A linear programming bound for sum-rank metric codes

Alexander Gavrilyuk

based on joint work with Aida Abiad, Antonina Khramova and Ilia Ponomarenko

Shimane University, Japan

Sum-rank metric space

A sum-rank metric space is

$$
\mathbb{F}_{q}^{\mathbf{N} \times \mathbf{M}}:=\mathbb{F}_{q}^{n_{1} \times m_{1}} \times \cdots \times \mathbb{F}_{q}^{n_{t} \times m_{t}}
$$

where $\mathbf{N}=\left[n_{1}, \ldots, n_{t}\right]$ and $\mathbf{M}=\left[m_{1}, \ldots, m_{t}\right]$, with sum-rank distance between two tuples
$\mathrm{A}:=\left(A_{1}, \ldots, A_{t}\right)$ and $\mathrm{B}:=\left(B_{1}, \ldots, B_{t}\right)$:

This generalizes both Hamming metric $(\mathbf{N}=\mathbf{M}=[1, \ldots, 1])$ and rank metric $(t=1)$ A sum-rank metric code C with minimum distance d is a subset of $\mathbb{F}_{q}^{N} \times \mathrm{M}$ such that: $\min ^{\operatorname{srkd}}(X, Y)=d$

Sum-rank metric space

A sum-rank metric space is

$$
\mathbb{F}_{q}^{\mathbf{N} \times \mathbf{M}}:=\mathbb{F}_{q}^{n_{1} \times m_{1}} \times \cdots \times \mathbb{F}_{q}^{n_{t} \times m_{t}}
$$

where $\mathbf{N}=\left[n_{1}, \ldots, n_{t}\right]$ and $\mathbf{M}=\left[m_{1}, \ldots, m_{t}\right]$, with sum-rank distance between two tuples $\mathrm{A}:=\left(A_{1}, \ldots, A_{t}\right)$ and $\mathrm{B}:=\left(B_{1}, \ldots, B_{t}\right)$:

$$
\operatorname{srkd}(\mathrm{A}, \mathrm{~B})=\sum_{i=1}^{t} \operatorname{rk}\left(A_{i}-B_{i}\right)
$$

This generalizes both Hamming metric $(\mathbb{N}=\mathrm{M}=[1, \ldots, 1])$ and rank metric $(t=1)$.
A sum-rank metric code \mathcal{C} with minimum distance d is a subset of $\mathbb{F}_{q}^{N \times M}$ such that: $\min \operatorname{srkd}(X, Y)=d$

Sum-rank metric space

A sum-rank metric space is

$$
\mathbb{F}_{q}^{\mathbf{N} \times \mathbf{M}}:=\mathbb{F}_{q}^{1 \times 1} \times \cdots \times \mathbb{F}_{q}^{1 \times 1} \cong \mathbb{F}_{q}^{t}
$$

where $\mathbf{N}=\left[n_{1}, \ldots, n_{t}\right]$ and $\mathbf{M}=\left[m_{1}, \ldots, m_{t}\right]$, with sum-rank distance between two tuples $\mathrm{A}:=\left(A_{1}, \ldots, A_{t}\right)$ and $\mathrm{B}:=\left(B_{1}, \ldots, B_{t}\right)$:

$$
\operatorname{srkd}(\mathrm{A}, \mathrm{~B})=\sum_{i=1}^{t} \operatorname{rk}\left(A_{i}-B_{i}\right)
$$

This generalizes both Hamming metric $(\mathbf{N}=\mathbf{M}=[1, \ldots, 1])$
A sum-rank metric code \mathcal{C} with minimum distance d is a subset of $\mathbb{F}_{q}^{N \times M}$ such that $\min _{X \in \mathcal{C}} \operatorname{srkd}(X, Y)=d$

Sum-rank metric space

A sum-rank metric space is

$$
\mathbb{F}_{q}^{\mathbf{N} \times \mathbf{M}}:=\mathbb{F}_{q}^{n_{1} \times m_{1}},
$$

where $\mathbf{N}=\left[n_{1}, \ldots, n_{t}\right]$ and $\mathbf{M}=\left[m_{1}, \ldots, m_{t}\right]$, with sum-rank distance between two tuples $\mathrm{A}:=\left(A_{1}, \ldots, A_{t}\right)$ and $\mathrm{B}:=\left(B_{1}, \ldots, B_{t}\right)$:

$$
\operatorname{srkd}(\mathrm{A}, \mathrm{~B})=\sum_{i=1}^{t} \operatorname{rk}\left(A_{i}-B_{i}\right) .
$$

This generalizes both Hamming metric $(\mathbf{N}=\mathbf{M}=[1, \ldots, 1])$ and rank metric $(t=1)$.
A sum-rank metric code C with minimum distance d is a subset of $\mathbb{F}_{q}^{N \times M}$ such that
$\min _{X, Y \in \mathcal{C}} \operatorname{srkd}(X, Y)=d$.
Question: What is the maximum size of a sum-rank metric code with minimum distance d?

Sum-rank metric space

A sum-rank metric space is

$$
\mathbb{F}_{q}^{\mathbf{N} \times \mathbf{M}}:=\mathbb{F}_{q}^{n_{1} \times m_{1}},
$$

where $\mathbf{N}=\left[n_{1}, \ldots, n_{t}\right]$ and $\mathbf{M}=\left[m_{1}, \ldots, m_{t}\right]$, with sum-rank distance between two tuples $\mathrm{A}:=\left(A_{1}, \ldots, A_{t}\right)$ and $\mathrm{B}:=\left(B_{1}, \ldots, B_{t}\right)$:

$$
\operatorname{srkd}(\mathrm{A}, \mathrm{~B})=\sum_{i=1}^{t} \operatorname{rk}\left(A_{i}-B_{i}\right)
$$

This generalizes both Hamming metric $(\mathbf{N}=\mathbf{M}=[1, \ldots, 1])$ and rank metric $(t=1)$.
A sum-rank metric code \mathcal{C} with minimum distance d is a subset of $\mathbb{F}_{q}^{\mathbb{N}} \times \mathbf{M}$ such that:

$$
\min _{X, Y \in \mathcal{C}} \operatorname{srkd}(X, Y)=d
$$

Sum-rank metric space

A sum-rank metric space is

$$
\mathbb{F}_{q}^{\mathbf{N} \times \mathbf{M}}:=\mathbb{F}_{q}^{n_{1} \times m_{1}},
$$

where $\mathbf{N}=\left[n_{1}, \ldots, n_{t}\right]$ and $\mathbf{M}=\left[m_{1}, \ldots, m_{t}\right]$, with sum-rank distance between two tuples $\mathrm{A}:=\left(A_{1}, \ldots, A_{t}\right)$ and $\mathrm{B}:=\left(B_{1}, \ldots, B_{t}\right)$:

$$
\operatorname{srkd}(\mathrm{A}, \mathrm{~B})=\sum_{i=1}^{t} \operatorname{rk}\left(A_{i}-B_{i}\right)
$$

This generalizes both Hamming metric $(\mathbf{N}=\mathbf{M}=[1, \ldots, 1])$ and rank metric $(t=1)$.
A sum-rank metric code \mathcal{C} with minimum distance d is a subset of $\mathbb{F}_{q}^{\mathbb{N} \times \mathrm{M}}$ such that:

$$
\min _{X, Y \in \mathcal{C}} \operatorname{srkd}(X, Y)=d
$$

Question: What is the maximum size of a sum-rank metric code with minimum distance d ?

Sum-rank metric space

Example

Here $\mathbf{N}=[3,2,1,1]$ and $\mathbf{M}=[3,3,2,1], q=2$.

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
1 & 1 & 1
\end{array}\right],\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 0 & 1
\end{array}\right],\left[\begin{array}{ll}
0 & 1
\end{array}\right], 1 \quad\left[\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
1 & 0 & 1
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 0 \\
1 & 1 & 1
\end{array}\right],\left[\begin{array}{ll}
0 & 1
\end{array}\right], 0
$$

$$
\operatorname{rk}\left(\left[\begin{array}{ccccccccc}
1 & 0 & 0 & & & & & & \\
0 & 1 & 1 & & & & & & \\
1 & 1 & 1 & & & & & & \\
& & & 1 & 0 & 0 & & & \\
& & & 1 & 0 & 1 & & & \\
& & & & & & 0 & 1 & \\
& & & & & & & & 1
\end{array}\right] \oplus\left[\begin{array}{ccccccccc}
0 & 0 & 0 & & & & & & \\
1 & 0 & 0 & & & & & & \\
1 & 0 & 1 & & & & & & \\
& & & 0 & 0 & 0 & & & \\
& & & 1 & 1 & 1 & & & \\
& & & & & & 0 & 1 & \\
& & & & & & & & 0
\end{array}\right]\right)=6
$$

Code-theoretical and geometric bounds

Question: What is the maximum size of a sum-rank metric code with minimum distance d ?
Some upper bounds were introduced in
嗇 E. Byrne, H. Gluesing-Luerssen, and A. Ravagnani. Fundamental properties of sum-rank-metric codes. IEEE Trans. Inf. Theory, 67(10):6456-6475, 2021.

- Bounds induced by Singleton, Hamming, Plotkin, and Elias bounds via embedding a sum-rank metric code into a Hamming space.
- Other bounds: Sphere-Packing, Projective Sphere-Packing, Total Distance

Code-theoretical and geometric bounds

Question: What is the maximum size of a sum-rank metric code with minimum distance d ?
Some upper bounds were introduced in
E. Byrne, H. Gluesing-Luerssen, and A. Ravagnani. Fundamental properties of sum-rank-metric codes. IEEE Trans. Inf. Theory, 67(10):6456-6475, 2021.

- Bounds induced by Singleton, Hamming, Plotkin, and Elias bounds via embedding a sum-rank metric code into a Hamming space.
- Other bounds: Sphere-Packing, Projective Sphere-Packing, Total Distance.

Code-theoretical and geometric bounds

Question: What is the maximum size of a sum-rank metric code with minimum distance d ?
Some upper bounds were introduced in
(E. Byrne, H. Gluesing-Luerssen, and A. Ravagnani. Fundamental properties of sum-rank-metric codes. IEEE Trans. Inf. Theory, 67(10):6456-6475, 2021.

- Bounds induced by Singleton, Hamming, Plotkin, and Elias bounds via embedding a sum-rank metric code into a Hamming space.
- Other bounds: Sphere-Packing, Projective Sphere-Packing, Total Distance.

Sum-rank metric graph

A. Abiad, A.P. Khramova, A. Ravagnani. Eigenvalue bounds for sum-rank-metric codes. IEEE Trans. Inf. Theory, 2024.
They introduced a sum-rank metric graph $\Gamma:=\Gamma\left(\mathbb{F}_{q}^{\mathbf{N} \times \mathbf{M}}\right)$:

- the vertex set of $\Gamma=\left\{\right.$ all the t-tuples of matrices from $\left.\mathbb{F}_{q}^{\mathbf{N} \times \mathbf{M}}\right\}$;
- $\mathrm{A}:=\left(A_{1}, \ldots, A_{t}\right)$ and $\mathrm{B}:=\left(B_{1}, \ldots, B_{t}\right)$ form an edge iff the sum-rank distance is 1 :

$$
\mathrm{A} \sim \mathrm{~B} \quad \Longleftrightarrow \quad \operatorname{srkd}(\mathrm{~A}, \mathrm{~B})=\sum_{i=1}^{t} \operatorname{rk}\left(A_{i}-B_{i}\right)=1
$$

Geodesic distance between A and B in $\Gamma=$ sum-rank distance srkd (A, B).
Then the maximum size of a sum-rank metric code in $\mathbb{F}_{q}^{N \times M}$ with minimum distance d equals $\alpha_{d-1}(\Gamma)$, the $(d-1)$-independence number of Γ
Now, α_{d-1} can be bounded via eigenvalues of the adjacency matrix of Γ.

Sum-rank metric graph

是
A. Abiad, A.P. Khramova, A. Ravagnani. Eigenvalue bounds for sum-rank-metric codes. IEEE Trans. Inf. Theory, 2024.
They introduced a sum-rank metric graph $\Gamma:=\Gamma\left(\mathbb{F}_{q}^{\mathbf{N} \times \mathrm{M}}\right)$:

- the vertex set of $\Gamma=\left\{\right.$ all the t-tuples of matrices from $\left.\mathbb{F}_{q}^{\mathbf{N} \times \mathbf{M}}\right\}$;
- $\mathrm{A}:=\left(A_{1}, \ldots, A_{t}\right)$ and $\mathrm{B}:=\left(B_{1}, \ldots, B_{t}\right)$ form an edge iff the sum-rank distance is 1 :

$$
\mathrm{A} \sim \mathrm{~B} \quad \Longleftrightarrow \quad \operatorname{srkd}(\mathrm{~A}, \mathrm{~B})=\sum_{i=1}^{t} \operatorname{rk}\left(A_{i}-B_{i}\right)=1
$$

Geodesic distance between A and B in $\Gamma=$ sum-rank distance $\operatorname{srkd}(A, B)$.
Then the maximum size of a sum-rank metric code in $\mathbb{F}_{q}^{\mathbf{N} \times \mathrm{M}}$ with minimum distance d equals $\alpha_{d-1}(\Gamma)$, the $(d-1)$-independence number of Γ.

Sum-rank metric graph

A. Abiad, A.P. Khramova, A. Ravagnani. Eigenvalue bounds for sum-rank-metric codes. IEEE Trans. Inf. Theory, 2024.They introduced a sum-rank metric graph $\Gamma:=\Gamma\left(\mathbb{F}_{q}^{\mathbf{N} \times \mathrm{M}}\right)$:

- the vertex set of $\Gamma=\left\{\right.$ all the t-tuples of matrices from $\left.\mathbb{F}_{q}^{\mathbf{N} \times \mathbf{M}}\right\}$;
- $\mathrm{A}:=\left(A_{1}, \ldots, A_{t}\right)$ and $\mathrm{B}:=\left(B_{1}, \ldots, B_{t}\right)$ form an edge iff the sum-rank distance is 1 :

$$
\mathrm{A} \sim \mathrm{~B} \quad \Longleftrightarrow \quad \operatorname{srkd}(\mathrm{~A}, \mathrm{~B})=\sum_{i=1}^{t} \operatorname{rk}\left(A_{i}-B_{i}\right)=1
$$

Geodesic distance between A and B in $\Gamma=$ sum-rank distance $\operatorname{srkd}(A, B)$.
Then the maximum size of a sum-rank metric code in $\mathbb{F}_{q}^{\mathbf{N} \times \mathrm{M}}$ with minimum distance d equals $\alpha_{d-1}(\Gamma)$, the $(d-1)$-independence number of Γ.
Now, α_{d-1} can be bounded via eigenvalues of the adjacency matrix of Γ.

Eigenvalue bounds on independence numbers

Let $\lambda_{1} \geq \cdots \geq \lambda_{n}$ be the eigenvalues of the adjacency matrix A of a regular graph G.
Ratio bound (Hoffman, 1974): $\alpha_{1} \leq n \frac{-\lambda_{n}}{\lambda_{1}-\lambda_{n}}$.

Ratio-type bound (Abiad, Coutinho, Fiol, 2019)

some polynomial $p \in \mathbb{R}_{d-1}[x]$, where $1 N /(p)$ is the largest element of the diagonal of $p(A)$
Question: How to find the best polynomial $p \in \mathbb{R}_{d-1}[x]$ to optimize the bound? The best polynomial for the Ratio-type bound

- $d=3$: Abiad, Coutinho, Fiol (2019)
- $d=4$: Kavi, Newman (2023);
- $d \geq$ 5: a linear programming problem (Fiol, 2020); no explicit closed formula is known.

Eigenvalue bounds on independence numbers

Let $\lambda_{1} \geq \cdots \geq \lambda_{n}$ be the eigenvalues of the adjacency matrix A of a regular graph G.
Ratio bound (Hoffman, 1974): $\alpha_{1} \leq n \frac{-\lambda_{n}}{\lambda_{1}-\lambda_{n}}$.

$$
\text { Ratio-type bound (Abiad, Coutinho, Fiol, 2019): } \alpha_{d-1} \leq n \frac{W(p)-\min _{i \in[2, n]} p\left(\lambda_{i}\right)}{p\left(\lambda_{1}\right)-\min _{i \in[2, n]} p\left(\lambda_{i}\right)} \text {, for }
$$ some polynomial $p \in \mathbb{R}_{d-1}[x]$, where $W(p)$ is the largest element of the diagonal of $p(A)$.

Question: How to find the best polynomial $p \in \mathbb{R}_{d-1}[x]$ to optimize the bound? The best polynomial for the Ratio-type bound

- $d=3$: Abiad, Coutinho, Fiol (2019)
- $d=4$: Kavi, Newman (2023);
- $d \geq$ 5: a linear programming problem (Fiol, 2020); no explicit closed formula is known

Eigenvalue bounds on independence numbers

Let $\lambda_{1} \geq \cdots \geq \lambda_{n}$ be the eigenvalues of the adjacency matrix A of a regular graph G.
Ratio bound (Hoffman, 1974): $\alpha_{1} \leq n \frac{-\lambda_{n}}{\lambda_{1}-\lambda_{n}}$.

Ratio-type bound (Abiad, Coutinho, Fiol, 2019): $\alpha_{d-1} \leq n \frac{W(p)-\min _{i \in[2, n]} p\left(\lambda_{i}\right)}{p\left(\lambda_{1}\right)-\min _{i \in[2, n]} p\left(\lambda_{i}\right)}$, for some polynomial $p \in \mathbb{R}_{d-1}[x]$, where $W(p)$ is the largest element of the diagonal of $p(A)$.

Question: How to find the best polynomial $p \in \mathbb{R}_{d-1}[x]$ to optimize the bound?
The best polynomial for the Ratio-type bound

- $d=3$: Abiad, Coutinho, Fiol (2019)
- $d=4$: Kavi, Nemman (2023).
- $d \geq 5$: a linear programming problem (Fiol, 2020); no explicit closed formula is known.

Eigenvalue bounds on independence numbers

Let $\lambda_{1} \geq \cdots \geq \lambda_{n}$ be the eigenvalues of the adjacency matrix A of a regular graph G.
Ratio bound (Hoffman, 1974): $\alpha_{1} \leq n \frac{-\lambda_{n}}{\lambda_{1}-\lambda_{n}}$.

Ratio-type bound (Abiad, Coutinho, Fiol, 2019): $\alpha_{d-1} \leq n \frac{W(p)-\min _{i \in[2, n]} p\left(\lambda_{i}\right)}{p\left(\lambda_{1}\right)-\min _{i \in[2, n]} p\left(\lambda_{i}\right)}$, for some polynomial $p \in \mathbb{R}_{d-1}[x]$, where $W(p)$ is the largest element of the diagonal of $p(A)$.

Question: How to find the best polynomial $p \in \mathbb{R}_{d-1}[x]$ to optimize the bound? The best polynomial for the Ratio-type bound:

- $d=3$: Abiad, Coutinho, Fiol (2019);
- $d=4$: Kavi, Newman (2023);
- $d \geq 5$: a linear programming problem (Fiol, 2020); no explicit closed formula is known.

Eigenvalue bounds on independence numbers

Let $\lambda_{1} \geq \cdots \geq \lambda_{n}$ be the eigenvalues of the adjacency matrix A of a regular graph G.
Ratio bound (Hoffman, 1974): $\alpha_{1} \leq n \frac{-\lambda_{n}}{\lambda_{1}-\lambda_{n}}$.

Ratio-type bound (Abiad, Coutinho, Fiol, 2019): $\alpha_{d-1} \leq n \frac{W(p)-\min _{i \in[2, n]} p\left(\lambda_{i}\right)}{p\left(\lambda_{1}\right)-\min _{i \in[2, n]} p\left(\lambda_{i}\right)}$, for some polynomial $p \in \mathbb{R}_{d-1}[x]$, where $W(p)$ is the largest element of the diagonal of $p(A)$.

Question: How to find the best polynomial $p \in \mathbb{R}_{d-1}[x]$ to optimize the bound? The best polynomial for the Ratio-type bound:

- $d=3$: Abiad, Coutinho, Fiol (2019);
- $d=4$: Kavi, Newman (2023);
- $d \geq 5$: a linear programming problem (Fiol, 2020); no explicit closed formula is known.

Question: How to compute the eigenvalues of the sum-rank metric graph Γ ?

「 as a Cartesian product

Let $\mathbf{N}=\left[n_{1}, \ldots, n_{t}\right], \mathbf{M}=\left[m_{1}, \ldots, m_{t}\right]$ and $\mathbb{F}_{q} \mathbf{N} \times \mathbf{M}:=\mathbb{F}_{q}^{n_{1} \times m_{1}} \times \cdots \times \mathbb{F}_{q}^{n_{t} \times m_{t}}$.
Abiad, Khramova, and Ravagnani (2023) observed:

- The sum-rank-metric graph $\Gamma\left(\mathbb{F}_{q}^{\mathbf{N}} \times \mathbf{M}\right)$ is the Cartesian product \square of graphs $\Gamma\left(\mathbb{F}_{q}^{n_{i} \times m_{i}}\right)$:

$$
\Gamma\left(\mathbb{F}_{q}^{\mathbf{N} \times \mathbf{M}}\right)=\Gamma\left(\mathbb{F}_{q}^{n_{1} \times m_{1}}\right) \square \ldots \square \Gamma\left(\mathbb{F}_{q}^{n_{t} \times m_{t}}\right)
$$

- Each graph $\Gamma\left(\mathbb{F}_{q}^{n_{i} \times m_{i}}\right)$ is a bilinear forms graph.
- The bilinear forms graph $\Gamma\left(\mathbb{F}_{q}^{n \times m}\right)$ is distance-regular, and its eigenvalues are given by
- The eigenvalues of the Cartesian product are all possible sums of eigenvalues of the product's factors.

「 as a Cartesian product

Let $\mathbf{N}=\left[n_{1}, \ldots, n_{t}\right], \mathbf{M}=\left[m_{1}, \ldots, m_{t}\right]$ and $\mathbb{F}_{q}^{\mathbf{N} \times \mathbf{M}}:=\mathbb{F}_{q}^{n_{1} \times m_{1}} \times \cdots \times \mathbb{F}_{q}^{n_{t} \times m_{t}}$.
Abiad, Khramova, and Ravagnani (2023) observed:

- The sum-rank-metric graph $\Gamma\left(\mathbb{F}_{q}^{\mathbf{N} \times \mathbf{M}}\right)$ is the Cartesian product \square of graphs $\Gamma\left(\mathbb{F}_{q}^{n_{i} \times m_{i}}\right)$:

$$
\Gamma\left(\mathbb{F}_{q}^{\mathbf{N} \times \mathbf{M}}\right)=\Gamma\left(\mathbb{F}_{q}^{n_{1} \times m_{1}}\right) \square \ldots \square \Gamma\left(\mathbb{F}_{q}^{n_{t} \times m_{t}}\right)
$$

- Each graph $\Gamma\left(\mathbb{F}_{q}^{n_{i} \times m_{i}}\right)$ is a bilinear forms graph.
- The bilinear forms graph $\Gamma\left(\mathbb{F}_{q}^{n \times m}\right)$ is distance-regular, and its eigenvalues are given by

$$
\theta_{i}=\frac{\left(q^{n-i}-1\right)\left(q^{m}-q^{i}\right)-q^{i}+1}{q-1}, \quad i=0, \ldots, n
$$

- The eigenvalues of the Cartesian product are all possible sums of eigenvalues of the product's factors.

「 as a Cartesian product

Let $\mathbf{N}=\left[n_{1}, \ldots, n_{t}\right], \mathbf{M}=\left[m_{1}, \ldots, m_{t}\right]$ and $\mathbb{F}_{q}^{\mathbf{N} \times \mathbf{M}}:=\mathbb{F}_{q}^{n_{1} \times m_{1}} \times \cdots \times \mathbb{F}_{q}^{n_{t} \times m_{t}}$.
Abiad, Khramova, and Ravagnani (2023) observed:

- The sum-rank-metric graph $\Gamma\left(\mathbb{F}_{q}^{\mathbf{N} \times \mathbf{M}}\right)$ is the Cartesian product \square of graphs $\Gamma\left(\mathbb{F}_{q}^{n_{i} \times m_{i}}\right)$:

$$
\Gamma\left(\mathbb{F}_{q}^{\mathbf{N} \times \mathbf{M}}\right)=\Gamma\left(\mathbb{F}_{q}^{n_{1} \times m_{1}}\right) \square \ldots \square \Gamma\left(\mathbb{F}_{q}^{n_{t} \times m_{t}}\right)
$$

- Each graph $\Gamma\left(\mathbb{F}_{q}^{n_{i} \times m_{i}}\right)$ is a bilinear forms graph.
- The bilinear forms graph $\Gamma\left(\mathbb{F}_{q}^{n \times m}\right)$ is distance-regular, and its eigenvalues are given by

$$
\theta_{i}=\frac{\left(q^{n-i}-1\right)\left(q^{m}-q^{i}\right)-q^{i}+1}{q-1}, \quad i=0, \ldots, n
$$

- The eigenvalues of the Cartesian product are all possible sums of eigenvalues of the product's factors.

「 as a Cartesian product of bilinear forms graphs

The bilinear forms graph $\Gamma\left(\mathbb{F}_{2}^{2 \times 2}\right)$: the vertices are 2×2 matrices over \mathbb{F}_{2} :

「 as a Cartesian product of bilinear forms graphs

The graph $\Gamma\left(\mathbb{F}_{2}^{2 \times 2} \times \mathbb{F}_{2}^{1 \times 1}\right)$: each vertex is a $((2 \times 2),(1 \times 1))$ tuple of matrices over \mathbb{F}_{2} :

Delsarte's LP

Computing the eigenvalues of Γ as those of the Cartesian product, Abiad, Khramova and Ravagnani showed that the Ratio-type bound sometimes outperforms previously known bounds.

- Delsarte's linear programming method (1973) is one of the most powerful tools for bounding the sizes of codes in association schemes:
- Hamming scheme (Hamming distance).
- Johnson scheme (constant weight codes)
- Grassmann scheme (subspace metric)
- bilinear forms scheme (rank-metric codes)
- Lee distance, etc.
- Abiad, Khramova and Ravagnani (RICCOTA, Rijeka, 2023) asked if this method can be adopted to bound the size of sum-rank metric codes
- An obvious obstacle here is that a sum-rank-metric graph is not distance-regular, i.e., it does not explicitly generate an association scheme.

Delsarte's LP

Computing the eigenvalues of Γ as those of the Cartesian product, Abiad, Khramova and Ravagnani showed that the Ratio-type bound sometimes outperforms previously known bounds.

- Delsarte's linear programming method (1973) is one of the most powerful tools for bounding the sizes of codes in association schemes:
- Hamming scheme (Hamming distance),
- Johnson scheme (constant weight codes),
- Grassmann scheme (subspace metric),
- bilinear forms scheme (rank-metric codes),
- Lee distance, etc.
- Abiad, Khramova and Ravagnani (RICCOTA, Rijeka, 2023) asked if this method can be adopted to bound the size of sum-rank metric codes.
- An obvious obstacle here is that a sum-rank-metric graph is not distance-regular, i.e., it does not explicitly generate an association scheme.

Delsarte's LP

Computing the eigenvalues of Γ as those of the Cartesian product, Abiad, Khramova and Ravagnani showed that the Ratio-type bound sometimes outperforms previously known bounds.

- Delsarte's linear programming method (1973) is one of the most powerful tools for bounding the sizes of codes in association schemes:
- Hamming scheme (Hamming distance),
- Johnson scheme (constant weight codes),
- Grassmann scheme (subspace metric),
- bilinear forms scheme (rank-metric codes),
- Lee distance, etc.
- Abiad, Khramova and Ravagnani (RICCOTA, Rijeka, 2023) asked if this method can be adopted to bound the size of sum-rank metric codes.
- An obvious obstacle here is that a sum-rank-metric graph is not distance-regular, i.e., it does not explicitly generate an association scheme.

Association schemes and Delsarte's LP

A symmetric association scheme $\mathcal{A}=(X, \mathcal{R})$ on a set X with relations $\mathcal{R}=\left\{R_{0}, \ldots, R_{D}\right\}$:

- \mathcal{R} is a partition of $X \times X$;
- R_{0} consists of (x, x) for all $x \in X$.
- $(x, y) \in R_{i}$ implies $(y, x) \in R_{i}$ for all x, y and R_{i}.
- for all $(x, y) \in R_{k}$, the number of z s.t. $(x, z) \in R_{i}$ and $(y, z) \in R_{j}$ is a constant that does not depend on the choice of x, y.

The Hamming scheme:

- $X=\{$ words of length n over $\{1, \ldots, q\}\}$,
- $R_{i}=\{$ all pairs with Hamming distance $i\}$.

The bilinear forms scheme:

- $\left\{\right.$ all matrices from $\left.\mathbb{F}_{q}^{n \times m}\right\}$,
- $\{$ all pairs of matrices with $\operatorname{rk}(A-B)=i\}$.

The relation R_{1} in both cases defines the (Hamming, bilinear forms) distance-regular graph, and all relations R_{i} are the "distance" relations in this graph.

Association schemes and Delsarte's LP

A symmetric association scheme $\mathcal{A}=(X, \mathcal{R})$ on a set X with relations $\mathcal{R}=\left\{R_{0}, \ldots, R_{D}\right\}$:

- \mathcal{R} is a partition of $X \times X$;
- R_{0} consists of (x, x) for all $x \in X$.
- $(x, y) \in R_{i}$ implies $(y, x) \in R_{i}$ for all x, y and R_{i}.
- for all $(x, y) \in R_{k}$, the number of z s.t. $(x, z) \in R_{i}$ and $(y, z) \in R_{j}$ is a constant that does not depend on the choice of x, y.

In general, an association scheme gives rise to a commutative matrix algebra.
The idea of Delsarte's LP method is to:

- consider a code C as a subset of X of an association scheme,
- then formulate an optimization problem where the objective is to maximize $|C|$ subject to linear constraints imposed by the properties of this matrix algebra.
By solving this linear program, one can obtain upper bounds on the number $|C|$ of "codewords".

Association schemes and Delsarte's LP

A symmetric association scheme $\mathcal{A}=(X, \mathcal{R})$ on a set X with relations $\mathcal{R}=\left\{R_{0}, \ldots, R_{D}\right\}$:

- \mathcal{R} is a partition of $X \times X$;
- R_{0} consists of (x, x) for all $x \in X$.
- $(x, y) \in R_{i}$ implies $(y, x) \in R_{i}$ for all x, y and R_{i}.
- for all $(x, y) \in R_{k}$, the number of z s.t. $(x, z) \in R_{i}$ and $(y, z) \in R_{j}$ is a constant that does not depend on the choice of x, y.

Question: How to define an association scheme for the sum-rank metric graph $\Gamma\left(\mathbb{F}_{q}^{\mathbf{N} \times \mathbf{M}}\right)$?

Partial order on association schemes

Let $\mathcal{X}=(X, \mathcal{R})$ and $\mathcal{Y}=(X, \mathcal{S})$ be association schemes on the same set X. We say that

$$
\mathcal{X} \leq \mathcal{Y}
$$

if and only if every relation of \mathcal{X} is a union of some relations of \mathcal{Y}.
In other words, the partition \mathcal{S} is a refinement of the partition \mathcal{R}.
In this case, then \mathcal{X} is said to be a fusion (scheme) of \mathcal{Y} and \mathcal{Y} is a fission (scheme) of \mathcal{X}
The trivial scheme $\left(X,\left\{R_{0}, R_{1}\right\}\right)$ is \leq any other scheme on X
For every graph G, there exists the smallest (w.r.t. \leq) association scheme* WL(G) such that the edge set of G is a union of some relations of $\mathrm{WL}(G)$.
WL(G) is called the Weisfeiler-Leman (coherent) closure of G

Partial order on association schemes

Let $\mathcal{X}=(X, \mathcal{R})$ and $\mathcal{Y}=(X, \mathcal{S})$ be association schemes on the same set X. We say that

$$
\mathcal{X} \leq \mathcal{Y}
$$

if and only if every relation of \mathcal{X} is a union of some relations of \mathcal{Y}.
In other words, the partition \mathcal{S} is a refinement of the partition \mathcal{R}.
In this case, then \mathcal{X} is said to be a fusion (scheme) of \mathcal{V} and \mathcal{Y} is a fission (scheme) of \mathcal{X}
The trivial scheme $\left(X,\left\{R_{0}, R_{1}\right\}\right)$ is \leq any other scheme on X.
For every graph G, there exists the smallest (w.r.t. \leq) association scheme* WL(G) such that the edge set of G is a union of some relations of $\mathrm{WL}(G)$.

WI (G) is called the Weisfeiler-Leman (coherent) closure of G

Partial order on association schemes

Let $\mathcal{X}=(X, \mathcal{R})$ and $\mathcal{Y}=(X, \mathcal{S})$ be association schemes on the same set X. We say that

$$
\mathcal{X} \leq \mathcal{Y}
$$

if and only if every relation of \mathcal{X} is a union of some relations of \mathcal{Y}.
In other words, the partition \mathcal{S} is a refinement of the partition \mathcal{R}.
In this case, then \mathcal{X} is said to be a fusion (scheme) of \mathcal{Y} and \mathcal{Y} is a fission (scheme) of \mathcal{X}.
The trivial scheme $\left(X,\left\{R_{0}, R_{1}\right\}\right)$ is \leq any other scheme on X.
For every graph G, there exists the smallest (w.r.t. \leq) association scheme* $\mathrm{WL}(G)$ such that the edge set of G is a union of some relations of $\mathrm{WL}(G)$.

WLL (G) is called the Weisfeiler-Leman (coherent) closure of G

Partial order on association schemes

Let $\mathcal{X}=(X, \mathcal{R})$ and $\mathcal{Y}=(X, \mathcal{S})$ be association schemes on the same set X. We say that

$$
\mathcal{X} \leq \mathcal{Y}
$$

if and only if every relation of \mathcal{X} is a union of some relations of \mathcal{Y}.
In other words, the partition \mathcal{S} is a refinement of the partition \mathcal{R}.
In this case, then \mathcal{X} is said to be a fusion (scheme) of \mathcal{Y} and \mathcal{Y} is a fission (scheme) of \mathcal{X}.
The trivial scheme $\left(X,\left\{R_{0}, R_{1}\right\}\right)$ is \leq any other scheme on X.

```
For every graph \(G\), there exists the smallest (w.r.t. \(\leq\) ) association scheme* \(\mathrm{WL}(G)\) such that the edge set of \(G\) is a union of some relations of \(\mathrm{WL}(G)\).
```

WII (G) is called the Weisfeiler-Ieman (coherent) closure of G

Partial order on association schemes

Let $\mathcal{X}=(X, \mathcal{R})$ and $\mathcal{Y}=(X, \mathcal{S})$ be association schemes on the same set X. We say that

$$
\mathcal{X} \leq \mathcal{Y}
$$

if and only if every relation of \mathcal{X} is a union of some relations of \mathcal{Y}.
In other words, the partition \mathcal{S} is a refinement of the partition \mathcal{R}.
In this case, then \mathcal{X} is said to be a fusion (scheme) of \mathcal{Y} and \mathcal{Y} is a fission (scheme) of \mathcal{X}.
The trivial scheme $\left(X,\left\{R_{0}, R_{1}\right\}\right)$ is \leq any other scheme on X.
For every graph G, there exists the smallest (w.r.t. \leq) association scheme* $\mathrm{WL}(G)$ such that the edge set of G is a union of some relations of $\mathrm{WL}(G)$.

Partial order on association schemes

Let $\mathcal{X}=(X, \mathcal{R})$ and $\mathcal{Y}=(X, \mathcal{S})$ be association schemes on the same set X. We say that

$$
\mathcal{X} \leq \mathcal{Y}
$$

if and only if every relation of \mathcal{X} is a union of some relations of \mathcal{Y}.
In other words, the partition \mathcal{S} is a refinement of the partition \mathcal{R}.
In this case, then \mathcal{X} is said to be a fusion (scheme) of \mathcal{Y} and \mathcal{Y} is a fission (scheme) of \mathcal{X}.
The trivial scheme $\left(X,\left\{R_{0}, R_{1}\right\}\right)$ is \leq any other scheme on X.
For every graph G, there exists the smallest (w.r.t. \leq) association scheme* $\mathrm{WL}(G)$ such that the edge set of G is a union of some relations of $\mathrm{WL}(G)$.
$\mathrm{WL}(G)$ is called the Weisfeiler-Leman (coherent) closure of G.

Direct product of association schemes

Given two association schemes $\mathcal{A}_{i}=\left(X_{i}, \mathcal{R}_{i}\right)$ with $D_{i}+1$ relations $R_{j}^{i}, j=0, \ldots, D_{i}, i=1,2$, their direct product $\mathcal{A}_{1} \otimes \mathcal{A}_{2}$ is the association scheme $\left(X_{1} \times X_{2}, \mathcal{R}\right)$ such that:

- $\mathcal{R}=\left\{R_{0,0}, R_{0,1}, \ldots, R_{0, D_{2}}, R_{1,0}, \ldots, R_{D_{1}, D_{2}}\right\} ;$
- $\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right) \in R_{i, j} \Longleftrightarrow\left(x_{1}, y_{1}\right) \in R_{i}^{1}$ and $\left(x_{2}, y_{2}\right) \in R_{j}^{2}$.

Lemma

$W L\left(G_{1} \square G_{2}\right) \leq W L\left(G_{1}\right) \otimes W L\left(G_{2}\right)$.
$\mathrm{WL}\left(G_{1} \square G_{2}\right)$ is an association scheme whenever $\operatorname{WL}\left(G_{1}\right)$ and $\operatorname{WL}\left(G_{2}\right)$ are.

Direct product of association schemes

Given two association schemes $\mathcal{A}_{i}=\left(X_{i}, \mathcal{R}_{i}\right)$ with $D_{i}+1$ relations $R_{j}^{i}, j=0, \ldots, D_{i}, i=1,2$, their direct product $\mathcal{A}_{1} \otimes \mathcal{A}_{2}$ is the association scheme $\left(X_{1} \times X_{2}, \mathcal{R}\right)$ such that:

- $\mathcal{R}=\left\{R_{0,0}, R_{0,1}, \ldots, R_{0, D_{2}}, R_{1,0}, \ldots, R_{D_{1}, D_{2}}\right\} ;$
- $\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right) \in R_{i, j} \Longleftrightarrow\left(x_{1}, y_{1}\right) \in R_{i}^{1}$ and $\left(x_{2}, y_{2}\right) \in R_{j}^{2}$.

Lemma

$$
\mathrm{WL}\left(G_{1} \square G_{2}\right) \leq \mathrm{WL}\left(G_{1}\right) \otimes \mathrm{WL}\left(G_{2}\right)
$$

Direct product of association schemes

Given two association schemes $\mathcal{A}_{i}=\left(X_{i}, \mathcal{R}_{i}\right)$ with $D_{i}+1$ relations $R_{j}^{i}, j=0, \ldots, D_{i}, i=1,2$, their direct product $\mathcal{A}_{1} \otimes \mathcal{A}_{2}$ is the association scheme $\left(X_{1} \times X_{2}, \mathcal{R}\right)$ such that:

- $\mathcal{R}=\left\{R_{0,0}, R_{0,1}, \ldots, R_{0, D_{2}}, R_{1,0}, \ldots, R_{D_{1}, D_{2}}\right\} ;$
- $\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right) \in R_{i, j} \Longleftrightarrow\left(x_{1}, y_{1}\right) \in R_{i}^{1}$ and $\left(x_{2}, y_{2}\right) \in R_{j}^{2}$.

Lemma

$\mathrm{WL}\left(G_{1} \square G_{2}\right) \leq \mathrm{WL}\left(G_{1}\right) \otimes \mathrm{WL}\left(G_{2}\right)$.
$\mathrm{WL}\left(G_{1} \square G_{2}\right)$ is an association scheme whenever $\mathrm{WL}\left(G_{1}\right)$ and $\mathrm{WL}\left(G_{2}\right)$ are.

Association scheme of a sum-rank-metric graph

The coherent closure of the sum-rank metric graph $\Gamma\left(\mathbb{F}_{q}^{\mathbf{N} \times \mathbf{M}}\right)$ is contained in the direct product of bilinear forms schemes corresponding to $\Gamma\left(\mathbb{F}_{q}^{n_{1} \times m_{1}}\right), \ldots, \Gamma\left(\mathbb{F}_{q}^{n_{t} \times m_{t}}\right)$:

$$
\mathrm{WL}\left(\Gamma\left(\mathbb{F}_{q}^{\mathbf{N} \times \mathbf{M}}\right)\right) \leq \mathrm{WL}\left(\Gamma\left(\mathbb{F}_{q}^{n_{1} \times m_{1}}\right)\right) \otimes \ldots \otimes \mathrm{WL}\left(\Gamma\left(\mathbb{F}_{q}^{n_{t} \times m_{t}}\right)\right)
$$

Question: When do we have equality?

- Note: the Hamming scheme < the direct product of the trivial schemes
- We conjecture that equality happens whenever the factors of the Cartesian product are pairwise non-isomorphic
- Nevertheless, applying the Delsarte's LP method to the larger (fission) scheme still gives an upper bound on the size of a code

Association scheme of a sum-rank-metric graph

The coherent closure of the sum-rank metric graph $\Gamma\left(\mathbb{F}_{q}^{\mathbf{N} \times \mathbf{M}}\right)$ is contained in the direct product of bilinear forms schemes corresponding to $\Gamma\left(\mathbb{F}_{q}^{n_{1} \times m_{1}}\right), \ldots, \Gamma\left(\mathbb{F}_{q}^{n_{t} \times m_{t}}\right)$:

$$
\mathrm{WL}\left(\Gamma\left(\mathbb{F}_{q}^{\mathbf{N} \times \mathbf{M}}\right)\right) \leq \mathrm{WL}\left(\Gamma\left(\mathbb{F}_{q}^{n_{1} \times m_{1}}\right)\right) \otimes \ldots \otimes \mathrm{WL}\left(\Gamma\left(\mathbb{F}_{q}^{n_{t} \times m_{t}}\right)\right)
$$

Question: When do we have equality?

- Note: the Hamming scheme < the direct product of the trivial schemes.
- We conjecture that equality happens whenever the factors of the Cartesian product are pairwise non-isomorphic
- Nevertheless, applying the Delsarte's LP method to the larger (fission) scheme still gives an upper bound on the size of a code.

Association scheme of a sum-rank-metric graph

The coherent closure of the sum-rank metric graph $\Gamma\left(\mathbb{F}_{q}^{\mathbf{N} \times \mathbf{M}}\right)$ is contained in the direct product of bilinear forms schemes corresponding to $\Gamma\left(\mathbb{F}_{q}^{n_{1} \times m_{1}}\right), \ldots, \Gamma\left(\mathbb{F}_{q}^{n_{t} \times m_{t}}\right)$:

$$
\mathrm{WL}\left(\Gamma\left(\mathbb{F}_{q}^{\mathbf{N} \times \mathbf{M}}\right)\right) \leq \mathrm{WL}\left(\Gamma\left(\mathbb{F}_{q}^{n_{1} \times m_{1}}\right)\right) \otimes \ldots \otimes \mathrm{WL}\left(\Gamma\left(\mathbb{F}_{q}^{n_{t} \times m_{t}}\right)\right)
$$

Question: When do we have equality?

- Note: the Hamming scheme < the direct product of the trivial schemes.
- We conjecture that equality happens whenever the factors of the Cartesian product are pairwise non-isomorphic.
- Nevertheless, applying the Delsarte's LP method to the larger (fission) scheme still gives an upper bound on the size of a code.

Association scheme of a sum-rank-metric graph

The coherent closure of the sum-rank metric graph $\Gamma\left(\mathbb{F}_{q}^{\mathbf{N} \times \mathbf{M}}\right)$ is contained in the direct product of bilinear forms schemes corresponding to $\Gamma\left(\mathbb{F}_{q}^{n_{1} \times m_{1}}\right), \ldots, \Gamma\left(\mathbb{F}_{q}^{n_{t} \times m_{t}}\right)$:

$$
\mathrm{WL}\left(\Gamma\left(\mathbb{F}_{q}^{\mathbf{N} \times \mathbf{M}}\right)\right) \leq \mathrm{WL}\left(\Gamma\left(\mathbb{F}_{q}^{n_{1} \times m_{1}}\right)\right) \otimes \ldots \otimes \mathrm{WL}\left(\Gamma\left(\mathbb{F}_{q}^{n_{t} \times m_{t}}\right)\right)
$$

Question: When do we have equality?

- Note: the Hamming scheme < the direct product of the trivial schemes.
- We conjecture that equality happens whenever the factors of the Cartesian product are pairwise non-isomorphic.
- Nevertheless, applying the Delsarte's LP method to the larger (fission) scheme still gives an upper bound on the size of a code.

Computational results

bold $=$ best performing bound; underlined $=$ Ratio-type bound outperforms coding bounds.

t	q	N	M	d	$\|V\|$	Ratio-type	Delsarte LP	iS_{d}	iH_{d}	iE_{d}	S_{d}	SP_{d}	PSP_{d}
2	2	[2, 2]	[2, 2]	3	256	11	10	16	19	34	16	13	13
3	2	[2, 2, 1]	[2, 2, 1]	3	512	25	20	64	64	151	32	25	25
3	2	[2, 2, 1]	[2, 2, 1]	4	512	10	6	16	64	27	8	25	18
3	2	[2, 2, 1]	[2, 2, 2]	3	1024	38	34	64	64	151	64	46	46
3	2	[2, 2, 1]	[2, 2, 2]	4	1024	15	8	16	64	27	16	46	36
4	2	[2, 1, 1, 1]	[2, 2, 2, 1]	3	512	$\underline{28}$	24	64	64	151	32	30	30
4	2	[2, 1, 1, 1]	[2, 2, 2, 1]	4	512	11	6	16	64	27	8	30	32
4	2	[2, 1, 1, 1]	[2, 2, 2, 2]	3	1024	44	42	64	64	151	64	53	53
4	2	[2, 1, 1, 1]	[2, 2, 2, 2]	4	1024	18	10	16	64	27	16	53	64
4	2	[2, 2, 1, 1]	[2, 2, 1, 1]	3	1024	46	40	256	215	529	64	48	48
4	2	[2, 2, 1, 1]	[2, 2, 1, 1]	4	1024	19	12	64	215	119	16	48	36
5	2	[2, 1, 1, 1, 1]	[2, 1, 1, 1, 1]	5	256	5	2	16	26	19	4	4	3
5	2	[2, 1, 1, 1, 1]	[$3,1,1,1,1$]	5	1024	8	2	64	336	240	4	6	3
5	2	[2, 1, 1, 1, 1]	[2, 2, 2, 1, 1]	3	1024	56	49	256	215	529	64	56	56
5	2	[$2,1,1,1,1]$	[2, 2, 2, 1, 1]	4	1024	22	13	64	215	119	16	56	64
6	2	[2, 1, 1, 1, 1, 1]	[2, 1, 1, 1, 1, 1]	4	512	16	12	256	512	407	16	34	32
6	2	[2, 1, 1, 1, 1, 1]	[2, 1, 1, 1, 1, 1]	5	512	8	4	64	77	99	8	6	5
6	2	[2, 1, 1, 1, 1, 1]	[2, 2, 1, 1, 1, 1]	5	1024	11	6	64	77	99	8	9	8
6	2	[2, 1, 1, 1, 1, 1]	[2, 2, 1, 1, 1, 1]	6	1024	7	2	16	77	14	4	9	

