1} h_{i k} \overline{h_{j k}} e^{i\left(r_{i k}-r_{j k}\right)}=0
$$

for all $0<i<j<n$.
Roughly: a solution set to this system of $n^{2}-n$ equations in $(n-1)^{2}$ variables $r_{i j}, 0<i, j<n$, in $\mathbb{R}^{(n-1)^{2}}$ containing $(0,0, \ldots, 0)$ and forming a manifold of dimension d gives a d-parameter family containing H_{0}.

That family is affine if it is a d-dimensional subspace of $R^{(n-1)^{2}}$.
And roughly speaking such a family can be expressed as an array with d free multiplicative factors $x=e^{a i} \in U$ among the entries.

Weaving Hadamard matrices

RC 1991: method of weaving (generalization of the tensor product)

Weaving Hadamard matrices

RC 1991: method of weaving (generalization of the tensor product)

- builds special matrices out of smaller precursors

Weaving Hadamard matrices

RC 1991: method of weaving (generalization of the tensor product)

- builds special matrices out of smaller precursors
- preserves, introduces and controls structure/properties

Weaving Hadamard matrices

RC 1991: method of weaving (generalization of the tensor product)

- builds special matrices out of smaller precursors
- preserves, introduces and controls structure/properties EG symmetry, regularity, orthogonality.

Weaving Hadamard matrices

RC 1991: method of weaving (generalization of the tensor product)

- builds special matrices out of smaller precursors
- preserves, introduces and controls structure/properties EG symmetry, regularity, orthogonality.
- Weaving Hadamard matrices is an easy special case.

Weaving Hadamard matrices

RC 1991: method of weaving (generalization of the tensor product)

- builds special matrices out of smaller precursors
- preserves, introduces and controls structure/properties EG symmetry, regularity, orthogonality.
- Weaving Hadamard matrices is an easy special case.

Given (warp and woof matrices)
$A_{1}, A_{2}, \ldots, A_{m} \in \mathcal{H}_{n} \quad$ and $\quad B_{1}, B_{2}, \ldots, B_{n} \in \mathcal{H}_{m}$,
form $m \times n$ array of rank-one blocks $C_{i j} R_{i j}$,

Weaving Hadamard matrices

RC 1991: method of weaving (generalization of the tensor product)

- builds special matrices out of smaller precursors
- preserves, introduces and controls structure/properties EG symmetry, regularity, orthogonality.
- Weaving Hadamard matrices is an easy special case.

Given (warp and woof matrices)

$$
A_{1}, A_{2}, \ldots, A_{m} \in \mathcal{H}_{n} \quad \text { and } \quad B_{1}, B_{2}, \ldots, B_{n} \in \mathcal{H}_{m},
$$

form $m \times n$ array of rank-one blocks $C_{i j} R_{i j}$,

$$
W=\left[\begin{array}{c|c|c}
C_{11} R_{11} & \cdots & C_{1 n} R_{1 n} \\
\hline \vdots & \ddots & \vdots \\
\hline C_{m 1} R_{m 1} & \cdots & C_{m n} R_{m n}
\end{array}\right]
$$

Weaving Hadamard matrices

RC 1991: method of weaving (generalization of the tensor product)

- builds special matrices out of smaller precursors
- preserves, introduces and controls structure/properties EG symmetry, regularity, orthogonality.
- Weaving Hadamard matrices is an easy special case.

Given (warp and woof matrices)

$$
A_{1}, A_{2}, \ldots, A_{m} \in \mathcal{H}_{n} \quad \text { and } \quad B_{1}, B_{2}, \ldots, B_{n} \in \mathcal{H}_{m}
$$

form $m \times n$ array of rank-one blocks $C_{i j} R_{i j}$,

$$
W=\left[\begin{array}{c|c|c}
C_{11} R_{11} & \cdots & C_{1 n} R_{1 n} \\
\hline \vdots & \ddots & \vdots \\
\hline C_{m 1} R_{m 1} & \cdots & C_{m n} R_{m n}
\end{array}\right]
$$

where $C_{i j}$ is the j th column of A_{i}

Weaving Hadamard matrices

RC 1991: method of weaving (generalization of the tensor product)

- builds special matrices out of smaller precursors
- preserves, introduces and controls structure/properties EG symmetry, regularity, orthogonality.
- Weaving Hadamard matrices is an easy special case.

Given (warp and woof matrices)

$$
A_{1}, A_{2}, \ldots, A_{m} \in \mathcal{H}_{n} \quad \text { and } \quad B_{1}, B_{2}, \ldots, B_{n} \in \mathcal{H}_{m}
$$

form $m \times n$ array of rank-one blocks $C_{i j} R_{i j}$,

$$
W=\left[\begin{array}{c|c|c}
C_{11} R_{11} & \cdots & C_{1 n} R_{1 n} \\
\hline \vdots & \ddots & \vdots \\
\hline C_{m 1} R_{m 1} & \cdots & C_{m n} R_{m n}
\end{array}\right]
$$

where $C_{i j}$ is the j th column of A_{i} and $R_{i j}$ is the i th row of B_{j}.

Weaving Hadamard matrices

RC 1991: method of weaving (generalization of the tensor product)

- builds special matrices out of smaller precursors
- preserves, introduces and controls structure/properties EG symmetry, regularity, orthogonality.
- Weaving Hadamard matrices is an easy special case.

Given (warp and woof matrices)

$$
A_{1}, A_{2}, \ldots, A_{m} \in \mathcal{H}_{n} \quad \text { and } \quad B_{1}, B_{2}, \ldots, B_{n} \in \mathcal{H}_{m},
$$

form $m \times n$ array of rank-one blocks $C_{i j} R_{i j}$,

$$
W=\left[\begin{array}{c|c|c}
C_{11} R_{11} & \cdots & C_{1 n} R_{1 n} \\
\hline \vdots & \ddots & \vdots \\
\hline C_{m 1} R_{m 1} & \cdots & C_{m n} R_{m n}
\end{array}\right]
$$

where $C_{i j}$ is the j th column of A_{i} and $R_{i j}$ is the i th row of B_{j}.
Then $W \in \mathcal{H}_{m n}$ (easy exercise).

Adding parameters when weaving

Consider woven Hadamard matrix W,

$$
A_{1}, A_{2}, \ldots, A_{m} \in \mathcal{H}_{n} \quad \text { and } \quad B_{1}, B_{2}, \ldots, B_{n} \in \mathcal{H}_{m},
$$

$$
W=\left[\begin{array}{c|c|c}
C_{11} R_{11} & \cdots & C_{1 n} R_{1 n} \\
\hline \vdots & \ddots & \vdots \\
\hline C_{m 1} R_{m 1} & \cdots & C_{m n} R_{m n}
\end{array}\right]
$$

Adding parameters when weaving

Consider woven Hadamard matrix W,

$$
A_{1}, A_{2}, \ldots, A_{m} \in \mathcal{H}_{n} \quad \text { and } \quad B_{1}, B_{2}, \ldots, B_{n} \in \mathcal{H}_{m},
$$

$$
W=\left[\begin{array}{c|c|c}
C_{11} R_{11} & \cdots & C_{1 n} R_{1 n} \\
\hline \vdots & \ddots & \vdots \\
\hline C_{m 1} R_{m 1} & \cdots & C_{m n} R_{m n}
\end{array}\right]
$$

- Let $\lambda \in U$

Adding parameters when weaving

Consider woven Hadamard matrix W,

$$
A_{1}, A_{2}, \ldots, A_{m} \in \mathcal{H}_{n} \quad \text { and } \quad B_{1}, B_{2}, \ldots, B_{n} \in \mathcal{H}_{m}
$$

$$
W=\left[\begin{array}{c|c|c}
C_{11} R_{11} & \cdots & C_{1 n} R_{1 n} \\
\hline \vdots & \ddots & \vdots \\
\hline C_{m 1} R_{m 1} & \cdots & C_{m n} R_{m n}
\end{array}\right]
$$

- Let $\lambda \in U$
- Multiplying block $C_{i j} R_{i j}$ by λ amounts to multiplying row i of B_{j}

Adding parameters when weaving

Consider woven Hadamard matrix W,

$$
A_{1}, A_{2}, \ldots, A_{m} \in \mathcal{H}_{n} \quad \text { and } \quad B_{1}, B_{2}, \ldots, B_{n} \in \mathcal{H}_{m}
$$

$$
W=\left[\begin{array}{c|c|c}
C_{11} R_{11} & \cdots & C_{1 n} R_{1 n} \\
\hline \vdots & \ddots & \vdots \\
\hline C_{m 1} R_{m 1} & \cdots & C_{m n} R_{m n}
\end{array}\right]
$$

- Let $\lambda \in U$
- Multiplying block $C_{i j} R_{i j}$ by λ amounts to multiplying row i of B_{j} or column j of A_{i} by λ.

Adding parameters when weaving

Consider woven Hadamard matrix W,

$$
A_{1}, A_{2}, \ldots, A_{m} \in \mathcal{H}_{n} \quad \text { and } \quad B_{1}, B_{2}, \ldots, B_{n} \in \mathcal{H}_{m}
$$

$$
W=\left[\begin{array}{c|c|c}
C_{11} R_{11} & \cdots & C_{1 n} R_{1 n} \\
\hline \vdots & \ddots & \vdots \\
\hline C_{m 1} R_{m 1} & \cdots & C_{m n} R_{m n}
\end{array}\right]
$$

- Let $\lambda \in U$
- Multiplying block $C_{i j} R_{i j}$ by λ amounts to multiplying row i of B_{j} or column j of A_{i} by λ.
- $\mathcal{H}_{m}, \mathcal{H}_{n}$ are invariant under this operation, so the resulting matrix is also in $\mathcal{H}_{m n}$.

Adding parameters when weaving

Consider woven Hadamard matrix W,

$$
A_{1}, A_{2}, \ldots, A_{m} \in \mathcal{H}_{n} \quad \text { and } \quad B_{1}, B_{2}, \ldots, B_{n} \in \mathcal{H}_{m}
$$

$$
W=\left[\begin{array}{c|c|c}
C_{11} R_{11} & \cdots & C_{1 n} R_{1 n} \\
\hline \vdots & \ddots & \vdots \\
\hline C_{m 1} R_{m 1} & \cdots & C_{m n} R_{m n}
\end{array}\right]
$$

- Let $\lambda \in U$
- Multiplying block $C_{i j} R_{i j}$ by λ amounts to multiplying row i of B_{j} or column j of A_{i} by λ.
- $\mathcal{H}_{m}, \mathcal{H}_{n}$ are invariant under this operation, so the resulting matrix is also in $\mathcal{H}_{m n}$.
- Multiplying blocks by independent scalars we may introduce $m n$ parameters

Adding parameters when weaving

Consider woven Hadamard matrix W,

$$
A_{1}, A_{2}, \ldots, A_{m} \in \mathcal{H}_{n} \quad \text { and } \quad B_{1}, B_{2}, \ldots, B_{n} \in \mathcal{H}_{m}
$$

$$
W=\left[\begin{array}{c|c|c}
C_{11} R_{11} & \cdots & C_{1 n} R_{1 n} \\
\hline \vdots & \ddots & \vdots \\
\hline C_{m 1} R_{m 1} & \cdots & C_{m n} R_{m n}
\end{array}\right]
$$

- Let $\lambda \in U$
- Multiplying block $C_{i j} R_{i j}$ by λ amounts to multiplying row i of B_{j} or column j of A_{i} by λ.
- $\mathcal{H}_{m}, \mathcal{H}_{n}$ are invariant under this operation, so the resulting matrix is also in $\mathcal{H}_{m n}$.
- Multiplying blocks by independent scalars we may introduce $m n$ parameters. But only $(m-1)(n-1)$ when dephased.

Hadamard's 4×4 array

In general any array of rank 1 blocks may be factored as a weave.

Hadamard's 4×4 array

In general any array of rank 1 blocks may be factored as a weave. Hadamard's array may be obtained in precisely this fashion.

Hadamard's 4×4 array

In general any array of rank 1 blocks may be factored as a weave. Hadamard's array may be obtained in precisely this fashion. We factor it explicitly.

Hadamard's 4×4 array

In general any array of rank 1 blocks may be factored as a weave. Hadamard's array may be obtained in precisely this fashion. We factor it explicitly.

$$
H_{\lambda}=\left(\begin{array}{rr|rr}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
\hline 1 & -1 & \lambda & -\lambda \\
1 & -1 & -\lambda & \lambda
\end{array}\right)=\left(\begin{array}{l}
\binom{1}{1}\left(\begin{array}{ll}
1 & 1
\end{array}\right)
\end{array} \begin{array}{c}
\binom{1}{-1}\left(\begin{array}{ll}
1 & 1
\end{array}\right) \\
\hline\binom{1}{1}\left(\begin{array}{ll}
1 & -1
\end{array}\right)
\end{array}\binom{1}{-1}\left(\begin{array}{ll}
\lambda & -\lambda
\end{array}\right) .\right.
$$

Hadamard's 4×4 array

In general any array of rank 1 blocks may be factored as a weave. Hadamard's array may be obtained in precisely this fashion. We factor it explicitly.

$$
H_{\lambda}=\left(\begin{array}{rr|rr}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
\hline 1 & -1 & \lambda & -\lambda \\
1 & -1 & -\lambda & \lambda
\end{array}\right)=\left(\begin{array}{c}
\binom{1}{1}\left(\begin{array}{ll}
1 & 1
\end{array}\right)
\end{array} \begin{array}{c}
\binom{1}{-1}\left(\begin{array}{ll}
1 & 1
\end{array}\right) \\
\hline\binom{1}{1}\left(\begin{array}{ll}
1 & -1
\end{array}\right)
\end{array}\binom{1}{-1}\left(\begin{array}{ll}
\lambda & -\lambda
\end{array}\right) .\right.
$$

$$
A_{1}=A_{2}=\left(\begin{array}{c|c}
1 & 1 \\
1 & -1
\end{array}\right), B_{1}=\left(\begin{array}{cc}
1 & 1 \\
\hline 1 & -1
\end{array}\right)
$$

Hadamard's 4×4 array

In general any array of rank 1 blocks may be factored as a weave. Hadamard's array may be obtained in precisely this fashion. We factor it explicitly.

$$
H_{\lambda}=\left(\begin{array}{rr|rr}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
\hline 1 & -1 & \lambda & -\lambda \\
1 & -1 & -\lambda & \lambda
\end{array}\right)=\left(\begin{array}{c}
\binom{1}{1}\left(\begin{array}{ll}
1 & 1
\end{array}\right)
\end{array} \begin{array}{c}
\binom{1}{-1}\left(\begin{array}{ll}
1 & 1
\end{array}\right) \\
\hline\binom{1}{1}\left(\begin{array}{ll}
1 & -1
\end{array}\right)
\end{array}\binom{1}{-1}\left(\begin{array}{ll}
\lambda & -\lambda
\end{array}\right) .\right.
$$

$$
A_{1}=A_{2}=\left(\begin{array}{c|c}
1 & 1 \\
1 & -1
\end{array}\right), B_{1}=\left(\begin{array}{cc}
1 & 1 \\
\hline 1 & -1
\end{array}\right) \text { and } B_{2}=\left(\begin{array}{cc}
1 & 1 \\
\hline \lambda & -\lambda
\end{array}\right)
$$

Hadamard's 4×4 array

In general any array of rank 1 blocks may be factored as a weave. Hadamard's array may be obtained in precisely this fashion. We factor it explicitly.

$$
H_{\lambda}=\left(\begin{array}{rr|rr}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
\hline 1 & -1 & \lambda & -\lambda \\
1 & -1 & -\lambda & \lambda
\end{array}\right)=\left(\begin{array}{c}
\binom{1}{1}\left(\begin{array}{ll}
1 & 1
\end{array}\right)
\end{array} \begin{array}{c}
\binom{1}{-1}\left(\begin{array}{ll}
1 & 1
\end{array}\right) \\
\hline\binom{1}{1}\left(\begin{array}{ll}
1 & -1
\end{array}\right)
\end{array}\binom{1}{-1}\left(\begin{array}{ll}
\lambda & -\lambda
\end{array}\right) .\right.
$$

$$
A_{1}=A_{2}=\left(\begin{array}{c|c}
1 & 1 \\
1 & -1
\end{array}\right), B_{1}=\left(\begin{array}{cc}
1 & 1 \\
\hline 1 & -1
\end{array}\right) \text { and } B_{2}=\left(\begin{array}{cc}
1 & 1 \\
\hline \lambda & -\lambda
\end{array}\right)
$$

(Alternatively we could take $A_{1}=B_{1}=B_{2}$ and the second column of A_{2} multiplied by λ.)

The two-parameter family in \mathcal{H}_{6}

The two-parameter family in \mathcal{H}_{6}

$$
\left(\alpha, \beta \in U, \gamma=e^{\frac{\pi i}{3}}\right) \quad H_{\alpha, \beta}=\left(\begin{array}{rr|rr|rr}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & \gamma & \gamma & \gamma^{2} & \gamma^{2} \\
1 & 1 & \gamma^{2} & \gamma^{2} & \gamma & \gamma \\
\hline 1 & -1 & \alpha & -\alpha & \beta & -\beta \\
1 & -1 & \alpha \gamma & -\alpha \gamma & \beta \gamma^{2} & -\beta \gamma^{2} \\
1 & -1 & \alpha \gamma^{2} & -\alpha \gamma^{2} & \beta \gamma & -\beta \gamma
\end{array}\right)
$$

The two-parameter family in \mathcal{H}_{6}

$$
\left.\begin{array}{rl}
(\alpha, \beta & \left.\in U, \gamma=e^{\frac{\pi i}{3}}\right) \\
H_{\alpha, \beta}=\left(\begin{array}{rr|rr|rr}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & \gamma & \gamma & \gamma^{2} & \gamma^{2} \\
1 & 1 & \gamma^{2} & \gamma^{2} & \gamma & \gamma \\
\hline 1 & -1 & \alpha & -\alpha & \beta & -\beta \\
1 & -1 & \alpha \gamma & -\alpha \gamma & \beta \gamma^{2} & -\beta \gamma^{2} \\
1 & -1 & \alpha \gamma^{2} & -\alpha \gamma^{2} & \beta \gamma & -\beta \gamma
\end{array}\right) \\
& =\left(\begin{array}{ll}
\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)\left(\begin{array}{ll}
1 & 1
\end{array}\right) & \left(\begin{array}{c}
1 \\
\gamma \\
\gamma^{2}
\end{array}\right)\left(\begin{array}{ll|l}
1 & 1
\end{array}\right) \\
\hline\left(\begin{array}{ll}
1 \\
1 \\
1
\end{array}\right)\left(\begin{array}{ll}
1 & -1
\end{array}\right) & \left(\begin{array}{c}
1 \\
\gamma^{2} \\
\gamma
\end{array}\right)\left(\begin{array}{ll}
1 & 1
\end{array}\right) \\
\gamma^{2}
\end{array}\right)\left(\begin{array}{ll}
\alpha & -\alpha
\end{array}\right)
\end{array}\left(\begin{array}{c}
1 \\
\gamma^{2} \\
\gamma
\end{array}\right)\left(\begin{array}{ll}
\beta & -\beta
\end{array}\right) . \begin{array}{ll}
\end{array}\right)
$$

The two-parameter family in \mathcal{H}_{6}

$$
\begin{aligned}
& \left(\alpha, \beta \in U, \gamma=e^{\frac{\pi i}{3}}\right) \\
& H_{\alpha, \beta}=\left(\begin{array}{rr|rr|rr}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & \gamma & \gamma & \gamma^{2} & \gamma^{2} \\
1 & 1 & \gamma^{2} & \gamma^{2} & \gamma & \gamma \\
\hline 1 & -1 & \alpha & -\alpha & \beta & -\beta \\
1 & -1 & \alpha \gamma & -\alpha \gamma & \beta \gamma^{2} & -\beta \gamma^{2} \\
1 & -1 & \alpha \gamma^{2} & -\alpha \gamma^{2} & \beta \gamma & -\beta \gamma
\end{array}\right) \\
& =\left(\begin{array}{c|l|l}
\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)\left(\begin{array}{ll}
1 & 1
\end{array}\right) & \left(\begin{array}{l}
1 \\
\gamma \\
\gamma^{2}
\end{array}\right)\left(\begin{array}{ll}
1 & 1
\end{array}\right) & \left(\begin{array}{c}
1 \\
\gamma^{2} \\
\gamma
\end{array}\right)\left(\begin{array}{ll}
1 & 1
\end{array}\right) \\
\hline\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)\left(\begin{array}{ll}
1 & -1
\end{array}\right) & \left(\begin{array}{c}
1 \\
\gamma \\
\gamma^{2}
\end{array}\right)\left(\begin{array}{ll}
\alpha & -\alpha
\end{array}\right) & \left(\begin{array}{c}
1 \\
\gamma^{2} \\
\gamma
\end{array}\right)\left(\begin{array}{ll}
\beta & -\beta
\end{array}\right)
\end{array}\right) \\
& A_{1}=A_{2}=\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & \gamma & \gamma^{2} \\
1 & \gamma^{2} & \gamma
\end{array}\right)
\end{aligned}
$$

The two-parameter family in \mathcal{H}_{6}

$$
\begin{aligned}
& \left(\alpha, \beta \in U, \gamma=e^{\frac{\pi i}{3}}\right) \\
& H_{\alpha, \beta}=\left(\begin{array}{rr|rr|rr}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & \gamma & \gamma & \gamma^{2} & \gamma^{2} \\
1 & 1 & \gamma^{2} & \gamma^{2} & \gamma & \gamma \\
\hline 1 & -1 & \alpha & -\alpha & \beta & -\beta \\
1 & -1 & \alpha \gamma & -\alpha \gamma & \beta \gamma^{2} & -\beta \gamma^{2} \\
1 & -1 & \alpha \gamma^{2} & -\alpha \gamma^{2} & \beta \gamma & -\beta \gamma
\end{array}\right) \\
& =\left(\begin{array}{c|l|l}
\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)\left(\begin{array}{ll}
1 & 1
\end{array}\right) & \left(\begin{array}{l}
1 \\
\gamma \\
\gamma^{2}
\end{array}\right)\left(\begin{array}{ll}
1 & 1
\end{array}\right) & \left(\begin{array}{c}
1 \\
\gamma^{2} \\
\gamma
\end{array}\right)\left(\begin{array}{ll}
1 & 1
\end{array}\right) \\
\hline\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)\left(\begin{array}{ll}
1 & -1
\end{array}\right) & \left(\begin{array}{c}
1 \\
\gamma \\
\gamma^{2}
\end{array}\right)\left(\begin{array}{ll}
\alpha & -\alpha
\end{array}\right) & \left(\begin{array}{c}
1 \\
\gamma^{2} \\
\gamma
\end{array}\right)\left(\begin{array}{ll}
\beta & -\beta
\end{array}\right)
\end{array}\right) \\
& A_{1}=A_{2}=\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & \gamma & \gamma^{2} \\
1 & \gamma^{2} & \gamma
\end{array}\right), B_{1}=\left(\begin{array}{ll}
1 & 1 \\
1 & -1
\end{array}\right)
\end{aligned}
$$

The two-parameter family in \mathcal{H}_{6}

$$
\begin{aligned}
& \left(\alpha, \beta \in U, \gamma=e^{\frac{\pi i}{3}}\right) \\
& H_{\alpha, \beta}=\left(\begin{array}{rr|rr|rr}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & \gamma & \gamma & \gamma^{2} & \gamma^{2} \\
1 & 1 & \gamma^{2} & \gamma^{2} & \gamma & \gamma \\
\hline 1 & -1 & \alpha & -\alpha & \beta & -\beta \\
1 & -1 & \alpha \gamma & -\alpha \gamma & \beta \gamma^{2} & -\beta \gamma^{2} \\
1 & -1 & \alpha \gamma^{2} & -\alpha \gamma^{2} & \beta \gamma & -\beta \gamma
\end{array}\right) \\
& =\left(\begin{array}{c|l|l}
\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)\left(\begin{array}{ll}
1 & 1
\end{array}\right) & \left(\begin{array}{c}
1 \\
\gamma \\
\gamma^{2}
\end{array}\right)\left(\begin{array}{ll}
1 & 1
\end{array}\right) & \left(\begin{array}{c}
1 \\
\gamma^{2} \\
\gamma
\end{array}\right)\left(\begin{array}{ll}
1 & 1
\end{array}\right) \\
\hline\left(\begin{array}{ll}
1 \\
1 \\
1
\end{array}\right)\left(\begin{array}{ll}
1 & -1
\end{array}\right) & \left(\begin{array}{c}
1 \\
\gamma \\
\gamma^{2}
\end{array}\right)\left(\begin{array}{ll}
\alpha & -\alpha
\end{array}\right) & \left(\begin{array}{c}
1 \\
\gamma^{2} \\
\gamma
\end{array}\right)\left(\begin{array}{ll}
\beta & -\beta
\end{array}\right)
\end{array}\right) \\
& A_{1}=A_{2}=\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & \gamma & \gamma^{2} \\
1 & \gamma^{2} & \gamma
\end{array}\right), B_{1}=\left(\begin{array}{ll}
\frac{1}{1} & 1 \\
1 & -1
\end{array}\right), B_{2}=\left(\begin{array}{ll}
\frac{1}{\alpha} & 1 \\
\alpha-\alpha
\end{array}\right)
\end{aligned}
$$

The two-parameter family in \mathcal{H}_{6}

$$
\begin{aligned}
& \left(\alpha, \beta \in U, \gamma=e^{\frac{\pi i}{3}}\right) \\
& H_{\alpha, \beta}=\left(\begin{array}{rr|rr|rr}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & \gamma & \gamma & \gamma^{2} & \gamma^{2} \\
1 & 1 & \gamma^{2} & \gamma^{2} & \gamma & \gamma \\
\hline 1 & -1 & \alpha & -\alpha & \beta & -\beta \\
1 & -1 & \alpha \gamma & -\alpha \gamma & \beta \gamma^{2} & -\beta \gamma^{2} \\
1 & -1 & \alpha \gamma^{2} & -\alpha \gamma^{2} & \beta \gamma & -\beta \gamma
\end{array}\right) \\
& =\left(\begin{array}{c|l|l}
\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)\left(\begin{array}{ll}
1 & 1
\end{array}\right) & \left(\begin{array}{c}
1 \\
\gamma \\
\gamma^{2}
\end{array}\right)\left(\begin{array}{ll}
1 & 1
\end{array}\right) & \left(\begin{array}{c}
1 \\
\gamma^{2} \\
\gamma
\end{array}\right)\left(\begin{array}{ll}
1 & 1
\end{array}\right) \\
\hline\left(\begin{array}{ll}
1 \\
1 \\
1
\end{array}\right)\left(\begin{array}{ll}
1 & -1
\end{array}\right) & \left(\begin{array}{c}
1 \\
\gamma \\
\gamma^{2}
\end{array}\right)\left(\begin{array}{ll}
\alpha & -\alpha
\end{array}\right) & \left(\begin{array}{c}
1 \\
\gamma^{2} \\
\gamma
\end{array}\right)\left(\begin{array}{ll}
\beta & -\beta
\end{array}\right)
\end{array}\right) \\
& A_{1}=A_{2}=\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & \gamma & \gamma^{2} \\
1 & \gamma^{2} & \gamma
\end{array}\right), B_{1}=\left(\begin{array}{ll}
1 & 1 \\
1 & -1
\end{array}\right), B_{2}=\left(\begin{array}{ll}
\frac{1}{\alpha} & 1 \\
\alpha-\alpha
\end{array}\right), B_{3}=\left(\begin{array}{ll}
\frac{1}{\beta}-\beta
\end{array}\right)
\end{aligned}
$$

Parameters from the component (warp and woof) matrices

Warp \& woof matrices are unrelated

Parameters from the component (warp and woof) matrices

Warp \& woof matrices are unrelated. So each may carry into the weaving construction its own independent parameters.

Parameters from the component (warp and woof) matrices

Warp \& woof matrices are unrelated. So each may carry into the weaving construction its own independent parameters.

Use warp matrices $A_{1}, \ldots A_{m}$ with a_{1}, \ldots, a_{m} parameters

Parameters from the component (warp and woof) matrices

Warp \& woof matrices are unrelated. So each may carry into the weaving construction its own independent parameters.

Use warp matrices $A_{1}, \ldots A_{m}$ with a_{1}, \ldots, a_{m} parameters and woof matrices $B_{1}, \ldots B_{n}$ with b_{1}, \ldots, b_{n}.

Parameters from the component (warp and woof) matrices

Warp \& woof matrices are unrelated. So each may carry into the weaving construction its own independent parameters.

Use warp matrices $A_{1}, \ldots A_{m}$ with a_{1}, \ldots, a_{m} parameters and woof matrices $B_{1}, \ldots B_{n}$ with b_{1}, \ldots, b_{n}. (All dephased)

Parameters from the component (warp and woof) matrices

Warp \& woof matrices are unrelated. So each may carry into the weaving construction its own independent parameters.

Use warp matrices $A_{1}, \ldots A_{m}$ with a_{1}, \ldots, a_{m} parameters and woof matrices $B_{1}, \ldots B_{n}$ with b_{1}, \ldots, b_{n}. (All dephased)

- The woven matrix W may have $(m-1)(n-1)$ parameters introduced as scalar multiples of blocks, and remain dephased.

Parameters from the component (warp and woof) matrices

Warp \& woof matrices are unrelated. So each may carry into the weaving construction its own independent parameters.

Use warp matrices $A_{1}, \ldots A_{m}$ with a_{1}, \ldots, a_{m} parameters and woof matrices $B_{1}, \ldots B_{n}$ with b_{1}, \ldots, b_{n}. (All dephased)

- The woven matrix W may have $(m-1)(n-1)$ parameters introduced as scalar multiples of blocks, and remain dephased.
- W also inherits $a_{1}+a_{2}+\cdots+a_{m}$ parameters from warp

Parameters from the component (warp and woof) matrices

Warp \& woof matrices are unrelated. So each may carry into the weaving construction its own independent parameters.

Use warp matrices $A_{1}, \ldots A_{m}$ with a_{1}, \ldots, a_{m} parameters and woof matrices $B_{1}, \ldots B_{n}$ with b_{1}, \ldots, b_{n}. (All dephased)

- The woven matrix W may have $(m-1)(n-1)$ parameters introduced as scalar multiples of blocks, and remain dephased.
- W also inherits $a_{1}+a_{2}+\cdots+a_{m}$ parameters from warp
- and $b_{1}+b_{2}+\cdots+b_{n}$ from the woof matrices.

Parameters from the component (warp and woof) matrices

Warp \& woof matrices are unrelated. So each may carry into the weaving construction its own independent parameters.

Use warp matrices $A_{1}, \ldots A_{m}$ with a_{1}, \ldots, a_{m} parameters and woof matrices $B_{1}, \ldots B_{n}$ with b_{1}, \ldots, b_{n}. (All dephased)

- The woven matrix W may have $(m-1)(n-1)$ parameters introduced as scalar multiples of blocks, and remain dephased.
- W also inherits $a_{1}+a_{2}+\cdots+a_{m}$ parameters from warp
- and $b_{1}+b_{2}+\cdots+b_{n}$ from the woof matrices.
- By construction W is also dephased.

Parameters from the component (warp and woof) matrices

Warp \& woof matrices are unrelated. So each may carry into the weaving construction its own independent parameters.

Use warp matrices $A_{1}, \ldots A_{m}$ with a_{1}, \ldots, a_{m} parameters and woof matrices $B_{1}, \ldots B_{n}$ with b_{1}, \ldots, b_{n}. (All dephased)

- The woven matrix W may have $(m-1)(n-1)$ parameters introduced as scalar multiples of blocks, and remain dephased.
- W also inherits $a_{1}+a_{2}+\cdots+a_{m}$ parameters from warp
- and $b_{1}+b_{2}+\cdots+b_{n}$ from the woof matrices.
- By construction W is also dephased.

Theorem (RC 2022)

Parameters from the component (warp and woof) matrices

Warp \& woof matrices are unrelated. So each may carry into the weaving construction its own independent parameters.

Use warp matrices $A_{1}, \ldots A_{m}$ with a_{1}, \ldots, a_{m} parameters and woof matrices $B_{1}, \ldots B_{n}$ with b_{1}, \ldots, b_{n}. (All dephased)

- The woven matrix W may have $(m-1)(n-1)$ parameters introduced as scalar multiples of blocks, and remain dephased.
- W also inherits $a_{1}+a_{2}+\cdots+a_{m}$ parameters from warp
- and $b_{1}+b_{2}+\cdots+b_{n}$ from the woof matrices.
- By construction W is also dephased.

Theorem (RC 2022) Under the above conditions $W \in \mathcal{H}_{m n}$ is a member of a family of affine dimension at least

$$
(m-1)(n-1)+\sum_{i=1}^{m} a_{i}+\sum_{j=1}^{n} b_{j}
$$

Inheriting non-affine parameters

Inheriting non-affine parameters

Not fully described here: parametric families of Hadamard matrices

Inheriting non-affine parameters

Not fully described here: parametric families of Hadamard matrices with parameters yielding non-affine higher-dimensional solutions

Inheriting non-affine parameters

Not fully described here: parametric families of Hadamard matrices with parameters yielding non-affine higher-dimensional solutions

EG Besides 2-dimensional affine families in \mathcal{H}_{6}

Inheriting non-affine parameters

Not fully described here: parametric families of Hadamard matrices with parameters yielding non-affine higher-dimensional solutions

EG Besides 2-dimensional affine families in \mathcal{H}_{6},
B.R. Karlsson (2010) gives a 3-parameter non-affine family

Inheriting non-affine parameters

Not fully described here: parametric families of Hadamard matrices with parameters yielding non-affine higher-dimensional solutions

EG Besides 2-dimensional affine families in \mathcal{H}_{6},
B.R. Karlsson (2010) gives a 3-parameter non-affine family and F. Szöllosi (also 2010) gives a 4-parameter non-affine family

Inheriting non-affine parameters

Not fully described here: parametric families of Hadamard matrices with parameters yielding non-affine higher-dimensional solutions

EG Besides 2-dimensional affine families in \mathcal{H}_{6},
B.R. Karlsson (2010) gives a 3-parameter non-affine family and F. Szöllosi (also 2010) gives a 4-parameter non-affine family

Weaving construction introduces well-behaved "affine" parameters; warp and woof matrices may bring non-affine parameters.

Inheriting non-affine parameters

Not fully described here: parametric families of Hadamard matrices with parameters yielding non-affine higher-dimensional solutions

EG Besides 2-dimensional affine families in \mathcal{H}_{6},
B.R. Karlsson (2010) gives a 3-parameter non-affine family and F. Szöllosi (also 2010) gives a 4-parameter non-affine family

Weaving construction introduces well-behaved "affine" parameters; warp and woof matrices may bring non-affine parameters.

Theorem (RC 2022)

Inheriting non-affine parameters

Not fully described here: parametric families of Hadamard matrices with parameters yielding non-affine higher-dimensional solutions

EG Besides 2-dimensional affine families in \mathcal{H}_{6},
B.R. Karlsson (2010) gives a 3-parameter non-affine family and F. Szöllosi (also 2010) gives a 4-parameter non-affine family

Weaving construction introduces well-behaved "affine" parameters; warp and woof matrices may bring non-affine parameters.

Theorem (RC 2022) Given m unphased matrices of \mathcal{H}_{n} and n unphased families of \mathcal{H}_{m} having a_{1}, \ldots, a_{m} and

Inheriting non-affine parameters

Not fully described here: parametric families of Hadamard matrices with parameters yielding non-affine higher-dimensional solutions

EG Besides 2-dimensional affine families in \mathcal{H}_{6},
B.R. Karlsson (2010) gives a 3-parameter non-affine family and F. Szöllosi (also 2010) gives a 4-parameter non-affine family

Weaving construction introduces well-behaved "affine" parameters; warp and woof matrices may bring non-affine parameters.

Theorem (RC 2022) Given m unphased matrices of \mathcal{H}_{n} and n unphased families of \mathcal{H}_{m} having a_{1}, \ldots, a_{m} and and b_{1}, \ldots, b_{n} independent parameters respectively

Inheriting non-affine parameters

Not fully described here: parametric families of Hadamard matrices with parameters yielding non-affine higher-dimensional solutions

EG Besides 2-dimensional affine families in \mathcal{H}_{6},
B.R. Karlsson (2010) gives a 3-parameter non-affine family and F. Szöllosi (also 2010) gives a 4-parameter non-affine family

Weaving construction introduces well-behaved "affine" parameters; warp and woof matrices may bring non-affine parameters.

Theorem (RC 2022) Given m unphased matrices of \mathcal{H}_{n} and n unphased families of \mathcal{H}_{m} having a_{1}, \ldots, a_{m} and and b_{1}, \ldots, b_{n} independent parameters respectively, $W \in \mathcal{H}_{m n}$ is a member of a family of dimension having at least

$$
(m-1)(n-1)+\sum_{i=1}^{m} a_{i}+\sum_{j=1}^{n} b_{j}
$$

Maximizing parameters/dimension of constructed classes

Taking warp matrices of uniform max dimension $a_{1}=\cdots=a_{m}=a$

Maximizing parameters/dimension of constructed classes

Taking warp matrices of uniform max dimension $a_{1}=\cdots=a_{m}=a$ and also for woof, $b_{1}=\cdots=b_{n}=b$

Maximizing parameters/dimension of constructed classes

Taking warp matrices of uniform max dimension $a_{1}=\cdots=a_{m}=a$ and also for woof, $b_{1}=\cdots=b_{n}=b$ (maximum)

Maximizing parameters/dimension of constructed classes

Taking warp matrices of uniform max dimension $a_{1}=\cdots=a_{m}=a$ and also for woof, $b_{1}=\cdots=b_{n}=b$ (maximum) reduces the formula for the number of parameters of woven matrices to

$$
(m-1)(n-1)+n a+m b .
$$

Maximizing parameters/dimension of constructed classes

Taking warp matrices of uniform max dimension $a_{1}=\cdots=a_{m}=a$ and also for woof, $b_{1}=\cdots=b_{n}=b$ (maximum) reduces the formula for the number of parameters of woven matrices to

$$
(m-1)(n-1)+n a+m b .
$$

Compare prior constructions shown in CHM Catalog

Maximizing parameters/dimension of constructed classes

Taking warp matrices of uniform max dimension $a_{1}=\cdots=a_{m}=a$ and also for woof, $b_{1}=\cdots=b_{n}=b$ (maximum) reduces the formula for the number of parameters of woven matrices to

$$
(m-1)(n-1)+n a+m b .
$$

Compare prior constructions shown in CHM Catalog

- Doubling construction

Maximizing parameters/dimension of constructed classes

Taking warp matrices of uniform max dimension $a_{1}=\cdots=a_{m}=a$ and also for woof, $b_{1}=\cdots=b_{n}=b$ (maximum) reduces the formula for the number of parameters of woven matrices to

$$
(m-1)(n-1)+n a+m b .
$$

Compare prior constructions shown in CHM Catalog

- Doubling construction: $A \in H(n)$ with a parameters \Rightarrow $H \in \mathcal{H}_{2 n}$ with $2 a+(n-1)$ parameters.

Maximizing parameters/dimension of constructed classes

Taking warp matrices of uniform max dimension $a_{1}=\cdots=a_{m}=a$ and also for woof, $b_{1}=\cdots=b_{n}=b$ (maximum) reduces the formula for the number of parameters of woven matrices to

$$
(m-1)(n-1)+n a+m b .
$$

Compare prior constructions shown in CHM Catalog

- Doubling construction: $A \in H(n)$ with a parameters \Rightarrow $H \in \mathcal{H}_{2 n}$ with $2 a+(n-1)$ parameters.
Same as weaving with $B \in \mathcal{H}(2)$ (0 parameters).

Maximizing parameters/dimension of constructed classes

Taking warp matrices of uniform max dimension $a_{1}=\cdots=a_{m}=a$ and also for woof, $b_{1}=\cdots=b_{n}=b$ (maximum) reduces the formula for the number of parameters of woven matrices to

$$
(m-1)(n-1)+n a+m b .
$$

Compare prior constructions shown in CHM Catalog

- Doubling construction: $A \in H(n)$ with a parameters \Rightarrow $H \in \mathcal{H}_{2 n}$ with $2 a+(n-1)$ parameters.
Same as weaving with $B \in \mathcal{H}(2)$ (0 parameters).
- Quadrupling construction

Maximizing parameters/dimension of constructed classes

Taking warp matrices of uniform max dimension $a_{1}=\cdots=a_{m}=a$ and also for woof, $b_{1}=\cdots=b_{n}=b$ (maximum) reduces the formula for the number of parameters of woven matrices to

$$
(m-1)(n-1)+n a+m b .
$$

Compare prior constructions shown in CHM Catalog

- Doubling construction: $A \in H(n)$ with a parameters \Rightarrow $H \in \mathcal{H}_{2 n}$ with $2 a+(n-1)$ parameters.
Same as weaving with $B \in \mathcal{H}(2)$ (0 parameters).
- Quadrupling construction: $\Rightarrow 4 a+3(n-1)$.

Maximizing parameters/dimension of constructed classes

Taking warp matrices of uniform max dimension $a_{1}=\cdots=a_{m}=a$ and also for woof, $b_{1}=\cdots=b_{n}=b$ (maximum) reduces the formula for the number of parameters of woven matrices to

$$
(m-1)(n-1)+n a+m b .
$$

Compare prior constructions shown in CHM Catalog

- Doubling construction: $A \in H(n)$ with a parameters \Rightarrow $H \in \mathcal{H}_{2 n}$ with $2 a+(n-1)$ parameters.
Same as weaving with $B \in \mathcal{H}(2)$ (0 parameters).
- Quadrupling construction: $\Rightarrow 4 a+3(n-1)$.

Weaving $B \in \mathcal{H}(4)$ (1 parameter)

Maximizing parameters/dimension of constructed classes

Taking warp matrices of uniform max dimension $a_{1}=\cdots=a_{m}=a$ and also for woof, $b_{1}=\cdots=b_{n}=b$ (maximum) reduces the formula for the number of parameters of woven matrices to

$$
(m-1)(n-1)+n a+m b .
$$

Compare prior constructions shown in CHM Catalog

- Doubling construction: $A \in H(n)$ with a parameters \Rightarrow $H \in \mathcal{H}_{2 n}$ with $2 a+(n-1)$ parameters.
Same as weaving with $B \in \mathcal{H}(2)$ (0 parameters).
- Quadrupling construction: $\Rightarrow 4 a+3(n-1)$.

Weaving $B \in \mathcal{H}(4)$ (1 parameter):
$n+4 a+3(n-1)=4(a+n)$.

Maximizing parameters/dimension of constructed classes

Taking warp matrices of uniform max dimension $a_{1}=\cdots=a_{m}=a$ and also for woof, $b_{1}=\cdots=b_{n}=b$ (maximum) reduces the formula for the number of parameters of woven matrices to

$$
(m-1)(n-1)+n a+m b .
$$

Compare prior constructions shown in CHM Catalog

- Doubling construction: $A \in H(n)$ with a parameters \Rightarrow $H \in \mathcal{H}_{2 n}$ with $2 a+(n-1)$ parameters.
Same as weaving with $B \in \mathcal{H}(2)$ (0 parameters).
- Quadrupling construction: $\Rightarrow 4 a+3(n-1)$.

Weaving $B \in \mathcal{H}(4)$ (1 parameter):
$n+4 a+3(n-1)=4(a+n)$.

- Dită's "tensor-like" product

Maximizing parameters/dimension of constructed classes

Taking warp matrices of uniform max dimension $a_{1}=\cdots=a_{m}=a$ and also for woof, $b_{1}=\cdots=b_{n}=b$ (maximum) reduces the formula for the number of parameters of woven matrices to

$$
(m-1)(n-1)+n a+m b .
$$

Compare prior constructions shown in CHM Catalog

- Doubling construction: $A \in H(n)$ with a parameters \Rightarrow $H \in \mathcal{H}_{2 n}$ with $2 a+(n-1)$ parameters.
Same as weaving with $B \in \mathcal{H}(2)$ (0 parameters).
- Quadrupling construction: $\Rightarrow 4 a+3(n-1)$.

Weaving $B \in \mathcal{H}(4)$ (1 parameter):
$n+4 a+3(n-1)=4(a+n)$.

- Dită's "tensor-like" product: A with $B \in H(m)$ having b parameters:

Maximizing parameters/dimension of constructed classes

Taking warp matrices of uniform max dimension $a_{1}=\cdots=a_{m}=a$ and also for woof, $b_{1}=\cdots=b_{n}=b$ (maximum) reduces the formula for the number of parameters of woven matrices to

$$
(m-1)(n-1)+n a+m b .
$$

Compare prior constructions shown in CHM Catalog

- Doubling construction: $A \in H(n)$ with a parameters \Rightarrow $H \in \mathcal{H}_{2 n}$ with $2 a+(n-1)$ parameters.
Same as weaving with $B \in \mathcal{H}(2)$ (0 parameters).
- Quadrupling construction: $\Rightarrow 4 a+3(n-1)$.

Weaving $B \in \mathcal{H}(4)$ (1 parameter):
$n+4 a+3(n-1)=4(a+n)$.

- Dită's "tensor-like" product: A with $B \in H(m)$ having b parameters: $\Rightarrow(m-1)(n-1)+a+m b$

Maximizing parameters/dimension of constructed classes

Taking warp matrices of uniform max dimension $a_{1}=\cdots=a_{m}=a$ and also for woof, $b_{1}=\cdots=b_{n}=b$ (maximum) reduces the formula for the number of parameters of woven matrices to

$$
(m-1)(n-1)+n a+m b .
$$

Compare prior constructions shown in CHM Catalog

- Doubling construction: $A \in H(n)$ with a parameters \Rightarrow $H \in \mathcal{H}_{2 n}$ with $2 a+(n-1)$ parameters.
Same as weaving with $B \in \mathcal{H}(2)$ (0 parameters).
- Quadrupling construction: $\Rightarrow 4 a+3(n-1)$.

Weaving $B \in \mathcal{H}(4)$ (1 parameter):
$n+4 a+3(n-1)=4(a+n)$.

- Dită's "tensor-like" product: A with $B \in H(m)$ having b parameters: $\Rightarrow(m-1)(n-1)+a+m b$
All three equivalent to constrained versions of weaving

Some calculations

$N=m n \in\{4,6,8\}$

Some calculations

$N=m n \in\{4,6,8\}$
Weaving doesn't affect prime orders (no nontrivial factorization)

Some calculations

$N=m n \in\{4,6,8\}$
Weaving doesn't affect prime orders (no nontrivial factorization)

$$
a=\max \# \text { parameters for warp matrices } \in \mathcal{H}_{m}
$$

Some calculations

$N=m n \in\{4,6,8\}$
Weaving doesn't affect prime orders (no nontrivial factorization)
$a=\max \#$ parameters for warp matrices $\in \mathcal{H}_{m}$
$b=\max \#$ parameters for woof $\in \mathcal{H}_{n}$

Some calculations

$N=m n \in\{4,6,8\}$
Weaving doesn't affect prime orders (no nontrivial factorization)
$a=\max \#$ parameters for warp matrices $\in \mathcal{H}_{m}$
$b=\max \#$ parameters for woof $\in \mathcal{H}_{n}$
$(m-1)(n-1)+n a+m b$: number of parameters in woven matrix

Some calculations

$N=m n \in\{4,6,8\}$
Weaving doesn't affect prime orders (no nontrivial factorization)
$a=\max \#$ parameters for warp matrices $\in \mathcal{H}_{m}$
$b=\max \#$ parameters for woof $\in \mathcal{H}_{n}$
$(m-1)(n-1)+n a+m b$: number of parameters in woven matrix
*: weaving improves dimension

Some calculations

$N=m n \in\{4,6,8\}$
Weaving doesn't affect prime orders (no nontrivial factorization)
$a=\max \#$ parameters for warp matrices $\in \mathcal{H}_{m}$
$b=\max \#$ parameters for woof $\in \mathcal{H}_{n}$
$(m-1)(n-1)+n a+m b$: number of parameters in woven matrix
*: weaving improves dimension
NA: Non-Affine parametrization

Some calculations

$N=m n \in\{4,6,8\}$
Weaving doesn't affect prime orders (no nontrivial factorization)
$a=\max \#$ parameters for warp matrices $\in \mathcal{H}_{m}$
$b=\max \#$ parameters for woof $\in \mathcal{H}_{n}$
$(m-1)(n-1)+n a+m b$: number of parameters in woven matrix
*: weaving improves dimension
NA: Non-Affine parametrization

m	n	a	b	woven dimension	CHM Catalog $\max (2022)$
$N=4=a b$, weave matrix $\in \mathcal{H}_{4}$					
2	2	0	0	1	1

Some calculations

$N=m n \in\{4,6,8\}$
Weaving doesn't affect prime orders (no nontrivial factorization)
$a=\max \#$ parameters for warp matrices $\in \mathcal{H}_{m}$
$b=\max \#$ parameters for woof $\in \mathcal{H}_{n}$
$(m-1)(n-1)+n a+m b$: number of parameters in woven matrix
*: weaving improves dimension
NA: Non-Affine parametrization

m	n	a	b	woven dimension	CHM Catalog $\max (2022)$
$N=4=a b$, weave matrix $\in \mathcal{H}_{4}$					
2	2	0	0	1	1
$N=6=a b$, weave matrix $\in \mathcal{H}_{6}$					
2	3	0	0	2	$2 ; 4^{\mathrm{NA}}$

Some calculations

$N=m n \in\{4,6,8\}$
Weaving doesn't affect prime orders (no nontrivial factorization)
$a=\max \#$ parameters for warp matrices $\in \mathcal{H}_{m}$
$b=\max \#$ parameters for woof $\in \mathcal{H}_{n}$
$(m-1)(n-1)+n a+m b$: number of parameters in woven matrix
*: weaving improves dimension
NA: Non-Affine parametrization

m	n	a	b	woven dimension	CHM Catalog max (2022)
$N=4=a b$, weave matrix $\in \mathcal{H}_{4}$					
2	2	0	0	1	1
$N=6=a b$, weave matrix $\in \mathcal{H}_{6}$					
2	3	0	0	2	$2 ; 4^{\mathrm{NA}}$
N					
2	4	0	1	5	$5=a b$, weave matrix $\in \mathcal{H}_{8}$

Calculations

$N=m n \in\{9,10,12,14,15,16\}$

m	n	a	b	woven dimension	CHM Catalog max (2022)	
$N=9=a b$, weave matrix $\in \mathcal{H}_{9}$						
3	3	0	0	4	4	

Calculations

$$
N=m n \in\{9,10,12,14,15,16\}
$$

m	n	a	b	woven dimension	CHM Catalog max (2022)
$N=9=a b$, weave matrix $\in \mathcal{H}_{9}$					
3	3	0	0	4	4
$N=10=a b$, weave matrix $\in \mathcal{H}_{10}$					
2	5	0	0	4	7

Calculations

$$
N=m n \in\{9,10,12,14,15,16\}
$$

m	n	a	b	woven dimension	CHM Catalog max (2022)	
$N=9=a b$, weave matrix $\in \mathcal{H}_{9}$						
3	3	0	0	4	4	
$N=10=a b$, weave matrix $\in \mathcal{H}_{10}$						
2	5	0	0	4	7	
$N=12=a b$, weave matrix $\in \mathcal{H}_{12}$						
3	4	0	1	9	9	

Calculations

$$
N=m n \in\{9,10,12,14,15,16\}
$$

m	n	a	b	woven dimension	CHM Catalog max (2022)
$N=9=a b$, weave matrix $\in \mathcal{H}_{9}$					
3	3	0	0	4	4
$N=10=a b$, weave matrix $\in \mathcal{H}_{10}$					
2	5	0	0	4	7
$N=12=a b$, weave matrix $\in \mathcal{H}_{12}$					
3	4	0	1	9	9
2	6	0	4^{NA}	13^{NA}	9

Calculations

$$
N=m n \in\{9,10,12,14,15,16\}
$$

m	n	a	b	woven dimension	CHM Catalog max (2022)
$N=9=a b$, weave matrix $\in \mathcal{H}_{9}$					
3	3	0	0	4	4
$N=10=a b$, weave matrix $\in \mathcal{H}_{10}$					
2	5	0	0	4	7
$N=12=a b$, weave matrix $\in \mathcal{H}_{12}$					
3	4	0	1	9	9
2	6	0	4^{NA}	13^{NA}	9
$N=14=a b$, weave matrix $\in \mathcal{H}_{14}$					
2	7	0	1	8^{*}	7

Calculations

$$
N=m n \in\{9,10,12,14,15,16\}
$$

m	n	a	b	woven dimension	CHM Catalog max (2022)	
$N=9=a b$, weave matrix $\in \mathcal{H}_{9}$						
3	3	0	0	4	4	
$N=10=a b$, weave matrix $\in \mathcal{H}_{10}$						
2	5	0	0	4	7	
$N=12=a b$, weave matrix $\in \mathcal{H}_{12}$						
3	4	0	1	9	9	
2	6	0	4^{NA}	$13^{\text {NA }}$	9	
$N=14=a b$, weave matrix $\in \mathcal{H}_{14}$						
2	7	0	1	8^{*}	7	
$N=15=a b$, weave matrix $\in \mathcal{H}_{15}$						
3	5	0	0	8	8	

Calculations

$$
N=m n \in\{9,10,12,14,15,16\}
$$

m	n	a	b	woven dimension	CHM Catalog max (2022)
$N=9=a b$, weave matrix $\in \mathcal{H}_{9}$					
3	3	0	0	4	4
$N=10=a b$, weave matrix $\in \mathcal{H}_{10}$					
2	5	0	0	4	7
$N=12=a b$, weave matrix $\in \mathcal{H}_{12}$					
3	4	0	1	9	9
2	6	0	4^{NA}	$13^{\text {NA }}$	9
$N=14=a b$, weave matrix $\in \mathcal{H}_{14}$					
2	7	0	1	8*	7
$N=15=a b$, weave matrix $\in \mathcal{H}_{15}$					
3	5	0	0	8	8
$N=16=a b$, weave matrix $\in \mathcal{H}_{16}$					
2	8	0	5	17	17

Calculations

$$
N=m n \in\{9,10,12,14,15,16\}
$$

m	n	a	b	woven dimension	CHM Catalog max (2022)
$N=9=a b$, weave matrix $\in \mathcal{H}_{9}$					
3	3	0	0	4	4
$N=10=a b$, weave matrix $\in \mathcal{H}_{10}$					
2	5	0	0	4	7
$N=12=a b$, weave matrix $\in \mathcal{H}_{12}$					
3	4	0	1	9	9
2	6	0	4^{NA}	$13^{\text {NA }}$	9
$N=14=a b$, weave matrix $\in \mathcal{H}_{14}$					
2	7	0	1	8*	7
$N=15=a b$, weave matrix $\in \mathcal{H}_{15}$					
3	5	0	0	8	8
$N=16=a b$, weave matrix $\in \mathcal{H}_{16}$					
2	8	0	5	17	17
4	4	1	1	17	17

Calculations $(N=m n \in\{18,20,21,22,24,25\})$

m	n	a	b	woven dimension	CHM Catalog $\max (2022)$
$N=18=a b$, weave matrix $\in \mathcal{H}_{18}$					
2	9	0	4	16^{*}	n/a

Calculations $(N=m n \in\{18,20,21,22,24,25\})$

m	n	a	b	woven dimension	CHM Catalog $\max (2022)$
$N=18=a b$, weave matrix $\in \mathcal{H}_{18}$					
2	9	0	4	16^{*}	n/a
3	6	0	4	$22^{* N A}$	n/a

Calculations $(N=m n \in\{18,20,21,22,24,25\})$

m	n	a	b	woven dimension	CHM Catalog max (2022)
$N=18=a b$, weave matrix $\in \mathcal{H}_{18}$					
2	9	0	4	16^{*}	n/a
3	6	0	4	$22^{* N A}$	n/a
$N=20=a b$, weave matrix $\in \mathcal{H}_{20}$					
2	10	0	7	23^{*}	n/a

Calculations $(N=m n \in\{18,20,21,22,24,25\})$

m	n	a	b	woven dimension	CHM Catalog $\max (2022)$
$N=18=a b$, weave matrix $\in \mathcal{H}_{18}$					
2	9	0	4	16^{*}	n/a
3	6	0	4	$22^{* N A}$	n/a
$N=20=a b$, weave matrix $\in \mathcal{H}_{20}$					
2	10	0	7	23^{*}	n/a
4	5	1	0	17^{*}	n/a

Calculations $(N=m n \in\{18,20,21,22,24,25\})$

m	n	a	b	woven dimension	CHM Catalog max (2022)
$N=18=a b$, weave matrix $\in \mathcal{H}_{18}$					
2	9	0	4	16^{*}	n/a
3	6	0	4	$22^{* N A}$	n/a
$N=20=a b$, weave matrix $\in \mathcal{H}_{20}$					
2	10	0	7	23^{*}	n/a
4	5	1	0	17^{*}	n/a
$N=21=a b$, weave matrix $\in \mathcal{H}_{21}$					
3	7	0	1	15^{*}	0

Calculations $(N=m n \in\{18,20,21,22,24,25\})$

m	n	a	b	woven dimension	CHM Catalog max (2022)
$N=18=a b$, weave matrix $\in \mathcal{H}_{18}$					
2	9	0	4	16^{*}	n/a
3	6	0	4	$22^{* N A}$	n/a
$N=20=a b$, weave matrix $\in \mathcal{H}_{20}$					
2	10	0	7	23^{*}	n/a
4	5	1	0	17^{*}	n/a
$N=21=a b$, weave matrix $\in \mathcal{H}_{21}$					
3	7	0	1	15^{*}	0
$N=22=a b$, weave matrix $\in \mathcal{H}_{22}$					
2	11	0	0	10^{*}	n / a

Calculations $(N=m n \in\{18,20,21,22,24,25\})$

m	n	a	b	woven dimension	CHM Catalog max (2022)
$N=18=a b$, weave matrix $\in \mathcal{H}_{18}$					
2	9	0	4	16*	n/a
3	6	0	4	22*NA	n/a
$N=20=a b$, weave matrix $\in \mathcal{H}_{20}$					
2	10	0	7	23*	n/a
4	5	1	0	17*	n/a
$N=21=a b$, weave matrix $\in \mathcal{H}_{21}$					
3	7	0	1	15*	0
$N=22=a b$, weave matrix $\in \mathcal{H}_{22}$					
2	11	0	0	10*	n/a
$N=24=a b$, weave matrix $\in \mathcal{H}_{24}$					
2	12	0	13	37*	n / a

Calculations $(N=m n \in\{18,20,21,22,24,25\})$

m	n	a	b	woven dimension	CHM Catalog max (2022)
$N=18=a b$, weave matrix $\in \mathcal{H}_{18}$					
2	9	0	4	16*	n/a
3	6	0	4	22*NA	n/a
$N=20=a b$, weave matrix $\in \mathcal{H}_{20}$					
2	10	0	7	23*	n/a
4	5	1	0	17*	n/a
$N=21=a b$, weave matrix $\in \mathcal{H}_{21}$					
3	7	0	1	15*	0
$N=22=a b$, weave matrix $\in \mathcal{H}_{22}$					
2	11	0	0	10*	n/a
$N=24=a b$, weave matrix $\in \mathcal{H}_{24}$					
2	12	0	13	37*	n/a
3	8	0	5	29*	n/a

Calculations $(N=m n \in\{18,20,21,22,24,25\})$

m	n	a	b	woven dimension	CHM Catalog max (2022)
$N=18=a b$, weave matrix $\in \mathcal{H}_{18}$					
2	9	0	4	16*	n/a
3	6	0	4	22*NA	n/a
$N=20=a b$, weave matrix $\in \mathcal{H}_{20}$					
2	10	0	7	23*	n/a
4	5	1	0	17*	n/a
$N=21=a b$, weave matrix $\in \mathcal{H}_{21}$					
3	7	0	1	15*	0
$N=22=a b$, weave matrix $\in \mathcal{H}_{22}$					
2	11	0	0	10*	n/a
$N=24=a b$, weave matrix $\in \mathcal{H}_{24}$					
2	12	0	13	37*	n/a
3	8	0	5	29*	n/a
4	6	1	4	$31^{* N A}$	n/a

Calculations $(N=m n \in\{18,20,21,22,24,25\})$

m	n	a	b	woven dimension	CHM Catalog max (2022)
$N=18=a b$, weave matrix $\in \mathcal{H}_{18}$					
2	9	0	4	16*	n / a
3	6	0	4	22*NA	n/a
$N=20=a b$, weave matrix $\in \mathcal{H}_{20}$					
2	10	0	7	23*	n/a
4	5	1	0	17*	n/a
$N=21=a b$, weave matrix $\in \mathcal{H}_{21}$					
3	7	0	1	15*	0
$N=22=a b$, weave matrix $\in \mathcal{H}_{22}$					
2	11	0	0	10*	n/a
$N=24=a b$, weave matrix $\in \mathcal{H}_{24}$					
2	12	0	13	37*	n/a
3	8	0	5	29*	n/a
4	6	1	4	31*NA	n/a
$N=25=a b$, weave matrix $\in \mathcal{H}_{25}$					
5	5	0	0	16^{*}	n / a

Calculations $(N=m n \in\{18,20,21,22,24,25\})$

m	n	a	b	woven dimension	CHM Catalog max (2022)
$N=18=a b$, weave matrix $\in \mathcal{H}_{18}$					
2	9	0	4	16*	n / a
3	6	0	4	22*NA	n/a
$N=20=a b$, weave matrix $\in \mathcal{H}_{20}$					
2	10	0	7	23^{*}	n/a
4	5	1	0	17*	n/a
$N=21=a b$, weave matrix $\in \mathcal{H}_{21}$					
3	7	0	1	15*	0
$N=22=a b$, weave matrix $\in \mathcal{H}_{22}$					
2	11	0	0	10*	n/a
$N=24=a b$, weave matrix $\in \mathcal{H}_{24}$					
2	12	0	13	37*	n/a
3	8	0	5	29*	n / a
4	6	1	4	$31 *$ NA	n/a
$N=25=a b$, weave matrix $\in \mathcal{H}_{25}$					
5	5	0	0	16*	n / a

Observation (Trades)

A trade in a matrix configuration is a set of entries which, changed, produces a distinct configuration of the same type

Observation (Trades)

A trade in a matrix configuration is a set of entries which, changed, produces a distinct configuration of the same type. In other words, it is the set of positions in which two configurations of some type differ.

Observation (Trades)

A trade in a matrix configuration is a set of entries which, changed, produces a distinct configuration of the same type. In other words, it is the set of positions in which two configurations of some type differ.

10 years ago O. Cathain and Wanless showed that no trade in a (real) Hadamard matrix of order n consists of fewer than n entries.

Observation (Trades)

A trade in a matrix configuration is a set of entries which, changed, produces a distinct configuration of the same type. In other words, it is the set of positions in which two configurations of some type differ.

10 years ago O. Cathain and Wanless showed that no trade in a (real) Hadamard matrix of order n consists of fewer than n entries.

Further it is conjectured that the same holds for \mathcal{H}_{n}.

Observation (Trades)

A trade in a matrix configuration is a set of entries which, changed, produces a distinct configuration of the same type. In other words, it is the set of positions in which two configurations of some type differ.

10 years ago O. Cathain and Wanless showed that no trade in a (real) Hadamard matrix of order n consists of fewer than n entries.

Further it is conjectured that the same holds for \mathcal{H}_{n}.
A parameter in a \mathcal{H}_{n} corresponds to a trade: the set of positions it affects.

Observation (Trades)

A trade in a matrix configuration is a set of entries which, changed, produces a distinct configuration of the same type. In other words, it is the set of positions in which two configurations of some type differ.

10 years ago O. Cathain and Wanless showed that no trade in a (real) Hadamard matrix of order n consists of fewer than n entries.

Further it is conjectured that the same holds for \mathcal{H}_{n}.
A parameter in a \mathcal{H}_{n} corresponds to a trade: the set of positions it affects.

Every parameter in \mathcal{H}_{N} in the Online CHM Catalog satisfies the above conjecture.

Observation (Trades)

A trade in a matrix configuration is a set of entries which, changed, produces a distinct configuration of the same type. In other words, it is the set of positions in which two configurations of some type differ.

10 years ago O. Cathain and Wanless showed that no trade in a (real) Hadamard matrix of order n consists of fewer than n entries.

Further it is conjectured that the same holds for \mathcal{H}_{n}.
A parameter in a \mathcal{H}_{n} corresponds to a trade: the set of positions it affects.

Every parameter in \mathcal{H}_{N} in the Online CHM Catalog satisfies the above conjecture.

Each of the variables we introduce in the Weaving construction for $\mathcal{H}(N), N=m n$ affect exactly N entries.

References

THANKS FOR LISTENING!

R. Craigen, The Craft of Weaving Matrices, Congr. Num. 92 (1993) pp. 9-28.
R. Craigen, Note on parameters of complex Hadamard matrices. In preparation.
W. Tadej and K. Życzkowski, A Concise Guide to Complex Hadamard Matrices, Open Sys. \& Information Dyn. 13 (2006) 133-177.
W. Bruzda, W. Tadej and Karol Życzkowski, https://chaos.if.uj.edu.pl/~karol/hadamard/
Webpage accessed 2022, June 2024
More complete bibliography of theory and contributing "catalog" constructions https://chaos.if.uj.edu.pl/

