\#CatedrasCiber
 On the combinatorial properties of shrinking sequences

Notation

We fix the following notation：
－ $\mathbb{N}_{0}=\{0,1,2, \ldots\}$ and $\mathbb{F}_{2}=\{0,1\}$
－A binary sequence $\left(s_{i}\right)$ is a mapping from \mathbb{N}_{0} to \mathbb{F}_{2}
－A sequence is periodic if $s_{i+T}=s_{i}$ ，for all $i \in \mathbb{N}_{0}$ ．

Cyclic Linear Code

Definition

A linear code C of length T over \mathbb{F}_{2} is called a cyclic code if for every codeword $\left(s_{0}, \ldots, s_{\mathrm{T}-1}\right)$, the word obtained by a cyclic shift to the right, $\left(\mathrm{s}_{\mathrm{T}-1}, \mathrm{~s}_{0}, \ldots, \mathrm{~s}_{\mathrm{T}-2}\right)$, is also a codeword in C .

- Cyclic codes can be defined with a single generator vector $\left(s_{0}, \ldots, s_{\mathrm{T}-1}\right)$
- The main parameter that we investigate is dimension

Linear Complexity of Binary Sequences

Let L be a positive integer and $\mathrm{c}_{0}, \mathrm{c}_{1}, \ldots, \mathrm{c}_{\mathrm{L}-1} \in \mathbb{F}_{2}$. A binary sequence $s=\left(s_{i}\right)$ satisfying

$$
\begin{equation*}
s_{i+L}=\sum_{j=0}^{\mathrm{L}-1} c_{j} s_{i+j} \tag{1}
\end{equation*}
$$

for all $\mathfrak{i} \in \mathbb{N}_{0}$ is called an (L-th order) linear recurring sequence (LRS) and the monic polynomial

$$
C(x)=x^{L}+\sum_{j=0}^{L-1} c_{j} x^{j} \in \mathbb{F}_{2}[x]
$$

is the characteristic polynomial of the recurrence and we say that the sequence is generated by $C(x)$.

Correspondance between codes and sequences

- period \Longleftrightarrow length
- linear complexity \Longleftrightarrow dimension
- lattice structure \Longleftrightarrow minimum distance
- m-sequences $\Longleftrightarrow\left[2^{n}-1, n\right]$ cyclic codes

Shrunken sequence

Given two m-sequences $\left(a_{i}\right)$ and $\left(b_{\mathfrak{i}}\right)$ with characteristic polynomials $p_{1}(x), p_{2}(x) \in \mathbb{F}_{2}[x]$ of degrees L_{1} and L_{2}, with $\operatorname{gcd}\left(L_{1}, L_{2}\right)=1$. The shrinking generator is the decimation of $\left(b_{i}\right)$ by $\left(a_{i}\right)$.

Example

$$
p_{1}(x)=x^{2}+x+1, p_{2}(x)=x^{3}+x+1
$$

$$
\begin{array}{ccccccccccccccccccc}
1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 \\
1 & 1 & \not 1 & 0 & 1 & \emptyset & 0 & 1 & \not 1 & 1 & 0 & \not 1 & 0 & 0 & \not 1 & 1 & 1 & \emptyset & 1 \\
\hline 1 & 1 & & 0 & 1 & & 0 & 1 & & 1 & 0 & & 0 & 0 & & 1 & 1 & & 1
\end{array}
$$

Facts about shrunken sequences

Theorem (Coppersmith et al., 93)

Given $\mathrm{p}_{1}(\mathrm{x}), \mathrm{p}_{2}(\mathrm{x})$ of degrees $\mathrm{L}_{1}, \mathrm{~L}_{2}$, the corresponding shrunken sequence s has period $\left(2^{\mathrm{L}_{2}}-1\right) 2^{\mathrm{L}_{1}-1}$. Moreover, the linear complexity satisfies $\mathrm{L}_{2} 2^{\mathrm{L}_{1}-2}<\mathrm{L}(\mathrm{s}) \leqslant \mathrm{L}_{2} 2^{\mathrm{L}_{1}-1}$.

Some Computational Results regarding Linear Complexity

decimator／sequence	$x^{3}+x+1$
$x^{5}+x^{3}+1$	80
$x^{5}+x^{3}+x^{2}+x+1$	80
$x^{5}+x^{4}+x^{3}+x+1$	80
$x^{5}+x^{4}+x^{3}+x^{2}+1$	75
$x^{5}+x^{4}+x^{3}+x+1$	80
$x^{5}+x^{4}+x^{2}+x+1$	80
$x^{5}+x^{4}+x^{2}+x+1$	80

Interleave structure

$$
\mathbf{A}=\left[\begin{array}{ll}
1 & 1 \\
0 & 1 \\
0 & 1 \\
1 & 0 \\
0 & 0 \\
1 & 1 \\
1 & 0
\end{array}\right]
$$

11010110001110

Composition structure

Folded array

$$
\mathbf{A}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0 \\
1 & 1 \\
0 & 1 \\
1 & 1 \\
1 & 0
\end{array}\right]
$$

Unfolded sequence

 11010110001110
Structure of shrunken sequence

Theorem (Gomez et al. 2021, Cardell et al. 2019)

Let $\mathrm{L}_{1}, \mathrm{~L}_{2}$ be coprime positive integers with $\operatorname{gcd}\left(\mathrm{L}_{1}, \mathrm{~L}_{2}\right)=1$ and let $\left(\mathrm{a}_{\mathrm{i}}\right),\left(\mathrm{b}_{\mathrm{i}}\right)$ be m-sequences with (coprime) periods $\mathrm{T}_{1}=2^{\mathrm{L}_{1}}-1$ and $\mathrm{T}_{2}=2^{\mathrm{L}_{2}}-1$. Let $\delta \in\left\{1, \ldots, \mathrm{~T}_{2}-1\right\}$ such that $\mathrm{T}_{1} \cdot \delta=2^{\mathrm{L}_{1}-1} \operatorname{modT}_{2}$.
Denote by $\left(\mathfrak{i}_{j}\right)$ the sequence of indices belonging to the set I defined previously, i.e. $\mathrm{a}_{\mathrm{i}_{\mathrm{j}}}=1$ and define the $\left(2^{\mathrm{L}_{1}-1}\right)$-periodic sequence

$$
t_{j}=\delta \cdot i_{j}-j \quad \text { mód } T_{2} .
$$

Then, the shrunken sequence is the result of unfolding the array given by the composition of $\left(\mathrm{b}_{\mathfrak{i}}\right)$ and $\left(\mathrm{t}_{\mathrm{j}}\right)$.

Linear complexity of a two-dimensional array

A polynomial $C=\quad \sum \quad c_{\alpha_{1}, \alpha_{2}} x^{\alpha_{1}} y^{\alpha_{2}} \in \mathbb{F}_{2}[x, y]$ is valid for $\left(\alpha_{1}, \alpha_{2}\right) \in S \subset \mathbb{N}_{0}^{2}$
the two-dimensional array \mathbf{A} when the equation

$$
\sum_{S} c_{\alpha_{1}, \alpha_{2}} \mathbf{A}\left(\alpha_{1}+\beta_{1}, \alpha_{2}+\beta_{2}\right)=0
$$

for all α_{1}, α_{2}. The set of all valid polynomials for \mathbf{A} forms an ideal, and its degree is the linear complexity.

Relation between arrays and sequences

Theorem (Arce-Nazario et al. 2020)
The linear complexity of any unfolded sequence s and its folded array A are equal. Evenmore, the set of connection polynomials of \mathbf{s} can be calculated from the ideal of valid polynomials of \mathbf{A}.

Facts about A

－If a polynomial in $\mathbb{F}_{2}[x]$ is valid for \mathbf{A} ，it is a multiple of the minimal polynomial of $\left(b_{i}\right)$ ．
－If a polynomial in $\mathbb{F}_{2}[y]$ is valid for \mathbf{A} ，it is a multiple of $(y+1)^{\tau}$ ．

First result

Theorem

The linear complexity of a shrunken sequence \mathbf{s} is

$$
\mathrm{L}(\mathrm{~s})=\mathrm{L}_{2} \cdot 2^{\mathrm{L}_{1}-1}, \quad \text { when } 2^{\mathrm{L}_{1}} \cdot\left(2^{\mathrm{L}_{1}}-1\right)<\mathrm{L}_{2}
$$

Idea of the proof

The number of columns of \mathbf{A} is $\tau=2^{L_{1}-1}$, so a valid polynomial is

$$
y^{\tau}+1=(y+1)^{\tau}=y^{\tau}-1 \quad \text { and } \quad(y+1)^{\tau-1}=1+y+y^{2}+\cdots+y^{\tau-1}
$$

Idea of the proof

The number of columns of \mathbf{A} is $\tau=2^{\mathrm{L}_{1}-1}$, so a valid polynomial is
$y^{\tau}+1=(y+1)^{\tau}=y^{\tau}-1 \quad$ and $\quad(y+1)^{\tau-1}=1+y+y^{2}+\cdots+y^{\tau-1}$.
Our aim is to prove that $(y+1)^{\tau-1}$ is not valid.

Idea of the proof

The number of columns of \mathbf{A} is $\tau=2^{\mathrm{L}_{1}-1}$ ，so a valid polynomial is
$y^{\tau}+1=(y+1)^{\tau}=y^{\tau}-1 \quad$ and $\quad(y+1)^{\tau-1}=1+y+y^{2}+\cdots+y^{\tau-1}$.
Our aim is to prove that $(y+1)^{\tau-1}$ is not valid．After some computations，this fact is equivalent to

$$
p_{2}(\alpha)=0=\sum_{j=0}^{\tau-1} \alpha^{j-\delta \cdot i_{j}}=\sum_{j=0}^{\tau-1}\left(\alpha^{\prime}\right)^{(2 \cdot \tau-1) \cdot j-\tau \cdot \dot{i}_{j}}
$$

where $\left(\alpha^{\prime}\right)^{2 \tau-1}=\alpha$ ．If the degree of the minimal polynomial $p_{2}(x)$ is bigger than the right hand，this is a contradiction．

Idea of the proof

For a general polynomial valid polynomial

$$
C(x, y)=\sum_{i=0}^{\tau-1} C_{i}(x)(y+1)^{i} \quad\left(\operatorname{deg} C_{i}(x)<\operatorname{deg} p_{2}(x), \forall i\right)
$$

which gives another valid polynomial

$$
(y+1)^{\tau-1-n} C(x, y)=C_{n}(x)(y+1)^{\tau-1}+D(x, y)(y+1)^{\tau}
$$

which implies that $(y+1)^{\tau-1}$ is valid.

Conclusions and Open Problems

Our contribution is, for some set of parameters:

- the value of the linear complexity
- conditions on when the linear complexity is maximal
- the value of the linear complexity profile

We are working on determining

- The linear complexity and when it is maximal
- The linear complexity profile
- The k-error linear complexity
- Studying other pseudorandom tests using the composition structure

