
A linear programming bound

for sum-rank metric codes

Alexander Gavrilyuk

based on joint work with Aida Abiad, Antonina Khramova
and Ilia Ponomarenko

Shimane University, Japan

July 10, 2024 1 / 14



Sum-rank metric space
A sum-rank metric space is

FN×M
q := Fn1×m1

q × · · · × Fnt×mt
q ,

where N = [n1, . . . , nt ] and M = [m1, . . . ,mt ], with sum-rank distance between two tuples
A := (A1, . . . ,At) and B := (B1, . . . ,Bt):

srkd(A,B) =
t∑

i=1
rk(Ai − Bi ).

This generalizes both Hamming metric (N = M = [1, . . . , 1]) and rank metric (t = 1).

A sum-rank metric code C with minimum distance d is a subset of FN×M
q such that:

min
X ,Y∈C

srkd(X ,Y ) = d .

Question: What is the maximum size of a sum-rank metric code with minimum distance d?
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Sum-rank metric space
A sum-rank metric space is
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Sum-rank metric space
Example

Here N = [3, 2, 1, 1] and M = [3, 3, 2, 1], q = 2.1 0 0
0 1 1
1 1 1

 ,

[
1 0 0
1 0 1

]
,
[
0 1

]
, 1

0 0 0
1 0 0
1 0 1

 ,

[
0 0 0
1 1 1

]
,
[
0 1

]
, 0

rk





1 0 0
0 1 1
1 1 1

1 0 0
1 0 1

0 1
1


⊕



0 0 0
1 0 0
1 0 1

0 0 0
1 1 1

0 1
0




= 6
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Code-theoretical and geometric bounds

Question: What is the maximum size of a sum-rank metric code with minimum distance d?

Some upper bounds were introduced in

E. Byrne, H. Gluesing-Luerssen, and A. Ravagnani. Fundamental properties of
sum-rank-metric codes. IEEE Trans. Inf. Theory, 67(10):6456–6475, 2021.

• Bounds induced by Singleton, Hamming, Plotkin, and Elias bounds via embedding a
sum-rank metric code into a Hamming space.

• Other bounds: Sphere-Packing, Projective Sphere-Packing, Total Distance.
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Sum-rank metric graph

A. Abiad, A.P. Khramova, A. Ravagnani. Eigenvalue bounds for sum-rank-metric codes.
IEEE Trans. Inf. Theory, 2024.

They introduced a sum-rank metric graph Γ := Γ(FN×M
q ):

• the vertex set of Γ = { all the t-tuples of matrices from FN×M
q };

• A := (A1, . . . ,At) and B := (B1, . . . ,Bt) form an edge iff the sum-rank distance is 1:

A ∼ B ⇐⇒ srkd(A,B) =
t∑

i=1
rk(Ai − Bi ) = 1.

Geodesic distance between A and B in Γ = sum-rank distance srkd(A,B).

Then the maximum size of a sum-rank metric code in FN×M
q with minimum distance d equals

αd−1(Γ), the (d − 1)-independence number of Γ.
Now, αd−1 can be bounded via eigenvalues of the adjacency matrix of Γ.
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Eigenvalue bounds on independence numbers

Let λ1 ≥ · · · ≥ λn be the eigenvalues of the adjacency matrix A of a regular graph G .

Ratio bound (Hoffman, 1974): α1 ≤ n
−λn

λ1 − λn
.

Ratio-type bound (Abiad, Coutinho, Fiol, 2019): αd−1 ≤ n
W (p)−mini∈[2,n] p(λi )

p(λ1)−mini∈[2,n] p(λi )
, for

some polynomial p ∈ Rd−1[x ], where W (p) is the largest element of the diagonal of p(A).

Question: How to find the best polynomial p ∈ Rd−1[x ] to optimize the bound?
The best polynomial for the Ratio-type bound:

• d = 3: Abiad, Coutinho, Fiol (2019);

• d = 4: Kavi, Newman (2023);

• d ≥ 5: a linear programming problem (Fiol, 2020); no explicit closed formula is known.

Question: How to compute the eigenvalues of the sum-rank metric graph Γ? 6 / 14
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Γ as a Cartesian product

Let N = [n1, . . . , nt ], M = [m1, . . . ,mt ] and FN×M
q := Fn1×m1

q × · · · × Fnt×mt
q .

Abiad, Khramova, and Ravagnani (2023) observed:

• The sum-rank-metric graph Γ(FN×M
q ) is the Cartesian product □ of graphs Γ(Fni×mi

q ):

Γ(FN×M
q ) = Γ(Fn1×m1

q )□ . . .□ Γ(Fnt×mt
q )

• Each graph Γ(Fni×mi
q ) is a bilinear forms graph.

• The bilinear forms graph Γ(Fn×m
q ) is distance-regular, and its eigenvalues are given by

θi =
(qn−i − 1)(qm − qi )− qi + 1

q − 1
, i = 0, . . . , n.

• The eigenvalues of the Cartesian product are all possible sums of eigenvalues of the
product’s factors.
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Γ as a Cartesian product of bilinear forms graphs
The bilinear forms graph Γ(F2×2

2 ): the vertices are 2× 2 matrices over F2:
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Γ as a Cartesian product of bilinear forms graphs
The graph Γ(F2×2

2 × F1×1
2 ): each vertex is a ((2× 2), (1× 1)) tuple of matrices over F2:
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Delsarte’s LP

Computing the eigenvalues of Γ as those of the Cartesian product, Abiad, Khramova and
Ravagnani showed that the Ratio-type bound sometimes outperforms previously known bounds.

• Delsarte’s linear programming method (1973) is one of the most powerful tools for
bounding the sizes of codes in association schemes:

• Hamming scheme (Hamming distance),
• Johnson scheme (constant weight codes),
• Grassmann scheme (subspace metric),
• bilinear forms scheme (rank-metric codes),
• Lee distance, etc.

• Abiad, Khramova and Ravagnani (RICCOTA, Rijeka, 2023) asked if this method can be
adopted to bound the size of sum-rank metric codes.

• An obvious obstacle here is that a sum-rank-metric graph is not distance-regular, i.e., it does
not explicitly generate an association scheme.

9 / 14
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Association schemes and Delsarte’s LP

A symmetric association scheme A = (X ,R) on a set X with relations R = {R0, . . . ,RD}:

• R is a partition of X × X ;

• R0 consists of (x , x) for all x ∈ X .

• (x , y) ∈ Ri implies (y , x) ∈ Ri for all x , y and Ri .

• for all (x , y) ∈ Rk , the number of z s.t. (x , z) ∈ Ri and (y , z) ∈ Rj is a constant that
does not depend on the choice of x , y .

The Hamming scheme:

• X = {words of length n over {1, . . . , q}},
• Ri = {all pairs with Hamming distance i}.

The bilinear forms scheme:

• {all matrices from Fn×m
q },

• {all pairs of matrices with rk(A− B) = i}.

The relation R1 in both cases defines the (Hamming, bilinear forms) distance-regular graph,
and all relations Ri are the “distance” relations in this graph.
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• (x , y) ∈ Ri implies (y , x) ∈ Ri for all x , y and Ri .

• for all (x , y) ∈ Rk , the number of z s.t. (x , z) ∈ Ri and (y , z) ∈ Rj is a constant that
does not depend on the choice of x , y .

In general, an association scheme gives rise to a commutative matrix algebra.

The idea of Delsarte’s LP method is to:

• consider a code C as a subset of X of an association scheme,

• then formulate an optimization problem where the objective is to maximize |C | subject to
linear constraints imposed by the properties of this matrix algebra.

By solving this linear program, one can obtain upper bounds on the number |C | of ”codewords”.
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Association schemes and Delsarte’s LP

A symmetric association scheme A = (X ,R) on a set X with relations R = {R0, . . . ,RD}:

• R is a partition of X × X ;

• R0 consists of (x , x) for all x ∈ X .

• (x , y) ∈ Ri implies (y , x) ∈ Ri for all x , y and Ri .

• for all (x , y) ∈ Rk , the number of z s.t. (x , z) ∈ Ri and (y , z) ∈ Rj is a constant that
does not depend on the choice of x , y .

Question: How to define an association scheme for the sum-rank metric graph Γ(FN×M
q )?
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Partial order on association schemes

Let X = (X ,R) and Y = (X ,S) be association schemes on the same set X . We say that

X ≤ Y

if and only if every relation of X is a union of some relations of Y.

In other words, the partition S is a refinement of the partition R.

In this case, then X is said to be a fusion (scheme) of Y and Y is a fission (scheme) of X .

The trivial scheme (X , {R0,R1}) is ≤ any other scheme on X .

For every graph G , there exists the smallest (w.r.t. ≤) association scheme∗ WL(G ) such that
the edge set of G is a union of some relations of WL(G ).

WL(G ) is called the Weisfeiler-Leman (coherent) closure of G .
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In this case, then X is said to be a fusion (scheme) of Y and Y is a fission (scheme) of X .

The trivial scheme (X , {R0,R1}) is ≤ any other scheme on X .

For every graph G , there exists the smallest (w.r.t. ≤) association scheme∗ WL(G ) such that
the edge set of G is a union of some relations of WL(G ).

WL(G ) is called the Weisfeiler-Leman (coherent) closure of G .
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Direct product of association schemes

Given two association schemes Ai = (Xi ,Ri ) with Di + 1 relations R i
j , j = 0, . . . ,Di , i = 1, 2,

their direct product A1 ⊗A2 is the association scheme (X1 × X2,R) such that:

• R = {R0,0,R0,1, . . . ,R0,D2 ,R1,0, . . . ,RD1,D2};
• ((x1, x2), (y1, y2)) ∈ Ri ,j ⇐⇒ (x1, y1) ∈ R1

i and (x2, y2) ∈ R2
j .

Lemma

WL(G1□G2) ≤ WL(G1)⊗WL(G2).

WL(G1□G2) is an association scheme whenever WL(G1) and WL(G2) are.
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Association scheme of a sum-rank-metric graph

The coherent closure of the sum-rank metric graph Γ(FN×M
q ) is contained in the direct

product of bilinear forms schemes corresponding to Γ(Fn1×m1
q ), . . . , Γ(Fnt×mt

q ):

WL(Γ(FN×M
q )) ≤ WL(Γ(Fn1×m1

q ))⊗ . . .⊗WL(Γ(Fnt×mt
q )).

Question: When do we have equality?

• Note: the Hamming scheme < the direct product of the trivial schemes.

• We conjecture that equality happens whenever the factors of the Cartesian product are
pairwise non-isomorphic.

• Nevertheless, applying the Delsarte’s LP method to the larger (fission) scheme still gives
an upper bound on the size of a code.
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Computational results
bold = best performing bound; underlined = Ratio-type bound outperforms coding bounds.

t q N M d |V | Ratio-type Delsarte LP iSd iHd iEd Sd SPd PSPd

2 2 [2, 2] [2, 2] 3 256 11 10 16 19 34 16 13 13
3 2 [2, 2, 1] [2, 2, 1] 3 512 25 20 64 64 151 32 25 25
3 2 [2, 2, 1] [2, 2, 1] 4 512 10 6 16 64 27 8 25 18
3 2 [2, 2, 1] [2, 2, 2] 3 1024 38 34 64 64 151 64 46 46
3 2 [2, 2, 1] [2, 2, 2] 4 1024 15 8 16 64 27 16 46 36
4 2 [2, 1, 1, 1] [2, 2, 2, 1] 3 512 28 24 64 64 151 32 30 30
4 2 [2, 1, 1, 1] [2, 2, 2, 1] 4 512 11 6 16 64 27 8 30 32
4 2 [2, 1, 1, 1] [2, 2, 2, 2] 3 1024 44 42 64 64 151 64 53 53
4 2 [2, 1, 1, 1] [2, 2, 2, 2] 4 1024 18 10 16 64 27 16 53 64
4 2 [2, 2, 1, 1] [2, 2, 1, 1] 3 1024 46 40 256 215 529 64 48 48
4 2 [2, 2, 1, 1] [2, 2, 1, 1] 4 1024 19 12 64 215 119 16 48 36
5 2 [2, 1, 1, 1, 1] [2, 1, 1, 1, 1] 5 256 5 2 16 26 19 4 4 3
5 2 [2, 1, 1, 1, 1] [3, 1, 1, 1, 1] 5 1024 8 2 64 336 240 4 6 3
5 2 [2, 1, 1, 1, 1] [2, 2, 2, 1, 1] 3 1024 56 49 256 215 529 64 56 56
5 2 [2, 1, 1, 1, 1] [2, 2, 2, 1, 1] 4 1024 22 13 64 215 119 16 56 64
6 2 [2, 1, 1, 1, 1, 1] [2, 1, 1, 1, 1, 1] 4 512 16 12 256 512 407 16 34 32
6 2 [2, 1, 1, 1, 1, 1] [2, 1, 1, 1, 1, 1] 5 512 8 4 64 77 99 8 6 5
6 2 [2, 1, 1, 1, 1, 1] [2, 2, 1, 1, 1, 1] 5 1024 11 6 64 77 99 8 9 8
6 2 [2, 1, 1, 1, 1, 1] [2, 2, 1, 1, 1, 1] 6 1024 7 2 16 77 14 4 9 3
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