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Sum-rank metric space

A sum-rank metric space is
NxM . mmxm neg X me
Fq =Fq X x Fg ,

where N = [n1,...,n;] and M = [my, ..., m],

2/14



Sum-rank metric space

A sum-rank metric space is
NxM . mmxm neg X me
Fq =Fq X x Fg ,

where N = [ny,...,n{] and M = [my, ..., m¢], with sum-rank distance between two tuples
A:=(A1,...,A:) and B:= (By,...,B:):

srkd(A,B) = i rk(A; — Bj).

i=1

2/14



Sum-rank metric space

A sum-rank metric space is
NxM . _ mplx1 . 1x1 ~ it
IF‘q = Fq X X IE‘q = Fq,
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2/14



Sum-rank metric space

A sum-rank metric space is
NxM R nyXma
Fq = Fyq ,

where N = [n,...,n:] and M = [my, ..., m¢], with sum-rank distance between two tuples
A:=(A1,...,A:) and B:= (By,..., B:):

t
srkd(A,B) = > rk(A; — Bi).
i=1

This generalizes both Hamming metric (N =M = [1,...,1]) and rank metric (t = 1).

2/14



Sum-rank metric space

A sum-rank metric space is
NxM R nyXma
Fq = Fyq ,

where N = [n,...,n:] and M = [my, ..., m¢], with sum-rank distance between two tuples
A:=(A1,...,A:) and B:= (By,..., B:):

t
srkd(A,B) = > rk(A; — Bi).
i=1

This generalizes both Hamming metric (N =M = [1,...,1]) and rank metric (t = 1).

A sum-rank metric code C with minimum distance d is a subset of FQXM such that:

min srkd(X,Y) = d.

X,YecC

2/14



Sum-rank metric space

A sum-rank metric space is
NxM R nyXma
Fq = Fyq ,

where N = [n,...,n:] and M = [my, ..., m¢], with sum-rank distance between two tuples
A:=(A1,...,A:) and B:= (By,..., B:):

t
srkd(A,B) = > rk(A; — Bi).
i=1

This generalizes both Hamming metric (N =M = [1,...,1]) and rank metric (t = 1).

A sum-rank metric code C with minimum distance d is a subset of FQXM such that:
min srkd(X,Y) = d.
X,Yec

Question: What is the maximum size of a sum-rank metric code with minimum distance d?
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Sum-rank metric space

Example

Here N =[3,2,1,1] and M = [3,3,2,1], g = 2.
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Code-theoretical and geometric bounds

Question: What is the maximum size of a sum-rank metric code with minimum distance d?

Some upper bounds were introduced in

[3 E. Byrne, H. Gluesing-Luerssen, and A. Ravagnani. Fundamental properties of
sum-rank-metric codes. IEEE Trans. Inf. Theory, 67(10):6456-6475, 2021.
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Code-theoretical and geometric bounds

Question: What is the maximum size of a sum-rank metric code with minimum distance d?

Some upper bounds were introduced in

[3 E. Byrne, H. Gluesing-Luerssen, and A. Ravagnani. Fundamental properties of
sum-rank-metric codes. IEEE Trans. Inf. Theory, 67(10):6456-6475, 2021.

® Bounds induced by Singleton, Hamming, Plotkin, and Elias bounds via embedding a
sum-rank metric code into a Hamming space.

® QOther bounds: Sphere-Packing, Projective Sphere-Packing, Total Distance.

4/14



Sum-rank metric graph

[ A. Abiad, A.P. Khramova, A. Ravagnani. Eigenvalue bounds for sum-rank-metric codes.
IEEE Trans. Inf. Theory, 2024.

They introduced a sum-rank metric graph ' := I'(IF'C}'XM):

® the vertex set of [ = { all the t-tuples of matrices from FE'XM +
e A:=(A1,...,A:) and B:=(By,..., B:) form an edge iff the sum-rank distance is 1:

t
A~B <= stkd(AB)= S rk(A— B/)=1.
i=1

5/14



Sum-rank metric graph

[ A. Abiad, A.P. Khramova, A. Ravagnani. Eigenvalue bounds for sum-rank-metric codes.
IEEE Trans. Inf. Theory, 2024.

They introduced a sum-rank metric graph I := I'(IF';'XM):
® the vertex set of [ = { all the t-tuples of matrices from FE'XM +

e A:=(A1,...,A:) and B:=(By,..., B:) form an edge iff the sum-rank distance is 1:

t
A~B <= stkd(AB)= S rk(A— B/)=1.
i=1

Geodesic distance between A and B in [ = sum-rank distance srkd(A, B). |

Then the maximum size of a sum-rank metric code in IE‘E'XM with minimum distance d equals
ag-1(l), the (d — 1)-independence number of I.

5/14



Sum-rank metric graph

[ A. Abiad, A.P. Khramova, A. Ravagnani. Eigenvalue bounds for sum-rank-metric codes.
IEEE Trans. Inf. Theory, 2024.

They introduced a sum-rank metric graph I := I'(IF';'XM):
® the vertex set of [ = { all the t-tuples of matrices from FE'XM +

e A:=(A1,...,A:) and B:=(By,..., B:) form an edge iff the sum-rank distance is 1:

t
A~B <= stkd(AB)= S rk(A— B/)=1.
i=1

Geodesic distance between A and B in [ = sum-rank distance srkd(A, B). |

Then the maximum size of a sum-rank metric code in IE‘E'XM with minimum distance d equals
ag-1(l), the (d — 1)-independence number of I.

Now, ag_1 can be bounded via eigenvalues of the adjacency matrix of I.
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Eigenvalue bounds on independence numbers

Let \; > --- > )\, be the eigenvalues of the adjacency matrix A of a regular graph G.

Ratio bound (Hoffman, 1974): o; < n ")\ :
1= An
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Question: How to find the best polynomial p € Ry_1[x] to optimize the bound?
The best polynomial for the Ratio-type bound:

® d = 3: Abiad, Coutinho, Fiol (2019);
® d = 4: Kavi, Newman (2023);

® d >5: a linear programming problem (Fiol, 2020); no explicit closed formula is known.
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Eigenvalue bounds on independence numbers

Let \; > --- > )\, be the eigenvalues of the adjacency matrix A of a regular graph G.

n

Ratio bound (Hoffman, 1974): oy < N
1= An

W(p) — minjcpz,n P(A7)

p(A1) — minjcp, n P(A)
some polynomial p € Ry_1[x], where W(p) is the largest element of the diagonal of p(A).

Ratio-type bound (Abiad, Coutinho, Fiol, 2019): oy_1 < n , for

Question: How to find the best polynomial p € Ry_1[x] to optimize the bound?
The best polynomial for the Ratio-type bound:

® d = 3: Abiad, Coutinho, Fiol (2019);
® d = 4: Kavi, Newman (2023);
® d >5: a linear programming problem (Fiol, 2020); no explicit closed formula is known.

Question: How to compute the eigenvalues of the sum-rank metric graph I'? 6/14



[ as a Cartesian product

Let N =[ny,...,n], M =[my,...,m] and FIXM .= Froxm ..o Foexme
Abiad, Khramova, and Ravagnani (2023) observed:

® The sum-rank-metric graph ['(Fy*M) is the Cartesian product [ of graphs I'(F2*™):
rEYM) = r@Fz=m)0...OrFEe=m)

® Each graph I'(Fg*™) is a bilinear forms graph.
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Let N =[ny,...,n], M =[my,...,m] and FIXM .= Froxm ..o Foexme
Abiad, Khramova, and Ravagnani (2023) observed:

® The sum-rank-metric graph ['(Fy*M) is the Cartesian product [ of graphs I'(F2*™):
rEYM) = r@Fz=m)0...OrFEe=m)

® Each graph I'(Fg*™) is a bilinear forms graph.

® The bilinear forms graph I‘(ng’") is distance-regular, and its eigenvalues are given by

n—i __ 1 m _ i\ Al 1
PG UG lq) Tt o, ..n
q_

® The eigenvalues of the Cartesian product are all possible sums of eigenvalues of the

product’s factors.
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[ as a Cartesian product of bilinear forms graphs

The bilinear forms graph ['(F3*?): the vertices are 2 x 2 matrices over Fy:




[ as a Cartesian product of bilinear forms graphs

The graph T(F3*? x F3*'): each vertex is a ((2 x 2), (1 x 1)) tuple of matrices over Fy:
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Delsarte’'s LP

Computing the eigenvalues of I as those of the Cartesian product, Abiad, Khramova and
Ravagnani showed that the Ratio-type bound sometimes outperforms previously known bounds.
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Computing the eigenvalues of I as those of the Cartesian product, Abiad, Khramova and
Ravagnani showed that the Ratio-type bound sometimes outperforms previously known bounds.

® Delsarte’s linear programming method (1973) is one of the most powerful tools for
bounding the sizes of codes in association schemes:

® Hamming scheme (Hamming distance),
Johnson scheme (constant weight codes),
Grassmann scheme (subspace metric),
bilinear forms scheme (rank-metric codes),
Lee distance, etc.

® Abiad, Khramova and Ravagnani (RICCOTA, Rijeka, 2023) asked if this method can be
adopted to bound the size of sum-rank metric codes.

® An obvious obstacle here is that a sum-rank-metric graph is not distance-regular, i.e., it does
not explicitly generate an association scheme.
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Association schemes and Delsarte's LP

A symmetric association scheme A = (X,R) on a set X with relations R = {Ry,...,Rp}:

® R is a partition of X x X;
® Ry consists of (x,x) for all x € X.
® (x,y) € R; implies (y,x) € R; for all x,y and R;.

e for all (x,y) € Rk, the number of z s.t. (x,z) € R; and (y,z) € R; is a constant that
does not depend on the choice of x, y.

The Hamming scheme: The bilinear forms scheme:
e X = {words of length nover {1,...,q}}, ® {all matrices from Fg*"},
¢ R; = {all pairs with Hamming distance i}. @ {all pairs of matrices with rk(A — B) = i}.

The relation Ry in both cases defines the (Hamming, bilinear forms) distance-regular graph,
and all relations R; are the “distance” relations in this graph.
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Association schemes and Delsarte's LP

A symmetric association scheme A = (X,R) on a set X with relations R = {Ry,...,Rp}:

® R is a partition of X x X;
® Ry consists of (x,x) for all x € X.
® (x,y) € R; implies (y,x) € R; for all x,y and R;.

e for all (x,y) € Rk, the number of z s.t. (x,z) € R; and (y,z) € R; is a constant that
does not depend on the choice of x, y.

In general, an association scheme gives rise to a commutative matrix algebra.
The idea of Delsarte’s LP method is to:
® consider a code C as a subset of X of an association scheme,

® then formulate an optimization problem where the objective is to maximize |C| subject to
linear constraints imposed by the properties of this matrix algebra.

By solving this linear program, one can obtain upper bounds on the number |C| of " codewords”.
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Association schemes and Delsarte's LP

A symmetric association scheme A = (X,R) on a set X with relations R = {Ry,...,Rp}:

® R is a partition of X x X;
® Ry consists of (x,x) for all x € X.
® (x,y) € R; implies (y,x) € R; for all x,y and R;.

e for all (x,y) € Rk, the number of z s.t. (x,z) € R; and (y,z) € R; is a constant that
does not depend on the choice of x, y.

Question: How to define an association scheme for the sum-rank metric graph I_(]FE'XM)?
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Partial order on association schemes

Let X = (X,R) and Y = (X,S) be association schemes on the same set X. We say that
X<y

if and only if every relation of X is a union of some relations of ).
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X<y

if and only if every relation of X is a union of some relations of ).

In other words, the partition S is a refinement of the partition R.

In this case, then X is said to be a fusion (scheme) of ) and ) is a fission (scheme) of X.

The trivial scheme (X, {Ro, R1}) is < any other scheme on X. |

For every graph G, there exists the smallest (w.r.t. <) association scheme® WL(G) such that
the edge set of G is a union of some relations of WL(G).

WL(G) is called the Weisfeiler-Leman (coherent) closure of G.
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Direct product of association schemes

Given two association schemes A; = (X;, R;) with D; + 1 relations RJ’ j=0,...,D;,i=1,2,
their direct product A; ® A, is the association scheme (X1 x X3, R) such that:

®* R={Roo,Ro1,---,Ro,0,, Ri0,---,Rp,,D> }i
* ((x1,%), (y1,52)) € Rij <= (x1,51) € R} and (x,y2) € R?.
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Given two association schemes A; = (X;, R;) with D; + 1 relations RJ’ j=0,...,D;,i=1,2,
their direct product A; ® A, is the association scheme (X1 x X3, R) such that:

®* R={Roo,Ro1,---,Ro,0,, Ri0,---,Rp,,D> }i
* ((x1,%), (y1,52)) € Rij <= (x1,51) € R} and (x,y2) € R?.

WL(G1OG,) < WL(Gy) ® WL(Gy).

WL(G1OGy) is an association scheme whenever WL(G;) and WL(Gy) are.
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Association scheme of a sum-rank-metric graph

The coherent closure of the sum-rank metric graph F(IF'(;'XM) is contained in the direct
product of bilinear forms schemes corresponding to [(Fgt*™), ... [(Fg*™):

WL(T(FY*M)) < WL(T(FZ*™)) @ ... @ WL(T(Fg<™)).

Question: When do we have equality?
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Association scheme of a sum-rank-metric graph

The coherent closure of the sum-rank metric graph F(FQ’XM) is contained in the direct
product of bilinear forms schemes corresponding to [(Fgt*™), ... [(Fg*™):

WL(T(FY*M)) < WL(T(FZ*™)) @ ... @ WL(T(Fg<™)).

Question: When do we have equality?

® Note: the Hamming scheme < the direct product of the trivial schemes.

® We conjecture that equality happens whenever the factors of the Cartesian product are
pairwise non-isomorphic.

® Nevertheless, applying the Delsarte's LP method to the larger (fission) scheme still gives
an upper bound on the size of a code.
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Computational results

bold = best performing bound; underlined = Ratio-type bound outperforms coding bounds.

t g N M d | |V] | Ratio-type Delsarte LP | iS;, iHy iEs | Sy SPs PSPy
2 2 22 2,2] 3 [ 25 11 10 16 19 34 |16 13 13
3 2 [2,21] 2,2, 1] 3| 512 25 20 64 64 151 |32 25 25
3 2 [2,21] [2,2,1] 4| 512 10 6 16 64 27 |8 25 18
3 2 [2,21] 2,2, 2] 3 | 1024 38 34 64 64 151 | 64 46 46
3 2 [2,2,1] [2,2,2] 4 | 1024 15 8 16 64 27 |16 46 36
4 2 21,1, 2,2,2, 1] 3| 512 28 24 64 64 151 |32 30 30
4 2 21,1, [2,2,2, 1] 4| 512 11 6 16 64 27 |8 30 32
4 2 [2,1,1,1] [2,2,2,2] 3 | 1024 44 42 64 64 151 |64 53 53
4 2 21,1, [2,2,2,2] 4 | 1024 18 10 16 64 27 |16 53 64
4 2 [2,2,1,1] 2,2,1,1] 3 | 1024 6 40 256 215 529 | 64 48 48
4 2 22,1, [2,2,1,1] 4| 1024 19 12 64 215 119 | 16 48 36
5 2 [21,1,1,1] [21,1,1,1] 5| 256 5 2 16 26 19 | 4 4 3
5 2 [21,1,1,1] [3,1,1,1,1] 5 | 1024 8 2 64 336 240 | 4 6 3
5 2 [21,1,1,1] [2221,1] 3| 1024 56 49 256 215 529 | 64 56 56
5 2 [21,1,1,1] [22,2,1,1] 4 | 1024 ) 13 64 215 119 | 16 56 64
6 2 [21,1,1,1,1 [21,1,1,1,1] 4 | 512 16 12 256 512 407 | 16 34 32
6 2 [21,1,1,1,1] [21,1,1,1,1] 5| 512 8 4 64 77 99 | 8 6 5
6 2 [21,1,1,1,1] [221,1,1,1] 5 | 1024 11 6 64 77 99 | 8 9O 8
6 2 [21,1,1,1,1] [2,2,1,1,1,1] 6 | 1024 7 2 6 77 14 |4 9 3
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