On the additive embedding of $\mathrm{PG}(2, q)$ into $\mathrm{AG}(3, q)$

CoDesCo Sevilla, 11.7.2024

Projective plane:
any two points are incident with a line any two line are incident with a point there exists a quadrilater.

With two operations $F(+, \times)$ we characterize some of them, as
points: (x, y)
lines: $a x+b y+c=0$

For instance, Hughes planes, where F is a near-field (e.g., one of the the seven exceptional ones...)

How to "characterize" projective planes with one operation $G(+)$?

Points are (not necessarily all the) elements of $G(+$)
Lines are k-subsets such that...

Points $P_{j}=(x, y)$ of lines in $\mathrm{AG}(2, q)$ are such that

$$
P_{1}+\cdots+P_{q}=(0,0)
$$

so why not take THIS as a condition?

Theorem (Caggegi, F., Pavone 2017)

With the exeptions of the trivial $2-(v, v-1, v-2)$ design, any linked $t-(v, k, \lambda)$ design $\mathcal{D}=(\mathcal{P}, \mathcal{B})$ can be embedded in a commutative group $G_{\mathcal{D}}$,
so that

$$
\left\{P_{1}, \ldots, P_{k}\right\} \text { is a block } \Longleftrightarrow P_{1}+\cdots+P_{k}=0
$$

Remark the sufficiency!

M. Pavone A quasidouble of the affine plane of order 4 etc., FFA (92), 2023.

A resolvable* $2-(16,4,2)$ design \mathcal{D}_{2} on the set $\operatorname{GF}(4) \times \operatorname{GF}(4)$, obtained joining the 20 lines of $\mathcal{D}_{1}=A G(2,4)$ with those one gets applying a GF(2)-linear map (which is not GF(4)-linear).

Note: $G_{\mathcal{D}_{1}}=\left(\frac{\mathbb{Z}}{2 \mathbb{Z}}\right)^{2} \oplus\left(\frac{\mathbb{Z}}{4 \mathbb{Z}}\right)^{5}$, whereas $G_{\mathcal{D}_{2}}=\left(\frac{\mathbb{Z}}{2 \mathbb{Z}}\right)^{2} \oplus\left(\frac{\mathbb{Z}}{4 \mathbb{Z}}\right)^{3}$
*not affine resolvable!
resolvable $=$ blocks can be partitioned into parallel classes, i.e. partitions of its ground set. affine resolvable $=$ resolvable, and such that two non-parallel blocks meet in the same number of points.

An interesting part of this construction is a (cyclic) decomposition of the $2-(16,4,7)$ point-plane design $A G(4,2)$ (having 140 blocks, here planes) into seven disjoint isomorphic copies of the $2-(16,4,1)$ design $A G(2,4)$ (having 20 blocks, here lines) which produces, in addition, a solution to Kirkman's schoolgirl problem.

Which one?

PG(3,2) underlies two non-isomorphic KTS(15), commonly denoted by 1a (second published solution, by Cayley) and

1b (first published solution, by Kirkman).

PG(3,2) underlies two non-isomorphic KTS (15), commonly denoted by 1a (second published solution, by Cayley) and 1b (first published solution, by Kirkman).

The solution given before is 1 b .

Back to $\mathcal{P} \hookrightarrow G_{\mathcal{D}}$, the bad news is that $G_{\mathcal{D}}$ is huge: for $k=p+1$, we find that $G_{\mathcal{D}}=\operatorname{GF}(p)^{\frac{v-1}{2}}$

But if we are willing of loosing the fact that
blocks are the only zero k-subsets, then we get an incredibly small embedding:

Buratti, M., Nakić, A.
Additivity of symmetric and subspace 2-designs
Des. Codes Cryptogr. (2024).
$\mathrm{PG}(2, q)$ can be embedded in $\mathrm{AG}(3, q)$ so that

$$
\left\{P_{1}, \ldots, P_{q}\right\} \text { is a block } \Longrightarrow P_{1}+\cdots+P_{q}=0
$$

Actually, they proved that a cyclic symmetric $2-(v, k, \lambda)$ is additive under $\left(\frac{\mathbb{Z}}{p \mathbb{Z}}\right)^{t}$ for p dividing $k-\lambda$, but not v, and t the exponent of $p \bmod v$.

Thus they embedded $\operatorname{PG}(n, q)$ into the $\mathrm{AG}(n+1, q)$ with the property that the coordinate sum of the points of the images of (projective) hyperplanes is zero.

Clearly $\operatorname{AG}(3, q)=\operatorname{GF}(q)^{3}=\operatorname{GF}\left(q^{3}\right)$ and
$\mathrm{GF}\left(q^{3}\right)^{*}=\mathrm{GF}(q)^{*} \times U$,
with $\operatorname{GF}(q)^{*}=\operatorname{Ker}\left(x \mapsto x^{q-1}\right)$ and $U=\operatorname{Im}\left(x \mapsto x^{q-1}\right)$,
that is, putting $\operatorname{GF}\left(q^{3}\right)^{*}=\langle\gamma\rangle$
$\mathrm{GF}(q)^{*}=\left\langle\gamma^{q^{2}+q+1}\right\rangle$,
$U=\left\langle\gamma^{q-1}\right\rangle$

In particular, $|U|=\left|\frac{\mathrm{GF}\left(q^{3}\right)^{*}}{\mathrm{GF}(q)^{*}}\right|=\frac{|\mathrm{AG}(3, q)|}{\left|\mathrm{GF}(q)^{*}\right|}=q^{2}+q+1=\mathrm{PG}(2, q)$.

Do all k-sets in $\mathrm{AG}(n+1, q)$ form a 2-design?
No, only a 1-design (or tactical configuration).

Do all k-sets in $\mathrm{AG}(n+1, q)$ form a 2-design?
No, only a 1-design (or tactical configuration).

Possibly a noble one?
No, just a plebean:

$$
r=\frac{1}{q^{n+1}}\left(\binom{q^{n+1}-1}{\frac{q^{n}-1}{q-1}}-\left(q^{n+1}-1\right)\binom{q^{n}-1}{\frac{q^{n-1}-1}{q-1}}\right)
$$

Do all k-sets in $\mathrm{AG}(n+1, q)$ form a 2-design?
No, only a 1-design (or tactical configuration).

Possibly a noble one?
No, just a plebean:

$$
r=\frac{1}{q^{n+1}}\left(\binom{q^{n+1}-1}{\frac{q^{n}-1}{q-1}}-\left(q^{n+1}-1\right)\binom{q^{n}-1}{\frac{q^{n-1}-1}{q-1}}\right)
$$

However, this makes the point-hyperplanes 2-design of $\mathrm{PG}(n, q)$ a sub-design of the $1-\left(q^{n+1}-1, \frac{q^{n}-1}{q-1}, r\right)$ design, whose automorphisms are just the ones induced by the elements in $\mathrm{GL}(n+1, q)$, as proved in
G. Falcone and M. Pavone

Permutations of zero-sumsets in a finite vector space. Forum Math., 2021.

What about automorphisms?

Note that the BN-representation corresponds, in the \mathbb{R}-case, to the identification of the real projective line with $\operatorname{SO}(2, \mathbb{R})$ in the decomposition $\mathbb{C}^{*}=$ $\mathbb{R}^{*} \times \operatorname{SO}(2, \mathbb{R})$

Skipping the case of the \mathbb{R}-plane, we have as well $\mathbb{H}^{*}=\mathbb{R}^{*} \times \operatorname{Spin}(3, \mathbb{R})$

Also, the Frobenius map could induce an automorphism, as

$$
F\left(x^{q-1}\right)=F(x)^{q-1} \text { and } F(x+y)=F(x)+F(y)
$$

... but it does not.
(Tried with the example in BN paper).

THANK YOU!

