Hadamard matrices in centraliser algebras of monomial representations

Ronan Egan
Dublin City University

DCU
 Ollscoil Chathair

Bhaile Átha Cliath
Dublin City University
Joint work with:

- Santiago Barrera Acevado \& Heiko Dietrich - Monash University
- Padraig Ó Catháin - Dublin City University

Hadamard matrices

Theorem (Hadamard, 1893)

An $n \times n$ matrix H with complex entries of modulus no greater than 1 satisfies

$$
|\operatorname{det}(H)| \leq n^{n / 2}
$$

A matrix attaining this bound is a (complex) Hadamard matrix, i.e., the entries all have modulus 1 and the rows are pairwise orthogonal.

Key details:

- every eigenvalue of H has modulus \sqrt{n};
- A pair of monomial matrices (P, Q) such that $P H Q^{*}=H$ is an automorphism of H.

Motivation

Even up to equivalence, classifying Hadamard matrices at all but small orders is intractable. While there is a unique (real) Hadamard matrix up to equivalence at orders ≤ 12 there are 13,710,027 equivalence classes at order 32 , and higher orders remain unclassified.

Many attempt to bring structure to this by restricting consideration to algebraic constructions.

For example, a matrix H is group-developed if the rows and columns of H are labelled by the elements of a group G, say $H=\left[h_{f, g}\right]_{f, g \in G}$, such that $h_{f, g}=\varphi(f g)$ for some function $\varphi: G \rightarrow \mathcal{A}$.

Goals

Question: How do I construct matrices (of combinatorial interest) invariant under (a monomial representation of a central extension of) my favourite permutation group G ?

We have two goals today:

- summarise and extend previous work of D. G. Higman on monomial group representations and their centraliser algebras;
- apply techniques of computational algebra to search for complex Hadamard matrices in the centraliser of a monomial representation.

Centraliser algebras

Let A be a \mathbb{C}-algebra. An n-dimensional representation of A is an algebra homomorphism $\rho: A \rightarrow M_{n}(\mathbb{C})$. The character of ρ is the trace map $\chi_{\rho}: A \rightarrow \mathbb{F}$, given by $a \mapsto \operatorname{Tr}(\rho(a))$.

A representation $\rho: \mathbb{C}[G] \rightarrow M_{n}(\mathbb{C})$ restricts to a group homomorphism $G \rightarrow G L_{n}(\mathbb{C})$; this restriction is an n-dimensional (complex) representation of G. A monomial representation is a representation $G \rightarrow \operatorname{Mon}_{n}(\mathbb{C})$.

The centralizer algebra $\mathrm{C}(\rho)$ of a representation ρ is a \mathbb{C}-algebra comprised of the set of all matrices in $M_{n}(\mathbb{C})$ that commute with every element of $\rho(G)$, equipped with matrix multiplication and addition.

Let G be a finite group and let H be a subgroup of G with right transversal $T=\left\{t_{1}, \ldots, t_{n}\right\}$. Every element $g \in G$ admits a factorisation as

$$
g=h_{g} t_{g}
$$

for uniquely determined $h_{g} \in H$ and $t_{g} \in T$. We define the maps $\mathbf{H}: G \rightarrow H$ and $\mathbf{T}: G \rightarrow T$ by $\mathbf{H}(g)=h_{g}$ and $\mathbf{T}(g)=t_{g}$. We assume throughout that $t_{1}=1$.
G acts on pairs of elements of T via $\left(t_{i}, t_{j}\right) g=\left(\mathbf{T}\left(t_{i} g\right), \mathbf{T}\left(t_{j} g\right)\right)$, and the orbits under G are called orbitals.

Let $\chi: H \rightarrow \mathbb{C}^{\times}$be a 1-dimensional representation of H (commonly refereed to in the literature as a linear character), and extend χ from H to G by

$$
\chi^{+}(g)= \begin{cases}\chi(g) & \text { if } g \in H \\ 0 & \text { if } g \notin H\end{cases}
$$

We write

$$
\chi_{\mathbf{H}}\left(t_{i} g\right)=\chi\left(\mathbf{H}\left(t_{i} g\right)\right)
$$

for the χ-value of the H-part of $t_{i} g$;

Proposition

The monomial representation induced by χ is $\rho_{\chi}=\chi \uparrow{ }_{H}^{G}$, defined by

$$
\rho_{\chi}(g)=\left[\chi^{+}\left(t_{i} g t_{k}^{-1}\right)\right]_{i, k} \text { for all } g \in G
$$

A matrix M is centralised by ρ if and only if $\rho(g) M=M \rho(g)$ for all $g \in G$. The set of all such matrices forms a \mathbb{C}-algebra, called the centraliser algebra of ρ and denoted by $\mathrm{C}(\rho)$.

Proposition

A matrix M, with rows and columns indexed by the transversal T, is in the centraliser algebra $C(\rho)$ if and only if

$$
m(\mathbf{T}(g), \mathbf{T}(t g))=m(1, t) \chi_{\mathbf{H}}(g)^{-1} \chi_{\mathbf{H}}(t g)
$$

for all $g \in G$ and $t \in T$.
This equation defines $m\left(\mathbf{T}\left(t_{i} g\right), \mathbf{T}(t g)\right)$ in terms of $m\left(t_{i}, t\right)$.

Requirement:

$$
m(\mathbf{T}(g), \mathbf{T}(t g))=m(1, t) \chi_{\mathbf{H}}(g)^{-1} \chi_{\mathbf{H}}(t g)
$$

It may happen that distinct $g_{1}, g_{2} \in H t_{i} \cap t^{-1} H t_{j}$ yield different constants in this equation, in which case every matrix in the centraliser algebra must take the value 0 at $m(1, t)$.

The condition that

$$
\chi_{\mathbf{H}}\left(g_{1}\right)^{-1} \chi_{\mathbf{H}}\left(\operatorname{tg}_{1}\right)=\chi_{\mathbf{H}}\left(g_{2}\right)^{-1} \chi_{\mathbf{H}}\left(t g_{2}\right) .
$$

for all $g_{1}, g_{2} \in H t_{i} \cap t^{-1} H t_{j}$ is necessary and sufficient for the existence of matrices in the centraliser algebra which are non-zero at $m(1, t)$.

Definition

The orbital \mathcal{O} associated with $(1, t)$ is orientable if and only if

$$
\chi_{\mathbf{H}}\left(g_{1}\right)^{-1} \chi_{\mathbf{H}}\left(\operatorname{tg}_{1}\right)=\chi_{\mathbf{H}}\left(g_{2}\right)^{-1} \chi_{\mathbf{H}}\left(\operatorname{tg}_{2}\right)
$$

for any $g_{1}, g_{2} \in H t_{i} \cap t^{-1} H t_{j}$, and $t_{i}, t_{j} \in T$.

Corollary

The centralizer algebra $C(\rho)$ has a \mathbb{C} basis spanned by the orientable orbital matrices.

Character tables of centraliser algebras

The character table of $\mathrm{C}(\rho)$ may be constructed from the character table of G, together with some additional data about double cosets of H in G.

The columns of the character table of $C(\rho)$ correspond to the elements of the \mathbb{C}-basis.

If the centralizer algebra is commutative, the character table gives the eigenvalues of a matrix M in the algebra explicitly as a function of the entries.

We follow the instructions of Müller ${ }^{1}$ to construct the character table.

[^0]
General case: Step 1, Covers

Question: How do I construct matrices (of combinatorial interest) invariant under (a monomial representation of a non-split central extension of) my favourite permutation group G ?

- Monomial representations are induced from linear characters of the point stabiliser.
- But not every monomial representation can be obtained in this way. $\mathrm{PSL}_{2}(q)$ does not act on the Paley matrix: the point stabiliser has odd order, and so no non-trivial real character.
- In general, we need to study central extensions of G by a cyclic group. Sufficient to study stem extensions,

$$
1 \rightarrow \mathbb{C}^{*} \rightarrow \Gamma \rightarrow G \rightarrow 1
$$

these are classified by the Schur multiplier, which is the cohomology group $H^{2}\left(G, \mathbb{C}^{*}\right)$.

General case: Step 2, Centraliser

Question: How do I construct matrices (of combinatorial interest) invariant under (a monomial representation of a non-split central extension of) my favourite permutation group G ?

- \hat{G} is a Schur cover of G, we restrict to studying centralisers. We choose a linear character of the point stabiliser and induce to a monomial representation ρ.
- We find a basis of the space of matrices satisfying $\rho(g) M=M \rho(g)$ for all $g \in G$.
- If the centraliser is commutative, the character table gives eigenvalues of M explicitly as a function of the entries.
- Hadamard matrices correspond to solutions $\mathcal{C} v=\lambda$ where v has all entries of norm 1 and λ has all entries of norm n.

General case: Step 3, Gröbner bases

Question: How do I construct matrices (of combinatorial interest) invariant under (a monomial representation of a non-split central extension of) my favourite permutation group G ?

- To solve $\mathcal{C} v=\lambda$, with $v_{i} v_{i}^{*}=1$ and $\lambda_{i} \lambda_{i}^{*}=n$ with Gröbner bases, we need a system of polynomial equations.
- Norm conditions are not polynomial, so introduce $v_{i c}$ for the conjugate of v_{i}. The equation is then $v_{i} v_{i c}-1$.
- Since $\lambda_{i}=\sum_{i=1}^{n} c_{i} \alpha_{i}$, the variables λ_{i} can be eliminated, leaving equations

$$
\left(\sum_{i=1}^{n} c_{i} v_{i}\right)\left(\sum_{i=1}^{n} c_{i} v_{i}\right)-n .
$$

- Feed this system into a Gröbner basis algorithm, carefully exclude degenerate solutions (e.g. with $v_{i}=d$ and $v_{i c}=d^{-1}$ for real d) and the remaining solutions correspond to Hadamard matrices.

Finding Hadamard matrices in centraliser algebras

We illustrate with an example. Let $G \leq S_{16}$ be the group

$$
\begin{aligned}
\langle\sigma & =(1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16) \\
\tau & =(2,3,5,9,16)(4,7,13,8,15)(6,11,12,10,14)\rangle
\end{aligned}
$$

This group is a Frobenius group of order 80, with an elementary abelian subgroup of order 16 and a point stabiliser H of order 5 .

Let ρ be the permutation representation induced by the trivial character χ of H. The associated centraliser algebra is commutative and spanned by the identity matrix, and three matrices of constant row-sum 5.

The character table of the centraliser algebra is

| M_{1} | M_{2} | M_{3} | M_{4} |
| ---: | ---: | ---: | ---: | ---: |
| 1 | 5 | 5 | 5 |
| 1 | -3 | 1 | 1 |
| 1 | 1 | -3 | 1 |
| 1 | 1 | 1 | -3 |

The character table of the centraliser algebra is

$$
\left(\begin{array}{rrrr}
M_{1} & M_{2} & M_{3} & M_{4} \\
\hline 1 & 5 & 5 & 5 \\
1 & -3 & 1 & 1 \\
1 & 1 & -3 & 1 \\
1 & 1 & 1 & -3
\end{array}\right)\left(\begin{array}{c}
v \\
\hline 1 \\
1 \\
-1 \\
-1
\end{array}\right)=\left(\begin{array}{c}
\lambda \\
-4 \\
-4 \\
4 \\
4
\end{array}\right)
$$

The following $\{ \pm 1\}$-linear combination of basis matrices

$$
M=M_{1}+M_{2}-M_{3}-M_{4}
$$

is Hadamard matrix, because its eigenvalues are all of absolute value 4, by virtue of which its determinant achieves the Hadamard bound.
$\left[\begin{array}{cccccccccccccccc}1 & 1 & 1 & 1 & 1 & 1 & - & - & - & - & - & - & - & - & - & - \\ 1 & 1 & - & - & - & - & 1 & - & - & - & 1 & 1 & 1 & - & - & - \\ 1 & - & 1 & - & - & - & 1 & 1 & - & - & - & - & - & 1 & 1 & - \\ 1 & - & - & 1 & - & - & - & 1 & 1 & - & - & 1 & - & - & - & 1 \\ 1 & - & - & - & 1 & - & - & - & 1 & 1 & - & - & 1 & 1 & - & - \\ 1 & - & - & - & - & 1 & - & - & - & 1 & 1 & - & - & - & 1 & 1 \\ - & 1 & 1 & - & - & - & 1 & - & 1 & 1 & - & - & - & - & - & 1 \\ - & - & 1 & 1 & - & - & - & 1 & - & 1 & 1 & - & 1 & - & - & - \\ - & - & - & 1 & 1 & - & 1 & - & 1 & - & 1 & - & - & - & 1 & - \\ - & - & - & - & 1 & 1 & 1 & 1 & - & 1 & - & 1 & - & - & - & - \\ - & 1 & - & - & - & 1 & - & 1 & 1 & - & 1 & - & - & 1 & - & - \\ - & 1 & - & 1 & - & - & - & - & - & 1 & - & 1 & - & 1 & 1 & - \\ - & 1 & - & - & 1 & - & - & - & 1 & - & - & - & 1 & - & 1 & 1 \\ - & - & 1 & - & 1 & - & - & - & - & - & 1 & 1 & - & 1 & - & 1 \\ - & - & 1 & - & - & 1 & - & - & 1 & - & - & 1 & 1 & - & 1 & - \\ - & - & - & 1 & - & 1 & 1 & - & - & - & - & - & 1 & 1 & - & 1\end{array}\right]$
$M=M_{1}+M_{2}-M_{3}-M_{4}$

n	Schur cover of	Stab	$\left[x_{1}, \ldots, x_{r}\right]$
7	$C_{7} \rtimes C_{3}$	C_{3}	$\left[1,1, \frac{-3+i \sqrt{7}}{4}\right]$
7	$C_{7} \rtimes C_{3}$	C_{3}	$\left[1,1, \frac{(\sqrt{3}+i)(\sqrt{7}-3 i)}{8}\right]$
11	$C_{11} \rtimes C_{5}$	C_{5}	$\left[1,1, \frac{-5+i \sqrt{11}}{6}\right]$
11	$C_{11} \rtimes C_{5}$	C_{5}	$\left[1,1, \frac{x^{2}}{3}\right]^{*}$
27	$3^{3} \rtimes S_{4}$	S_{4}	$\left[1, \zeta_{3}, 1, \zeta_{3}^{2}\right]$
35	A_{7}	$\left(S_{3} \times S_{4}\right) \cap A_{7}$	$\left[1, \frac{15-i \sqrt{31}}{16}, \frac{15-i \sqrt{31}}{16},-1\right]$
35	A_{7}	$\left(S_{3} \times S_{4}\right) \cap A_{7}$	$\left[1,1,1, \frac{17+i \sqrt{35}}{18}\right]$
49	$C_{7}^{2} \rtimes\left(D_{4} \times C_{3}\right)$	$D_{4} \times C_{3}$	$\left[1, \frac{1-i \sqrt{35}}{6}, \frac{1-i \sqrt{35}}{6}, \frac{1+i \sqrt{35}}{6}\right]$
63	$G_{2}(2)^{\prime}$	$2^{2+1+2} \rtimes C_{3}$	$\left[1,1,1, \frac{-31+i \sqrt{63}}{32}\right]$
63	$G_{2}(2)^{\prime}$	$2^{2+1+2} \rtimes C_{3}$	$\left[1, \frac{29+i \sqrt{59}}{30}, \frac{29+i+59}{30},-1\right]$

$$
\text { *x satisfies } x^{8}-x^{7}-2 x^{6}+5 x^{5}+x^{4}+15 x^{3}-18 x^{2}-27 x+81
$$

[^0]: ${ }^{1} \mathrm{~J}$. Müller. On the multiplicity-free actions of the sporadic simple groups. J. Algebra, 320(2):910-926, 2008

