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Schur rings

For a finite group G and X ⊆ G , we let X =
∑

x∈X x ∈ CG .

We also let X (−1) = {x−1 : x ∈ X}.

A Schur-ring over G is a sub-ring S of CG that is constructed from a
partition {C0,C1, . . . ,Cr} of G where C0 = {id}, satisfying:

(1) if 0 ≤ i ≤ r , then there is some j ≥ 1 such that C
(−1)
i = Cj ;

(2) if 0 ≤ i , j ≤ m, then

Ci Cj =
r∑

k=0

λijkCk ,

where λijk ∈ Z≥0 for all i , j , k.

The Ci are called the principal sets of the Schur ring.
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Some examples

1. G = {1} ∪ (G \ {1}).

2. For H ≤ G the H-classes gH = {gh : h ∈ H} determine a Schur ring
S(G ,H) over G .

3. Direct products of Schur rings.
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Some examples

4. Relative difference sets sometimes give Schur rings: suppose 1 < H / G
where there is D ⊂ G \ H with

(i) G = D + D(−1) + H;
(ii) D ∩ D(−1) = ∅;
(iii) DD(−1) = λ(G − H) + |D|.

Then
(a) H = 〈t〉 ∼= C2,
(b) |G | ≡ 0 mod 8,
(c) G is not abelian,
(d) a Sylow 2-subgroup is a generalized quaternion group and
(e) {1}, {t},D,D(−1) is a Schur ring.
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Basic facts

Each Schur ring is an association scheme (not necessarily commutative)
with Bose-Mesner matrices Pi given by:

(Pi )x ,y = 1 if and only if yx−1 ∈ Ci .

BASIC FACT: Schur rings are semisimple.

ORIGINAL MOTIVATION (Schur, Wielandt): Character-free method to
study permutation groups.
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One use of Schur rings

Random walks on G : Take probabilities xg ≥ 0,
∑

g∈G xg = 1, that are
constant on the principal sets of some commutative Schur ring.

EXAMPLE: G = S3,H = 〈(1, 2)〉, with S(G ,H): C0 = {Id(S3)},C1 =
{(1, 2)},C2 = {(2, 3), (1, 3)},C3 = {(1, 3, 2), (1, 2, 3)} Let

P =
3∑

i=0

xiPi =



x0 x3 x2 x3 x2 x1
x3 x0 x1 x3 x2 x2
x2 x1 x0 x2 x3 x3
x3 x3 x2 x0 x1 x2
x2 x2 x3 x1 x0 x3
x1 x2 x3 x2 x3 x0


Then commutativity and semisimplicity says that this matrix is similar to:

diag(x0 + x1 + 2x2 + 2x3, x0 − x1 − 2x2 + 2x3, x0 − x1 + x2 − x3,

x0 − x1 + x2 − x3, x0 + x1 − x2 − x3, x0 + x1 − x2 − x3)
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Gelfand pairs

QUESTION: How do you construct commutative Schur rings over a group?
Let G be a group and H ≤ G . Then (G ,H) is a Gelfand pair if the double
cosets HgH, g ∈ G , commute.

These double cosets determine a Schur ring: replace H by {1} and H \{1}.

Usual definition: (G ,H) is a Gelfand pair if the induced character 1H ↑ G
has the multiplicity one property.

Definition: A character χ of G has the multiplicity one property if
χ =

∑
i ciψi , ci ≤ 1, where Ĝ = {ψ1, ψ2, · · · , ψr}.

CLASSIC EXAMPLES: (Sn,Sn−1); (S2n,Cox(Bn)).
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Gelfand’s Lemma

Lemma (Gelfand)

If G acts 2-point transitively on a metric space X and H is the stabilizer of
a point x ∈ X , then (G ,H) is a Gelfand pair.

STANDARD EXAMPLE: X = Sn ⊂ Rn+1. Then G = SOn+1 acts 2-point
transitively on Sn and H = SOn so that (SOn+1,SOn) is a Gelfand pair.

ONE COMBINATORIAL APPLICATION: The Gelfand pair (S2n,Cox(Bn))
was used by N. Lindzey to study perfect matchings of K2n.
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Strong Gelfand pairs

Definition: Let H ≤ G be finite groups. Then (G ,H) is a Strong Gelfand
pair if ψ ↑ G has the multiplicity one property for all ψ ∈ Ĥ.

Equivalent condition: S(G ,H) is commutative (Karlof, Travis)

CLASSICAL EXAMPLE: (Sn,Sn−1)

For Sn (based on results of Saxl).

Theorem (Anderson, H., Nicholson)

For G = Sn, n ≥ 7, the strong Gelfand pairs are:
(i) (Sn,Sn);
(ii) (Sn,An);
(iii) (Sn,Sn−1);
(iv) (Sn,Sn−2 × S2).
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Strong Gelfand pairs, examples ctd.

Let G = SL(2, pn).
Let B denote the upper-triangular subgroup of G .
Let B2 ≤ B be the subgroup with squares on the diagonal.

Theorem (Barton, Gardiner, H.)

For G = SL(2, pn), pn > 11, the proper strong Gelfand pairs are:
(i) For p ≡ 1 mod 4 only (G ,B);
(ii) For p ≡ 3 mod 4 there are (G ,B) and (G ,B2);
(iii) For p = 2 they are (G ,B), (G ,D2(2n+1)) and (G , C2n+1).
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Sn again

Let (Sn,H) be a strong Gelfand pair, so that S(Sn,H) is commutative.
Then H acts on (1, 2)Sn , not necessarily transitively, and so (1, 2)Sn is a
union of principal sets.

QUESTION: What are the possibilities for the partition of (1, 2)Sn

determined by a commutative Schur ring S?

Theorem (H)

If n ≥ 6, then in the above situation (1, 2)Sn splits into at most three
principal sets, and the corresponding partitions of (1, 2)Sn are the same as
those obtained using the above strong Gelfand subgroups
(Sn,An, Sn−1,S2 × Sn−2).
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S(G ,H) maximal

FACT: The maximal dimension of a commutative Schur ring over G is
sG :=

∑
χ∈Ĝ χ(1).

Theorem (H)

If (G ,H) is a strong Gelfand pair and S(G ,H) is of maximal dimension
sG , then H is abelian.

TEMPTING DEFINITION: Let H ≤ G . Then (G ,H) is an extra strong
Gelfand pair if (G ,H) is a strong Gelfand pair and S(G ,H) is of maximal
dimension.

Corollary

(i) For n ≥ 6, Sn has no extra strong Gelfand pairs.
(ii) For SL(2, pn), pn > 11, only SL(2, 2n) has an extra strong Gelfand pair:
C2n+1
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Symplectic groups

V = Fn
2 with n even and symplectic form · (antisymmetric, nondegerate).

Sp(n, 2) - Symplectic group

Symplectic transvections: for 0 6= a ∈ V define

Ta : V → V , v 7→ v + (a · v)a.

Let T = {Ta : a ∈ V , a 6= 0}

Lemma

(i) Sp(n, 2) is generated by the symplectic transvections.
(ii) T is a conjugacy class in Sp(n, 2).
(iii) Sp(n, 2) is a 3-transposition group.
[(i) and (ii) and: if Ta,Tb ∈ T , then TaTb has order 1, 2, 3.]
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Symplectic groups

First problem: find all Strong Gelfand pairs for Sp(n, 2).

Subproblem: Find all commutative Schur rings over Sp(n, 2) that contain
T .

For small n:

Theorem

(1) For Sp(2, 2) ∼= S3 there are two proper (extra) strong Gelfand
subgroups 〈(1, 2)〉, 〈(1, 2, 3)〉.

(2) For Sp(4, 2) ∼= S6 the proper strong Gelfand subgroups are:
S4 × S2,S2 o S3,S3 o S2,A6,S5, 〈(1, 5)(2, 3)(4, 6), (1, 3, 6, 4, 5, 2)〉 ∼= S5

(3) For Sp(6, 2) there is one strong Gelfand subgroup: SO−(6, 2); there
are 31 Gelfand subgroups.

(4) for n = 8, 10, 12 there are no strong Gelfand subgroups [Magma].
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Symplectic groups

Problem: Sp(n, 2), n ≥ 14?

Theorem (H)

Any commutative Schur ring over Sp(n, 2), n ≥ 14, contains T as a
principal set.

Corollary

If (Sp(n, 2),H), n ≥ 8, is a proper strong Gelfand pair, then
(i) H acts transitively on T (by conjugation);
(ii) H contains no elements of T .
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Dye subgroups

We note that Dye [1984/7] has constructed such subgroups - they are
maximal.
These only occur when n = 2p with p prime, and they are the stabilizers
of a set {Ui}i (called a spread) of subspaces where {Ui \ {0}}i partitions
V \ {0}. We denote this H by Dyen; then

Proposition

Dyen is not a strong Gelfand subgroup.
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Proof of the main theorem - first step

Lemma (Commuting condition)

For disjoint C ,D ⊂ T , we have: C , D commute if and only if
for all Ta ∈ C ,Tb ∈ D, a · b = 1, we have Ta+b ∈ C ∪ D.
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THE END

THANKS FOR LISTENING
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