Schur rings and multiplicity one subgroups

Schur rings and multiplicity one subgroups

Stephen Humphries Brigham Young University

CODESCO24

For a finite group G and $X \subseteq G$, we let $\overline{X} = \sum_{x \in X} x \in \mathbb{C}G$. We also let $X^{(-1)} = \{x^{-1} : x \in X\}$.

For a finite group G and $X \subseteq G$, we let $\overline{X} = \sum_{x \in X} x \in \mathbb{C}G$. We also let $X^{(-1)} = \{x^{-1} : x \in X\}.$

A Schur-*ring* over G is a sub-ring \mathfrak{S} of $\mathbb{C}G$ that is constructed from a partition $\{C_0, C_1, \ldots, C_r\}$ of G where $C_0 = \{id\}$, satisfying:

For a finite group G and $X \subseteq G$, we let $\overline{X} = \sum_{x \in X} x \in \mathbb{C}G$. We also let $X^{(-1)} = \{x^{-1} : x \in X\}.$

A Schur-*ring* over G is a sub-ring \mathfrak{S} of $\mathbb{C}G$ that is constructed from a partition $\{C_0, C_1, \ldots, C_r\}$ of G where $C_0 = \{id\}$, satisfying:

(1) if $0 \le i \le r$, then there is some $j \ge 1$ such that $C_i^{(-1)} = C_j$;

2 / 18

For a finite group G and $X \subseteq G$, we let $\overline{X} = \sum_{x \in X} x \in \mathbb{C}G$. We also let $X^{(-1)} = \{x^{-1} : x \in X\}.$

A Schur-*ring* over G is a sub-ring \mathfrak{S} of $\mathbb{C}G$ that is constructed from a partition $\{C_0, C_1, \ldots, C_r\}$ of G where $C_0 = \{id\}$, satisfying:

(1) if $0 \le i \le r$, then there is some $j \ge 1$ such that $C_i^{(-1)} = C_j$; (2) if $0 \le i, j \le m$, then

$$\overline{C_i}\,\overline{C_j}=\sum_{k=0}^r\lambda_{ijk}\overline{C_k},$$

where $\lambda_{ijk} \in \mathbb{Z}^{\geq 0}$ for all i, j, k.

For a finite group G and $X \subseteq G$, we let $\overline{X} = \sum_{x \in X} x \in \mathbb{C}G$. We also let $X^{(-1)} = \{x^{-1} : x \in X\}.$

A Schur-*ring* over G is a sub-ring \mathfrak{S} of $\mathbb{C}G$ that is constructed from a partition $\{C_0, C_1, \ldots, C_r\}$ of G where $C_0 = \{id\}$, satisfying:

(1) if $0 \le i \le r$, then there is some $j \ge 1$ such that $C_i^{(-1)} = C_j$; (2) if $0 \le i, j \le m$, then

$$\overline{C_i}\,\overline{C_j}=\sum_{k=0}^r\lambda_{ijk}\overline{C_k},$$

where $\lambda_{ijk} \in \mathbb{Z}^{\geq 0}$ for all i, j, k.

The C_i are called the *principal sets* of the Schur ring.

Some examples

1.
$$G = \{1\} \cup (G \setminus \{1\}).$$

1. $G = \{1\} \cup (G \setminus \{1\}).$

2. For $H \leq G$ the *H*-classes $g^H = \{g^h : h \in H\}$ determine a Schur ring $\mathfrak{S}(G, H)$ over *G*.

1. $G = \{1\} \cup (G \setminus \{1\}).$

2. For $H \leq G$ the *H*-classes $g^H = \{g^h : h \in H\}$ determine a Schur ring $\mathfrak{S}(G, H)$ over *G*.

3. Direct products of Schur rings.

Some examples

4. Relative difference sets sometimes give Schur rings: suppose $1 < H \triangleleft G$ where there is $D \subset G \setminus H$ with

(i)
$$\overline{G} = \overline{D} + \overline{D^{(-1)}} + \overline{H};$$

(ii) $D \cap D^{(-1)} = \emptyset;$
(iii) $DD^{(-1)} = \lambda(G - H) + |D|.$

Some examples

4. Relative difference sets sometimes give Schur rings: suppose $1 < H \triangleleft G$ where there is $D \subset G \setminus H$ with

(i)
$$\overline{G} = \overline{D} + \overline{D^{(-1)}} + \overline{H}$$
;
(ii) $D \cap D^{(-1)} = \emptyset$;
(iii) $DD^{(-1)} = \lambda(G - H) + |D|$.

Then

- (a) $H = \langle t \rangle \cong C_2$,
- (b) $|G| \equiv 0 \mod 8$,
- (c) G is not abelian,
- (d) a Sylow 2-subgroup is a generalized quaternion group and (e) $\{1\}, \{t\}, D, D^{(-1)}$ is a Schur ring.

Basic facts

Each Schur ring is an association scheme (not necessarily commutative) with Bose-Mesner matrices \mathcal{P}_i given by:

$$(\mathcal{P}_i)_{x,y} = 1$$
 if and only if $yx^{-1} \in C_i$.

Basic facts

Each Schur ring is an association scheme (not necessarily commutative) with Bose-Mesner matrices \mathcal{P}_i given by:

$$(\mathcal{P}_i)_{x,y} = 1$$
 if and only if $yx^{-1} \in C_i$.

BASIC FACT: Schur rings are semisimple.

Basic facts

Each Schur ring is an association scheme (not necessarily commutative) with Bose-Mesner matrices \mathcal{P}_i given by:

$$(\mathcal{P}_i)_{x,y} = 1$$
 if and only if $yx^{-1} \in C_i$.

BASIC FACT: Schur rings are semisimple.

ORIGINAL MOTIVATION (Schur, Wielandt): Character-free method to study permutation groups.

One use of Schur rings

Random walks on G: Take probabilities $x_g \ge 0$, $\sum_{g \in G} x_g = 1$, that are constant on the principal sets of some commutative Schur ring.

One use of Schur rings

Random walks on G: Take probabilities $x_g \ge 0$, $\sum_{g \in G} x_g = 1$, that are constant on the principal sets of some commutative Schur ring. **EXAMPLE**: $G = S_3$, $H = \langle (1,2) \rangle$, with $\mathfrak{S}(G, H)$: $C_0 = \{Id(S_3)\}$, $C_1 = \{(1,2)\}$, $C_2 = \{(2,3), (1,3)\}$, $C_3 = \{(1,3,2), (1,2,3)\}$ Let

$$\mathcal{P} = \sum_{i=0}^{3} x_i \mathcal{P}_i = \begin{bmatrix} x_0 & x_3 & x_2 & x_3 & x_2 & x_1 \\ x_3 & x_0 & x_1 & x_3 & x_2 & x_2 \\ x_2 & x_1 & x_0 & x_2 & x_3 & x_3 \\ x_3 & x_3 & x_2 & x_0 & x_1 & x_2 \\ x_2 & x_2 & x_3 & x_1 & x_0 & x_3 \\ x_1 & x_2 & x_3 & x_2 & x_3 & x_0 \end{bmatrix}$$

Then commutativity and semisimplicity says that this matrix is similar to:

$$diag(x_0 + x_1 + 2x_2 + 2x_3, x_0 - x_1 - 2x_2 + 2x_3, x_0 - x_1 + x_2 - x_3, x_0 - x_1 + x_2 - x_3, x_0 + x_1 - x_2 - x_3, x_0 + x_1 - x_2 - x_3)$$

QUESTION: How do you construct commutative Schur rings over a group? Let G be a group and $H \leq G$. Then (G, H) is a *Gelfand pair* if the double cosets $HgH, g \in G$, commute.

QUESTION: How do you construct commutative Schur rings over a group? Let G be a group and $H \leq G$. Then (G, H) is a *Gelfand pair* if the double cosets $HgH, g \in G$, commute.

These double cosets determine a Schur ring: replace H by $\{1\}$ and $H \setminus \{1\}$.

QUESTION: How do you construct commutative Schur rings over a group? Let G be a group and $H \leq G$. Then (G, H) is a *Gelfand pair* if the double cosets $HgH, g \in G$, commute.

These double cosets determine a Schur ring: replace H by $\{1\}$ and $H \setminus \{1\}$.

Usual definition: (G, H) is a *Gelfand pair* if the induced character $1_H \uparrow G$ has the multiplicity one property.

Definition: A character χ of G has the *multiplicity one property* if $\chi = \sum_{i} c_{i}\psi_{i}, c_{i} \leq 1$, where $\hat{G} = \{\psi_{1}, \psi_{2}, \cdots, \psi_{r}\}$.

QUESTION: How do you construct commutative Schur rings over a group? Let G be a group and $H \leq G$. Then (G, H) is a *Gelfand pair* if the double cosets $HgH, g \in G$, commute.

These double cosets determine a Schur ring: replace H by $\{1\}$ and $H \setminus \{1\}$.

Usual definition: (G, H) is a *Gelfand pair* if the induced character $1_H \uparrow G$ has the multiplicity one property.

Definition: A character χ of G has the *multiplicity one property* if $\chi = \sum_i c_i \psi_i, c_i \leq 1$, where $\hat{G} = \{\psi_1, \psi_2, \cdots, \psi_r\}$.

CLASSIC EXAMPLES: (S_n, S_{n-1}) ; $(S_{2n}, Cox(B_n))$.

Lemma (Gelfand)

If G acts 2-point transitively on a metric space X and H is the stabilizer of a point $x \in X$, then (G, H) is a Gelfand pair.

Lemma (Gelfand)

If G acts 2-point transitively on a metric space X and H is the stabilizer of a point $x \in X$, then (G, H) is a Gelfand pair.

STANDARD EXAMPLE: $X = S^n \subset \mathbb{R}^{n+1}$. Then $G = SO_{n+1}$ acts 2-point transitively on S^n and $H = SO_n$ so that (SO_{n+1}, SO_n) is a Gelfand pair.

Lemma (Gelfand)

If G acts 2-point transitively on a metric space X and H is the stabilizer of a point $x \in X$, then (G, H) is a Gelfand pair.

STANDARD EXAMPLE: $X = S^n \subset \mathbb{R}^{n+1}$. Then $G = SO_{n+1}$ acts 2-point transitively on S^n and $H = SO_n$ so that (SO_{n+1}, SO_n) is a Gelfand pair.

ONE COMBINATORIAL APPLICATION: The Gelfand pair $(S_{2n}, Cox(B_n))$ was used by N. Lindzey to study perfect matchings of K_{2n} .

Strong Gelfand pairs

Definition: Let $H \leq G$ be finite groups. Then (G, H) is a *Strong Gelfand* pair if $\psi \uparrow G$ has the multiplicity one property for all $\psi \in \hat{H}$.

Strong Gelfand pairs

Definition: Let $H \leq G$ be finite groups. Then (G, H) is a *Strong Gelfand* pair if $\psi \uparrow G$ has the multiplicity one property for all $\psi \in \hat{H}$.

Equivalent condition: $\mathfrak{S}(G, H)$ is commutative (Karlof, Travis) CLASSICAL EXAMPLE: (S_n, S_{n-1})

Strong Gelfand pairs

Definition: Let $H \leq G$ be finite groups. Then (G, H) is a *Strong Gelfand pair* if $\psi \uparrow G$ has the multiplicity one property for all $\psi \in \hat{H}$.

Equivalent condition: $\mathfrak{S}(G, H)$ is commutative (Karlof, Travis) CLASSICAL EXAMPLE: (S_n, S_{n-1})

For S_n (based on results of Saxl).

Theorem (Anderson, H., Nicholson)

For $G = S_n$, $n \ge 7$, the strong Gelfand pairs are: (i) (S_n, S_n) ; (ii) (S_n, A_n) ; (iii) (S_n, S_{n-1}) ; (iv) $(S_n, S_{n-2} \times S_2)$.

Strong Gelfand pairs, examples ctd.

Let $G = SL(2, p^n)$.

Let B denote the upper-triangular subgroup of G.

Let $B_2 \leq B$ be the subgroup with squares on the diagonal.

Theorem (Barton, Gardiner, H.)

For $G = SL(2, p^n)$, $p^n > 11$, the proper strong Gelfand pairs are: (i) For $p \equiv 1 \mod 4$ only (G, B); (ii) For $p \equiv 3 \mod 4$ there are (G, B) and (G, B_2) ; (iii) For p = 2 they are (G, B), $(G, D_{2(2^n+1)})$ and (G, C_{2^n+1}) .

S_n again

Let (S_n, H) be a strong Gelfand pair, so that $\mathfrak{S}(S_n, H)$ is commutative. Then H acts on $(1, 2)^{S_n}$, not necessarily transitively, and so $(1, 2)^{S_n}$ is a union of principal sets.

S_n again

Let (S_n, H) be a strong Gelfand pair, so that $\mathfrak{S}(S_n, H)$ is commutative. Then H acts on $(1, 2)^{S_n}$, not necessarily transitively, and so $(1, 2)^{S_n}$ is a union of principal sets.

QUESTION: What are the possibilities for the partition of $(1,2)^{S_n}$ determined by a commutative Schur ring \mathfrak{S} ?

S_n again

Let (S_n, H) be a strong Gelfand pair, so that $\mathfrak{S}(S_n, H)$ is commutative. Then H acts on $(1, 2)^{S_n}$, not necessarily transitively, and so $(1, 2)^{S_n}$ is a union of principal sets.

QUESTION: What are the possibilities for the partition of $(1,2)^{S_n}$ determined by a commutative Schur ring \mathfrak{S} ?

Theorem (H)

If $n \ge 6$, then in the above situation $(1,2)^{S_n}$ splits into at most three principal sets, and the corresponding partitions of $(1,2)^{S_n}$ are the same as those obtained using the above strong Gelfand subgroups $(S_n, A_n, S_{n-1}, S_2 \times S_{n-2})$.

$\mathfrak{S}(G,H)$ maximal

FACT: The maximal dimension of a commutative Schur ring over G is $s_G := \sum_{\chi \in \hat{G}} \chi(1).$

$\mathfrak{S}(G,H)$ maximal

FACT: The maximal dimension of a commutative Schur ring over G is $s_G := \sum_{\chi \in \hat{G}} \chi(1).$

Theorem (H)

If (G, H) is a strong Gelfand pair and $\mathfrak{S}(G, H)$ is of maximal dimension s_G , then H is abelian.

FACT: The maximal dimension of a commutative Schur ring over G is $s_G := \sum_{\chi \in \hat{G}} \chi(1).$

Theorem (H)

If (G, H) is a strong Gelfand pair and $\mathfrak{S}(G, H)$ is of maximal dimension s_G , then H is abelian.

TEMPTING DEFINITION: Let $H \leq G$. Then (G, H) is an *extra strong* Gelfand pair if (G, H) is a strong Gelfand pair and $\mathfrak{S}(G, H)$ is of maximal dimension.

FACT: The maximal dimension of a commutative Schur ring over G is $s_G := \sum_{\chi \in \hat{G}} \chi(1).$

Theorem (H)

If (G, H) is a strong Gelfand pair and $\mathfrak{S}(G, H)$ is of maximal dimension s_G , then H is abelian.

TEMPTING DEFINITION: Let $H \leq G$. Then (G, H) is an *extra strong* Gelfand pair if (G, H) is a strong Gelfand pair and $\mathfrak{S}(G, H)$ is of maximal dimension.

Corollary

(i) For $n \ge 6$, S_n has no extra strong Gelfand pairs. (ii) For $SL(2, p^n)$, $p^n > 11$, only $SL(2, 2^n)$ has an extra strong Gelfand pair: C_{2^n+1} $V = \mathbb{F}_2^n$ with n even and symplectic form \cdot (antisymmetric, nondegerate). Sp(n,2) - Symplectic group

Symplectic transvections: for $0 \neq a \in V$ define

$$T_a: V \to V, \quad v \mapsto v + (a \cdot v)a.$$

Let
$$\mathcal{T} = \{T_a : a \in V, a \neq 0\}$$

Lemma

(i) Sp(n, 2) is generated by the symplectic transvections. (ii) T is a conjugacy class in Sp(n, 2). (iii) Sp(n, 2) is a 3-transposition group. [(i) and (ii) and: if $T_a, T_b \in T$, then T_aT_b has order 1,2,3.]

Symplectic groups

First problem: find all Strong Gelfand pairs for Sp(n, 2).

First problem: find all Strong Gelfand pairs for Sp(n, 2).

Subproblem: Find all commutative Schur rings over Sp(n,2) that contain \overline{T} .

First problem: find all Strong Gelfand pairs for Sp(n, 2).

Subproblem: Find all commutative Schur rings over Sp(n,2) that contain \overline{T} .

For small *n*:

Theorem

(1) For $Sp(2,2) \cong S_3$ there are two proper (extra) strong Gelfand subgroups $\langle (1,2) \rangle, \langle (1,2,3) \rangle$.

(2) For $Sp(4,2) \cong S_6$ the proper strong Gelfand subgroups are: $S_4 \times S_2, S_2 \wr S_3, S_3 \wr S_2, A_6, S_5, \langle (1,5)(2,3)(4,6), (1,3,6,4,5,2) \rangle \cong S_5$

(3) For Sp(6,2) there is one strong Gelfand subgroup: $SO^{-}(6,2)$; there are 31 Gelfand subgroups.

(4) for n = 8, 10, 12 there are no strong Gelfand subgroups [Magma].

Problem: $Sp(n, 2), n \ge 14$?

Theorem (H)

Any commutative Schur ring over Sp(n, 2), $n \ge 14$, contains \mathcal{T} as a principal set.

Corollary

If $(Sp(n, 2), H), n \ge 8$, is a proper strong Gelfand pair, then (i) *H* acts transitively on \mathcal{T} (by conjugation); (ii) *H* contains no elements of \mathcal{T} .

Dye subgroups

We note that Dye [1984/7] has constructed such subgroups - they are maximal.

These only occur when n = 2p with p prime, and they are the stabilizers of a set $\{U_i\}_i$ (called a spread) of subspaces where $\{U_i \setminus \{0\}\}_i$ partitions $V \setminus \{0\}$. We denote this H by Dye_n ; then

Proposition

Dye_n is not a strong Gelfand subgroup.

Lemma (Commuting condition)

For disjoint $C, D \subset T$, we have: $\overline{C}, \overline{D}$ commute if and only if for all $T_a \in C, T_b \in D, a \cdot b = 1$, we have $T_{a+b} \in C \cup D$.

THE END

THANKS FOR LISTENING