A linear programming bound for sum-rank metric codes

Alexander Gavrilyuk

based on joint work with Aida Abiad, Antonina Khramova and Ilia Ponomarenko

Shimane University, Japan

July 10, 2024

A sum-rank metric space is

$$\mathbb{F}_q^{\mathbf{N} imes \mathbf{M}} := \mathbb{F}_q^{n_1 imes m_1} imes \cdots imes \mathbb{F}_q^{n_t imes m_t},$$

where $N = [n_1, \dots, n_t]$ and $M = [m_1, \dots, m_t]$, with sum-rank distance between two tuples $A := (A_1, \dots, A_t)$ and $B := (B_1, \dots, B_t)$:

$$\operatorname{srkd}(A,B) = \sum_{i=1}^{t} \operatorname{rk}(A_i - B_i).$$

This generalizes both Hamming metric (N = M = [1, ..., 1]) and rank metric (t = 1).

A sum-rank metric code C with minimum distance d is a <u>subset</u> of $\mathbb{F}_q^{N \times M}$ such that:

$$\min_{X,Y\in\mathcal{C}}\operatorname{srkd}(X,Y)=d.$$

A sum-rank metric space is

$$\mathbb{F}_q^{\mathbf{N} imes \mathbf{M}} := \mathbb{F}_q^{n_1 imes m_1} imes \cdots imes \mathbb{F}_q^{n_t imes m_t},$$

where $\mathbf{N} = [n_1, \dots, n_t]$ and $\mathbf{M} = [m_1, \dots, m_t]$, with sum-rank distance between two tuples $A := (A_1, \dots, A_t)$ and $B := (B_1, \dots, B_t)$:

$$\operatorname{srkd}(A,B) = \sum_{i=1}^{t} \operatorname{rk}(A_i - B_i).$$

This generalizes both Hamming metric (N = M = [1, ..., 1]) and rank metric (t = 1).

A sum-rank metric code C with minimum distance d is a <u>subset</u> of $\mathbb{F}_q^{N \times M}$ such that:

$$\min_{X,Y\in\mathcal{C}}\operatorname{srkd}(X,Y)=d.$$

A sum-rank metric space is

$$\mathbb{F}_q^{\mathsf{N} imes\mathsf{M}} := \mathbb{F}_q^{1 imes 1} imes \cdots imes \mathbb{F}_q^{1 imes 1} \cong \mathbb{F}_q^t,$$

where $\mathbf{N} = [n_1, \dots, n_t]$ and $\mathbf{M} = [m_1, \dots, m_t]$, with sum-rank distance between two tuples $A := (A_1, \dots, A_t)$ and $B := (B_1, \dots, B_t)$:

$$\operatorname{srkd}(A,B) = \sum_{i=1}^{t} \operatorname{rk}(A_i - B_i).$$

This generalizes both Hamming metric (N = M = [1, ..., 1]) and rank metric (t = 1).

A sum-rank metric code C with minimum distance d is a <u>subset</u> of $\mathbb{F}_q^{N \times M}$ such that:

$$\min_{X,Y\in\mathcal{C}}\operatorname{srkd}(X,Y)=d.$$

A sum-rank metric space is

$$\mathbb{F}_q^{\mathsf{N}\times\mathsf{M}} := \mathbb{F}_q^{n_1\times m_1},$$

where $N = [n_1, \ldots, n_t]$ and $M = [m_1, \ldots, m_t]$, with sum-rank distance between two tuples $A := (A_1, \ldots, A_t)$ and $B := (B_1, \ldots, B_t)$:

$$\operatorname{srkd}(A,B) = \sum_{i=1}^{t} \operatorname{rk}(A_i - B_i).$$

This generalizes both Hamming metric (N = M = [1, ..., 1]) and rank metric (t = 1).

A sum-rank metric code C with minimum distance d is a <u>subset</u> of $\mathbb{F}_q^{N \times M}$ such that:

$$\min_{X,Y\in\mathcal{C}}\operatorname{srkd}(X,Y)=d.$$

A sum-rank metric space is

$$\mathbb{F}_q^{\mathsf{N}\times\mathsf{M}} := \mathbb{F}_q^{n_1\times m_1},$$

where $N = [n_1, \ldots, n_t]$ and $M = [m_1, \ldots, m_t]$, with sum-rank distance between two tuples $A := (A_1, \ldots, A_t)$ and $B := (B_1, \ldots, B_t)$:

$$\operatorname{srkd}(A,B) = \sum_{i=1}^{t} \operatorname{rk}(A_i - B_i).$$

This generalizes both Hamming metric (N = M = [1, ..., 1]) and rank metric (t = 1).

A sum-rank metric code C with minimum distance d is a <u>subset</u> of $\mathbb{F}_{q}^{N \times M}$ such that:

$$\min_{X,Y\in\mathcal{C}}\operatorname{srkd}(X,Y)=d.$$

A sum-rank metric space is

$$\mathbb{F}_q^{\mathsf{N}\times\mathsf{M}} := \mathbb{F}_q^{n_1\times m_1},$$

where $N = [n_1, \ldots, n_t]$ and $M = [m_1, \ldots, m_t]$, with sum-rank distance between two tuples $A := (A_1, \ldots, A_t)$ and $B := (B_1, \ldots, B_t)$:

$$\operatorname{srkd}(A,B) = \sum_{i=1}^{t} \operatorname{rk}(A_i - B_i).$$

This generalizes both Hamming metric (N = M = [1, ..., 1]) and rank metric (t = 1).

A sum-rank metric code C with minimum distance d is a <u>subset</u> of $\mathbb{F}_q^{N \times M}$ such that:

$$\min_{X,Y\in\mathcal{C}}\operatorname{srkd}(X,Y)=d.$$

Example

Here N = [3, 2, 1, 1] and M = [3, 3, 2, 1], q = 2.

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \end{bmatrix}, 1 \qquad \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \end{bmatrix}, 0$$

Question: What is the maximum size of a sum-rank metric code with minimum distance *d*? Some upper bounds were introduced in

- E. Byrne, H. Gluesing-Luerssen, and A. Ravagnani. Fundamental properties of sum-rank-metric codes. *IEEE Trans. Inf. Theory*, 67(10):6456–6475, 2021.
 - Bounds *induced* by Singleton, Hamming, Plotkin, and Elias bounds via embedding a sum-rank metric code into a Hamming space.
 - Other bounds: Sphere-Packing, Projective Sphere-Packing, Total Distance.

Question: What is the maximum size of a sum-rank metric code with minimum distance *d*? Some upper bounds were introduced in

- E. Byrne, H. Gluesing-Luerssen, and A. Ravagnani. Fundamental properties of sum-rank-metric codes. *IEEE Trans. Inf. Theory*, 67(10):6456–6475, 2021.
 - Bounds *induced* by Singleton, Hamming, Plotkin, and Elias bounds via embedding a sum-rank metric code into a Hamming space.
 - Other bounds: Sphere-Packing, Projective Sphere-Packing, Total Distance.

Question: What is the maximum size of a sum-rank metric code with minimum distance d? Some upper bounds were introduced in

- E. Byrne, H. Gluesing-Luerssen, and A. Ravagnani. Fundamental properties of sum-rank-metric codes. *IEEE Trans. Inf. Theory*, 67(10):6456–6475, 2021.
 - Bounds *induced* by Singleton, Hamming, Plotkin, and Elias bounds via embedding a sum-rank metric code into a Hamming space.
 - Other bounds: Sphere-Packing, Projective Sphere-Packing, Total Distance.

Sum-rank metric graph

A. Abiad, A.P. Khramova, A. Ravagnani. Eigenvalue bounds for sum-rank-metric codes. IEEE Trans. Inf. Theory, 2024.

They introduced a sum-rank metric graph $\Gamma := \Gamma(\mathbb{F}_q^{N \times M})$:

- the vertex set of $\Gamma = \{ \text{ all the } t \text{-tuples of matrices from } \mathbb{F}_q^{N \times M} \};$
- $A := (A_1, \ldots, A_t)$ and $B := (B_1, \ldots, B_t)$ form an *edge* iff the sum-rank distance is 1:

$$A \sim B \iff \operatorname{srkd}(A,B) = \sum_{i=1}^{t} \operatorname{rk}(A_i - B_i) = 1.$$

Geodesic distance between A and B in Γ = sum-rank distance srkd(A, B).

Then the maximum size of a sum-rank metric code in $\mathbb{F}_q^{N \times M}$ with minimum distance d equals $\alpha_{d-1}(\Gamma)$, the (d-1)-**independence number** of Γ . Now, α_{d-1} can be bounded via eigenvalues of the adjacency matrix of Γ .

Sum-rank metric graph

A. Abiad, A.P. Khramova, A. Ravagnani. Eigenvalue bounds for sum-rank-metric codes. IEEE Trans. Inf. Theory, 2024.

They introduced a sum-rank metric graph $\Gamma := \Gamma(\mathbb{F}_q^{N \times M})$:

- the vertex set of $\Gamma = \{ \text{ all the } t \text{-tuples of matrices from } \mathbb{F}_q^{N \times M} \};$
- $A := (A_1, \ldots, A_t)$ and $B := (B_1, \ldots, B_t)$ form an *edge* iff the sum-rank distance is 1:

$$A \sim B \iff \operatorname{srkd}(A,B) = \sum_{i=1}^{t} \operatorname{rk}(A_i - B_i) = 1.$$

Geodesic distance between A and B in Γ = sum-rank distance srkd(A, B).

Then the maximum size of a sum-rank metric code in $\mathbb{F}_q^{N \times M}$ with minimum distance d equals $\alpha_{d-1}(\Gamma)$, the (d-1)-independence number of Γ .

Now, α_{d-1} can be bounded via eigenvalues of the adjacency matrix of Γ .

Sum-rank metric graph

A. Abiad, A.P. Khramova, A. Ravagnani. Eigenvalue bounds for sum-rank-metric codes. IEEE Trans. Inf. Theory, 2024.

They introduced a sum-rank metric graph $\Gamma := \Gamma(\mathbb{F}_q^{N \times M})$:

- the vertex set of $\Gamma = \{ \text{ all the } t \text{-tuples of matrices from } \mathbb{F}_q^{N \times M} \};$
- $A := (A_1, \ldots, A_t)$ and $B := (B_1, \ldots, B_t)$ form an *edge* iff the sum-rank distance is 1:

$$A \sim B \iff \operatorname{srkd}(A,B) = \sum_{i=1}^{t} \operatorname{rk}(A_i - B_i) = 1.$$

Geodesic distance between A and B in Γ = sum-rank distance srkd(A, B).

Then the maximum size of a sum-rank metric code in $\mathbb{F}_q^{N \times M}$ with minimum distance d equals $\alpha_{d-1}(\Gamma)$, the (d-1)-independence number of Γ . Now, α_{d-1} can be bounded via eigenvalues of the adjacency matrix of Γ .

Let $\lambda_1 \geq \cdots \geq \lambda_n$ be the eigenvalues of the adjacency matrix A of a regular graph G.

Ratio bound (Hoffman, 1974): $\alpha_1 \leq n \frac{-\lambda_n}{\lambda_1 - \lambda_n}$.

Ratio-type bound (Abiad, Coutinho, Fiol, 2019): $\alpha_{d-1} \leq n \frac{W(p) - \min_{i \in [2,n]} p(\lambda_i)}{p(\lambda_1) - \min_{i \in [2,n]} p(\lambda_i)}$, for some polynomial $p \in \mathbb{R}_{d-1}[x]$, where W(p) is the largest element of the diagonal of p(A).

Question: How to find the best polynomial $p \in \mathbb{R}_{d-1}[x]$ to optimize the bound? The best polynomial for the Ratio-type bound:

- *d* = 3: Abiad, Coutinho, Fiol (2019);
- *d* = 4: Kavi, Newman (2023);

• $d \ge 5$: a linear programming problem (Fiol, 2020); *no* explicit closed formula is known.

Let $\lambda_1 \geq \cdots \geq \lambda_n$ be the eigenvalues of the adjacency matrix A of a regular graph G.

Ratio bound (Hoffman, 1974): $\alpha_1 \leq n \frac{-\lambda_n}{\lambda_1 - \lambda_n}$.

Ratio-type bound (Abiad, Coutinho, Fiol, 2019): $\alpha_{d-1} \leq n \frac{W(p) - \min_{i \in [2,n]} p(\lambda_i)}{p(\lambda_1) - \min_{i \in [2,n]} p(\lambda_i)}$, for some polynomial $p \in \mathbb{R}_{d-1}[x]$, where W(p) is the largest element of the diagonal of p(A).

Question: How to find the best polynomial $p \in \mathbb{R}_{d-1}[x]$ to optimize the bound? The best polynomial for the Ratio-type bound:

- *d* = 3: Abiad, Coutinho, Fiol (2019);
- *d* = 4: Kavi, Newman (2023);

• $d \ge 5$: a linear programming problem (Fiol, 2020); *no* explicit closed formula is known.

Let $\lambda_1 \geq \cdots \geq \lambda_n$ be the eigenvalues of the adjacency matrix A of a regular graph G.

Ratio bound (Hoffman, 1974): $\alpha_1 \leq n \frac{-\lambda_n}{\lambda_1 - \lambda_n}$.

Ratio-type bound (Abiad, Coutinho, Fiol, 2019): $\alpha_{d-1} \leq n \frac{W(p) - \min_{i \in [2,n]} p(\lambda_i)}{p(\lambda_1) - \min_{i \in [2,n]} p(\lambda_i)}$, for some polynomial $p \in \mathbb{R}_{d-1}[x]$, where W(p) is the largest element of the diagonal of p(A).

Question: How to find the best polynomial $p \in \mathbb{R}_{d-1}[x]$ to optimize the bound? The best polynomial for the Ratio-type bound:

- *d* = 3: Abiad, Coutinho, Fiol (2019);
- *d* = 4: Kavi, Newman (2023);

• $d \ge 5$: a linear programming problem (Fiol, 2020); *no* explicit closed formula is known.

Let $\lambda_1 \geq \cdots \geq \lambda_n$ be the eigenvalues of the adjacency matrix A of a regular graph G.

Ratio bound (Hoffman, 1974): $\alpha_1 \leq n \frac{-\lambda_n}{\lambda_1 - \lambda_n}$.

Ratio-type bound (Abiad, Coutinho, Fiol, 2019): $\alpha_{d-1} \leq n \frac{W(p) - \min_{i \in [2,n]} p(\lambda_i)}{p(\lambda_1) - \min_{i \in [2,n]} p(\lambda_i)}$, for some polynomial $p \in \mathbb{R}_{d-1}[x]$, where W(p) is the largest element of the diagonal of p(A).

Question: How to find the best polynomial $p \in \mathbb{R}_{d-1}[x]$ to optimize the bound? The best polynomial for the Ratio-type bound:

- *d* = 3: Abiad, Coutinho, Fiol (2019);
- *d* = 4: Kavi, Newman (2023);
- $d \ge 5$: a linear programming problem (Fiol, 2020); no explicit closed formula is known.

Let $\lambda_1 \geq \cdots \geq \lambda_n$ be the eigenvalues of the adjacency matrix A of a regular graph G.

Ratio bound (Hoffman, 1974): $\alpha_1 \leq n \frac{-\lambda_n}{\lambda_1 - \lambda_n}$.

Ratio-type bound (Abiad, Coutinho, Fiol, 2019): $\alpha_{d-1} \leq n \frac{W(p) - \min_{i \in [2,n]} p(\lambda_i)}{p(\lambda_1) - \min_{i \in [2,n]} p(\lambda_i)}$, for some polynomial $p \in \mathbb{R}_{d-1}[x]$, where W(p) is the largest element of the diagonal of p(A).

Question: How to find the best polynomial $p \in \mathbb{R}_{d-1}[x]$ to optimize the bound? The best polynomial for the Ratio-type bound:

- *d* = 3: Abiad, Coutinho, Fiol (2019);
- *d* = 4: Kavi, Newman (2023);

• $d \ge 5$: a linear programming problem (Fiol, 2020); *no* explicit closed formula is known.

Γ as a Cartesian product

Let $\mathbf{N} = [n_1, \dots, n_t]$, $\mathbf{M} = [m_1, \dots, m_t]$ and $\mathbb{F}_q^{\mathbf{N} \times \mathbf{M}} := \mathbb{F}_q^{n_1 \times m_1} \times \dots \times \mathbb{F}_q^{n_t \times m_t}$. Abiad, Khramova, and Ravagnani (2023) observed:

• The sum-rank-metric graph $\Gamma(\mathbb{F}_q^{\mathbf{N}\times\mathbf{M}})$ is the Cartesian product \Box of graphs $\Gamma(\mathbb{F}_q^{n_i\times m_i})$:

$$\Gamma(\mathbb{F}_q^{\mathbf{N} imes \mathbf{M}}) = \Gamma(\mathbb{F}_q^{n_1 imes m_1}) \Box \ldots \Box \Gamma(\mathbb{F}_q^{n_t imes m_t})$$

- Each graph $\Gamma(\mathbb{F}_{a}^{n_{i} \times m_{i}})$ is a *bilinear forms graph*.
- The bilinear forms graph $\Gamma(\mathbb{F}_q^{n \times m})$ is distance-regular, and its eigenvalues are given by

$$heta_i = rac{(q^{n-i}-1)(q^m-q^i)-q^i+1}{q-1}, \quad i=0,\ldots,n.$$

• The eigenvalues of the Cartesian product are all possible sums of eigenvalues of the product's factors.

Γ as a Cartesian product

Let $\mathbf{N} = [n_1, \dots, n_t]$, $\mathbf{M} = [m_1, \dots, m_t]$ and $\mathbb{F}_q^{\mathbf{N} \times \mathbf{M}} := \mathbb{F}_q^{n_1 \times m_1} \times \dots \times \mathbb{F}_q^{n_t \times m_t}$. Abiad, Khramova, and Ravagnani (2023) observed:

• The sum-rank-metric graph $\Gamma(\mathbb{F}_q^{\mathbf{N}\times\mathbf{M}})$ is the Cartesian product \Box of graphs $\Gamma(\mathbb{F}_q^{n_i\times m_i})$:

$$\Gamma(\mathbb{F}_q^{\mathbf{N} imes \mathbf{M}}) = \Gamma(\mathbb{F}_q^{n_1 imes m_1}) \Box \ldots \Box \Gamma(\mathbb{F}_q^{n_t imes m_t})$$

- Each graph $\Gamma(\mathbb{F}_{a}^{n_{i} \times m_{i}})$ is a *bilinear forms graph*.
- The bilinear forms graph $\Gamma(\mathbb{F}_q^{n \times m})$ is distance-regular, and its eigenvalues are given by

$$heta_i = rac{(q^{n-i}-1)(q^m-q^i)-q^i+1}{q-1}, \quad i=0,\ldots,n.$$

• The eigenvalues of the Cartesian product are all possible sums of eigenvalues of the product's factors.

Γ as a Cartesian product

Let $\mathbf{N} = [n_1, \dots, n_t]$, $\mathbf{M} = [m_1, \dots, m_t]$ and $\mathbb{F}_q^{\mathbf{N} \times \mathbf{M}} := \mathbb{F}_q^{n_1 \times m_1} \times \dots \times \mathbb{F}_q^{n_t \times m_t}$. Abiad, Khramova, and Ravagnani (2023) observed:

• The sum-rank-metric graph $\Gamma(\mathbb{F}_q^{\mathbf{N}\times\mathbf{M}})$ is the Cartesian product \Box of graphs $\Gamma(\mathbb{F}_q^{n_i\times m_i})$:

$$\Gamma(\mathbb{F}_q^{\mathbf{N} imes \mathbf{M}}) = \Gamma(\mathbb{F}_q^{n_1 imes m_1}) \Box \ldots \Box \Gamma(\mathbb{F}_q^{n_t imes m_t})$$

- Each graph $\Gamma(\mathbb{F}_{a}^{n_{i} \times m_{i}})$ is a *bilinear forms graph*.
- The bilinear forms graph $\Gamma(\mathbb{F}_q^{n \times m})$ is distance-regular, and its eigenvalues are given by

$$heta_i = rac{(q^{n-i}-1)(q^m-q^i)-q^i+1}{q-1}, \quad i=0,\ldots,n.$$

• The eigenvalues of the Cartesian product are all possible sums of eigenvalues of the product's factors.

Γ as a Cartesian product of bilinear forms graphs

The bilinear forms graph $\Gamma(\mathbb{F}_2^{2\times 2})$: the vertices are 2×2 matrices over \mathbb{F}_2 :

Γ as a Cartesian product of bilinear forms graphs

The graph $\Gamma(\mathbb{F}_2^{2\times 2} \times \mathbb{F}_2^{1\times 1})$: each vertex is a $((2 \times 2), (1 \times 1))$ tuple of matrices over \mathbb{F}_2 :

Computing the eigenvalues of Γ as those of the Cartesian product, Abiad, Khramova and Ravagnani showed that the Ratio-type bound sometimes outperforms previously known bounds.

- Delsarte's linear programming method (1973) is one of the most powerful tools for bounding the sizes of codes in association schemes:
 - Hamming scheme (Hamming distance),
 - Johnson scheme (constant weight codes),
 - Grassmann scheme (subspace metric),
 - bilinear forms scheme (rank-metric codes),
 - Lee distance, etc.
- Abiad, Khramova and Ravagnani (RICCOTA, Rijeka, 2023) asked if this method can be adopted to bound the size of sum-rank metric codes.
 - An obvious obstacle here is that a sum-rank-metric graph is not distance-regular, i.e., it does not explicitly generate an association scheme.

Computing the eigenvalues of Γ as those of the Cartesian product, Abiad, Khramova and Ravagnani showed that the Ratio-type bound sometimes outperforms previously known bounds.

- Delsarte's linear programming method (1973) is one of the most powerful tools for bounding the sizes of codes in association schemes:
 - Hamming scheme (Hamming distance),
 - Johnson scheme (constant weight codes),
 - Grassmann scheme (subspace metric),
 - bilinear forms scheme (rank-metric codes),
 - Lee distance, etc.
- Abiad, Khramova and Ravagnani (RICCOTA, Rijeka, 2023) asked if this method can be adopted to bound the size of sum-rank metric codes.
 - An obvious obstacle here is that a sum-rank-metric graph is not distance-regular, i.e., it does not explicitly generate an association scheme.

Computing the eigenvalues of Γ as those of the Cartesian product, Abiad, Khramova and Ravagnani showed that the Ratio-type bound sometimes outperforms previously known bounds.

- Delsarte's linear programming method (1973) is one of the most powerful tools for bounding the sizes of codes in association schemes:
 - Hamming scheme (Hamming distance),
 - Johnson scheme (constant weight codes),
 - Grassmann scheme (subspace metric),
 - bilinear forms scheme (rank-metric codes),
 - Lee distance, etc.
- Abiad, Khramova and Ravagnani (RICCOTA, Rijeka, 2023) asked if this method can be adopted to bound the size of sum-rank metric codes.
 - An obvious obstacle here is that a sum-rank-metric graph is not distance-regular, i.e., it does not explicitly generate an association scheme.

Association schemes and Delsarte's LP

A symmetric association scheme $\mathcal{A} = (X, \mathcal{R})$ on a set X with relations $\mathcal{R} = \{R_0, \dots, R_D\}$:

- \mathcal{R} is a partition of $X \times X$;
- R_0 consists of (x, x) for all $x \in X$.
- $(x, y) \in R_i$ implies $(y, x) \in R_i$ for all x, y and R_i .
- for all (x, y) ∈ R_k, the number of z s.t. (x, z) ∈ R_i and (y, z) ∈ R_j is a constant that does not depend on the choice of x, y.

The Hamming scheme:

- $X = \{ \text{words of length } n \text{ over } \{1, \ldots, q\} \},$
- The bilinear forms scheme:
 - {all matrices from $\mathbb{F}_q^{n \times m}$ },
- $R_i = \{ \text{all pairs with Hamming distance } i \}.$
- {all pairs of matrices with rk(A B) = i}.

The relation R_1 in both cases defines the (Hamming, bilinear forms) distance-regular graph, and all relations R_i are the "distance" relations in this graph.

Association schemes and Delsarte's LP

A symmetric association scheme $\mathcal{A} = (X, \mathcal{R})$ on a set X with relations $\mathcal{R} = \{R_0, \dots, R_D\}$:

- \mathcal{R} is a partition of $X \times X$;
- R_0 consists of (x, x) for all $x \in X$.
- $(x, y) \in R_i$ implies $(y, x) \in R_i$ for all x, y and R_i .
- for all (x, y) ∈ R_k, the number of z s.t. (x, z) ∈ R_i and (y, z) ∈ R_j is a constant that does not depend on the choice of x, y.

In general, an association scheme gives rise to a commutative matrix algebra.

The idea of Delsarte's LP method is to:

- consider a code C as a subset of X of an association scheme,
- then formulate an optimization problem where the objective is to maximize |C| subject to linear constraints imposed by the properties of this matrix algebra.

By solving this linear program, one can obtain upper bounds on the number |C| of "codewords".

Association schemes and Delsarte's LP

A symmetric association scheme $\mathcal{A} = (X, \mathcal{R})$ on a set X with relations $\mathcal{R} = \{R_0, \dots, R_D\}$:

- \mathcal{R} is a partition of $X \times X$;
- R_0 consists of (x, x) for all $x \in X$.
- $(x, y) \in R_i$ implies $(y, x) \in R_i$ for all x, y and R_i .
- for all (x, y) ∈ R_k, the number of z s.t. (x, z) ∈ R_i and (y, z) ∈ R_j is a constant that does not depend on the choice of x, y.

Question: How to define an association scheme for the sum-rank metric graph $\Gamma(\mathbb{F}_q^{N \times M})$?

 $\mathcal{X} \leq \mathcal{Y}$

if and only if every relation of ${\mathcal X}$ is a union of some relations of ${\mathcal Y}.$

In other words, the partition S is a refinement of the partition \mathcal{R} .

In this case, then $\mathcal X$ is said to be a **fusion** (scheme) of $\mathcal Y$ and $\mathcal Y$ is a **fission** (scheme) of $\mathcal X$.

The **trivial** scheme $(X, \{R_0, R_1\})$ is \leq any other scheme on X.

For every graph G, there exists the *smallest* (w.r.t. \leq) association scheme^{*} WL(G) such that the edge set of G is a union of some relations of WL(G).

 $\mathcal{X} \leq \mathcal{Y}$

if and only if *every* relation of \mathcal{X} is a union of some relations of \mathcal{Y} .

In other words, the partition \mathcal{S} is a refinement of the partition \mathcal{R} .

In this case, then ${\mathcal X}$ is said to be a **fusion** (scheme) of ${\mathcal Y}$ and ${\mathcal Y}$ is a **fission** (scheme) of ${\mathcal X}.$

The **trivial** scheme $(X, \{R_0, R_1\})$ is \leq any other scheme on X.

For every graph G, there exists the smallest (w.r.t. \leq) association scheme^{*} WL(G) such that the edge set of G is a union of some relations of WL(G).

 $\mathcal{X} \leq \mathcal{Y}$

if and only if *every* relation of \mathcal{X} is a union of some relations of \mathcal{Y} .

In other words, the partition S is a refinement of the partition \mathcal{R} . In this case, then \mathcal{X} is said to be a **fusion** (scheme) of \mathcal{Y} and \mathcal{Y} is a **fission** (scheme) of \mathcal{X} .

The **trivial** scheme $(X, \{R_0, R_1\})$ is \leq any other scheme on X.

For every graph G, there exists the *smallest* (w.r.t. \leq) association scheme^{*} WL(G) such that the edge set of G is a union of some relations of WL(G).

 $\mathcal{X} \leq \mathcal{Y}$

if and only if *every* relation of \mathcal{X} is a union of some relations of \mathcal{Y} .

In other words, the partition S is a refinement of the partition \mathcal{R} . In this case, then \mathcal{X} is said to be a **fusion** (scheme) of \mathcal{Y} and \mathcal{Y} is a **fission** (scheme) of \mathcal{X} .

The **trivial** scheme $(X, \{R_0, R_1\})$ is \leq any other scheme on X.

For every graph G, there exists the smallest (w.r.t. \leq) association scheme^{*} WL(G) such that the edge set of G is a union of some relations of WL(G).

 $\mathcal{X} \leq \mathcal{Y}$

if and only if *every* relation of \mathcal{X} is a union of some relations of \mathcal{Y} .

In other words, the partition S is a refinement of the partition \mathcal{R} . In this case, then \mathcal{X} is said to be a **fusion** (scheme) of \mathcal{Y} and \mathcal{Y} is a **fission** (scheme) of \mathcal{X} .

The **trivial** scheme $(X, \{R_0, R_1\})$ is \leq any other scheme on X.

For every graph G, there exists the *smallest* (w.r.t. \leq) association scheme^{*} WL(G) such that the edge set of G is a union of some relations of WL(G).

 $\mathcal{X} \leq \mathcal{Y}$

if and only if *every* relation of \mathcal{X} is a union of some relations of \mathcal{Y} .

In other words, the partition S is a refinement of the partition \mathcal{R} . In this case, then \mathcal{X} is said to be a **fusion** (scheme) of \mathcal{Y} and \mathcal{Y} is a **fission** (scheme) of \mathcal{X} .

The **trivial** scheme $(X, \{R_0, R_1\})$ is \leq any other scheme on X.

For every graph G, there exists the *smallest* (w.r.t. \leq) association scheme^{*} WL(G) such that the edge set of G is a union of some relations of WL(G).

Given two association schemes $A_i = (X_i, \mathcal{R}_i)$ with $D_i + 1$ relations R_j^i , $j = 0, ..., D_i$, i = 1, 2, their **direct product** $A_1 \otimes A_2$ is the association scheme $(X_1 \times X_2, \mathcal{R})$ such that:

•
$$\mathcal{R} = \{R_{0,0}, R_{0,1}, \ldots, R_{0,D_2}, R_{1,0}, \ldots, R_{D_1,D_2}\};$$

•
$$((x_1, x_2), (y_1, y_2)) \in R_{i,j} \iff (x_1, y_1) \in R_i^1$$
 and $(x_2, y_2) \in R_j^2$.

Lemma

 $WL(G_1 \square G_2) \leq WL(G_1) \otimes WL(G_2).$

 $WL(G_1 \square G_2)$ is an association scheme whenever $WL(G_1)$ and $WL(G_2)$ are.

Given two association schemes $A_i = (X_i, \mathcal{R}_i)$ with $D_i + 1$ relations R_j^i , $j = 0, ..., D_i$, i = 1, 2, their **direct product** $A_1 \otimes A_2$ is the association scheme $(X_1 \times X_2, \mathcal{R})$ such that:

•
$$\mathcal{R} = \{R_{0,0}, R_{0,1}, \ldots, R_{0,D_2}, R_{1,0}, \ldots, R_{D_1,D_2}\};$$

•
$$((x_1, x_2), (y_1, y_2)) \in R_{i,j} \iff (x_1, y_1) \in R_i^1$$
 and $(x_2, y_2) \in R_j^2$.

Lemma

$WL(G_1 \square G_2) \leq WL(G_1) \otimes WL(G_2).$

 $WL(G_1 \square G_2)$ is an association scheme whenever $WL(G_1)$ and $WL(G_2)$ are.

Given two association schemes $A_i = (X_i, \mathcal{R}_i)$ with $D_i + 1$ relations R_j^i , $j = 0, ..., D_i$, i = 1, 2, their **direct product** $A_1 \otimes A_2$ is the association scheme $(X_1 \times X_2, \mathcal{R})$ such that:

•
$$\mathcal{R} = \{R_{0,0}, R_{0,1}, \ldots, R_{0,D_2}, R_{1,0}, \ldots, R_{D_1,D_2}\};$$

•
$$((x_1, x_2), (y_1, y_2)) \in R_{i,j} \iff (x_1, y_1) \in R_i^1$$
 and $(x_2, y_2) \in R_j^2$.

Lemma

$WL(G_1 \square G_2) \leq WL(G_1) \otimes WL(G_2).$

 $WL(G_1 \square G_2)$ is an association scheme whenever $WL(G_1)$ and $WL(G_2)$ are.

The coherent closure of the sum-rank metric graph $\Gamma(\mathbb{F}_q^{N \times M})$ is contained in the direct product of bilinear forms schemes corresponding to $\Gamma(\mathbb{F}_q^{n_1 \times m_1}), \ldots, \Gamma(\mathbb{F}_q^{n_t \times m_t})$: $WL(\Gamma(\mathbb{F}_q^{N \times M})) \leq WL(\Gamma(\mathbb{F}_q^{n_1 \times m_1})) \otimes \ldots \otimes WL(\Gamma(\mathbb{F}_q^{n_t \times m_t})).$

- Note: the Hamming scheme < the direct product of the trivial schemes.
- We conjecture that equality happens whenever the factors of the Cartesian product are pairwise non-isomorphic.
- Nevertheless, applying the Delsarte's LP method to the *larger* (fission) scheme still gives an upper bound on the size of a code.

The coherent closure of the sum-rank metric graph $\Gamma(\mathbb{F}_q^{N \times M})$ is contained in the direct product of bilinear forms schemes corresponding to $\Gamma(\mathbb{F}_q^{n_1 \times m_1}), \ldots, \Gamma(\mathbb{F}_q^{n_t \times m_t})$: $WL(\Gamma(\mathbb{F}_q^{N \times M})) \leq WL(\Gamma(\mathbb{F}_q^{n_1 \times m_1})) \otimes \ldots \otimes WL(\Gamma(\mathbb{F}_q^{n_t \times m_t})).$

- Note: the Hamming scheme < the direct product of the trivial schemes.
- We conjecture that equality happens whenever the factors of the Cartesian product are pairwise non-isomorphic.
- Nevertheless, applying the Delsarte's LP method to the *larger* (fission) scheme still gives an upper bound on the size of a code.

The coherent closure of the sum-rank metric graph $\Gamma(\mathbb{F}_q^{\mathbf{N} \times \mathbf{M}})$ is contained in the direct product of bilinear forms schemes corresponding to $\Gamma(\mathbb{F}_q^{n_1 \times m_1}), \ldots, \Gamma(\mathbb{F}_q^{n_t \times m_t})$: $WL(\Gamma(\mathbb{F}_q^{\mathbf{N} \times \mathbf{M}})) \leq WL(\Gamma(\mathbb{F}_q^{n_1 \times m_1})) \otimes \ldots \otimes WL(\Gamma(\mathbb{F}_q^{n_t \times m_t})).$

- Note: the Hamming scheme < the direct product of the trivial schemes.
- We conjecture that equality happens whenever the factors of the Cartesian product are pairwise non-isomorphic.
- Nevertheless, applying the Delsarte's LP method to the *larger* (fission) scheme still gives an upper bound on the size of a code.

The coherent closure of the sum-rank metric graph $\Gamma(\mathbb{F}_q^{N \times M})$ is contained in the direct product of bilinear forms schemes corresponding to $\Gamma(\mathbb{F}_q^{n_1 \times m_1}), \ldots, \Gamma(\mathbb{F}_q^{n_t \times m_t})$: $WL(\Gamma(\mathbb{F}_q^{N \times M})) \leq WL(\Gamma(\mathbb{F}_q^{n_1 \times m_1})) \otimes \ldots \otimes WL(\Gamma(\mathbb{F}_q^{n_t \times m_t})).$

- Note: the Hamming scheme < the direct product of the trivial schemes.
- We conjecture that equality happens whenever the factors of the Cartesian product are pairwise non-isomorphic.
- Nevertheless, applying the Delsarte's LP method to the *larger* (fission) scheme still gives an upper bound on the size of a code.

Computational results

bold = best performing bound; <u>underlined</u> = Ratio-type bound outperforms coding bounds.

t	q	Ν	М	d	V	Ratio-type	Delsarte LP	iS _d	iH _d	iE _d	S _d	SP_d	PSP_d
2	2	[2, 2]	[2, 2]	3	256	<u>11</u>	10	16	19	34	16	13	13
3	2	[2, 2, 1]	[2, 2, 1]	3	512	25	20	64	64	151	32	25	25
3	2	[2, 2, 1]	[2, 2, 1]	4	512	10	6	16	64	27	8	25	18
3	2	[2, 2, 1]	[2, 2, 2]	3	1024	<u>38</u>	34	64	64	151	64	46	46
3	2	[2, 2, 1]	[2, 2, 2]	4	1024	<u>15</u>	8	16	64	27	16	46	36
4	2	[2, 1, 1, 1]	[2, 2, 2, 1]	3	512	<u>28</u>	24	64	64	151	32	30	30
4	2	[2, 1, 1, 1]	[2, 2, 2, 1]	4	512	11	6	16	64	27	8	30	32
4	2	[2, 1, 1, 1]	[2, 2, 2, 2]	3	1024	<u>44</u>	42	64	64	151	64	53	53
4	2	[2, 1, 1, 1]	[2, 2, 2, 2]	4	1024	18	10	16	64	27	16	53	64
4	2	[2, 2, 1, 1]	[2, 2, 1, 1]	3	1024	<u>46</u>	40	256	215	529	64	48	48
4	2	[2, 2, 1, 1]	[2, 2, 1, 1]	4	1024	19	12	64	215	119	16	48	36
5	2	[2, 1, 1, 1, 1]	[2, 1, 1, 1, 1]	5	256	5	2	16	26	19	4	4	3
5	2	[2, 1, 1, 1, 1]	[3, 1, 1, 1, 1]	5	1024	8	2	64	336	240	4	6	3
5	2	[2, 1, 1, 1, 1]	[2, 2, 2, 1, 1]	3	1024	56	49	256	215	529	64	56	56
5	2	[2, 1, 1, 1, 1]	[2, 2, 2, 1, 1]	4	1024	22	13	64	215	119	16	56	64
6	2	[2, 1, 1, 1, 1, 1]	[2, 1, 1, 1, 1, 1]	4	512	16	12	256	512	407	16	34	32
6	2	$\left[2,1,1,1,1,1 ight]$	[2, 1, 1, 1, 1, 1]	5	512	8	4	64	77	99	8	6	5
6	2	$\left[2,1,1,1,1,1 ight]$	[2, 2, 1, 1, 1, 1]	5	1024	11	6	64	77	99	8	9	8
6	2	$\left[2,1,1,1,1,1 ight]$	$\left[2,2,1,1,1,1 ight]$	6	1024	7	2	16	77	14	4	9	3

 $\frac{14}{14}$