New Spence Difference Sets Joint with J. Polhill, K. Smith, E. Swartz, and J. Webster

Why should you care? Automorphism groups of combinatorial objects

Design Theorists Coat of Arms (according to Eric Lander)

Very brief history

Cyclic (Singer, Paley, twin primes) 1930s-1960s 2.

Very brief history

2. Non-cyclic (Hadamard, McFarland, Spence, Davis-Jedwab, Chen) 1960s-present

1. Cyclic (Singer, Paley, twin primes) 1930s-1960s

Basic construction of second type

Hyperplanes

Basic construction of second type

Hyperplanes

F_q a finite field, $V = (F_q)^n$, H_1 , H_2 , ..., H_d hyperplanes

Basic construction of second type

F_q a finite field, $V = (F_q)^n$, H_1 , H_2 , ..., H_d hyperplanes

Hyperplanes

K a group of coefficient; $D = k_1H_1 \cup k_2H_2 \cup \ldots \cup k_dH_d$

Spence Difference Sets

Modifications:

q=3;

Spence Difference Sets

Modifications:

q=3; complement one hyperplane, say H₁^c

Spence Difference Sets

•q=3; •complement one hyperplane, say H₁^c K any group (including nonabelian)

Modifications:

Instead of G = K x V, Drisko showed (under certain circumstances) that V a normal subgroup of G is enough

Drisko

Instead of G = K x V, Drisko showed (under certain circumstances) that V a normal subgroup of G is enough

Drisko

[G:V] is a prime power

Not totally accurate....

$H_{i} - - - > k_{i}H_{i}k_{i}^{-1}$

Smallest case (36,15,6)

Exhaustively studied by Smith and Webster

Different approach: Transfer method

Key idea here: choose the k_i so that the full automorphism group is large

Next size (351,126,45)

Upshot: lots of new Spence DSs in nonabelian groups

Intriguing example: Sylow 3-subgroup is NOT elementary abelian (and is in fact nonabelian)

1. Conjecture: if G is a Spence group with a normal subgroup V, then G has a Spence DS 2. Exhaustively do the (351,126,45) case **3. Determine the number of nonisomorphic designs** 4. Exploit the transfer method even more!

Future Directions

Grazie Mille!