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The second talk???

There are a couple of disadvantages to being the first
contributed talk immediately after the first invited talk:

After the first talk, everyone wants coffee, not to hear
another talk.

Ian is a tough act to follow!

This talk will be algebraic, but I’ll try to make it too technical.
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Quasigroups

A quasigroup (Q, ·) is a set Q with a binary operation · such
that for each a,b ∈ Q, the equations

ax = b and ya = b

have unique solutions x , y ∈ Q.

Multiplication tables of finite quasigroups = latin squares

Example:
1 3 2
3 2 1
2 1 3



Loops

A loop is a quasigroup with an identity element 1 · x = x · 1 = x .

Multiplication tables of loops = reduced Latin squares

Example:

1 2 3 4 5
2 1 4 5 3
3 4 5 1 2
4 5 2 3 1
5 3 1 2 4

This is evidently not a group table. (Exercise)



Multiplication Group

In a quasigroup Q, the left and right translations

Lx : Q → Q; yLx = xy Rx : Q → Q; yRx = yx

are permutations.

The multiplication group of Q is generated by all of these:

Mlt(Q) = ⟨Lx ,Rx | x ∈ Q⟩ .

(Think of the group generated by all rows and all columns of the
corresponding latin square.)

Multiplication groups give a lot of information about loops, but
do not determine them (e.g. Mlt(D8) ∼= Mlt(Q8)).



Normality

An equivalence relation θ on a quasigroup Q is a congruence if
and only if its equivalence classes form a block system for
Mlt(Q)

Congruences on a loop Q are determined by normal subloops:
A subloop A ⊆ Q is a congruence class of the identity element
1 if and only if it is a block of Mlt(Q) containing 1.

A useful way of proving normality for a subloop:

If K is a normal subgroup of Mlt(Q), then A := 1K is a normal
subloop of Q.

(Conversely, every normal subloop is the orbit of 1 for some
normal subgroup of Mlt(Q), but we won’t need this.)
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Nuclei

The left, middle and right nuclei of a loop Q are the sets

Nucℓ(Q) = {a ∈ Q | ax · y = a · xy , ∀x , y ∈ Q}
Nucm(Q) = {a ∈ Q | xa · y = x · ay , ∀x , y ∈ Q}
Nucr (Q) = {a ∈ Q | xy · a = x · ya, ∀x , y ∈ Q}

The nucleus is the intersection of these:

Nuc(Q) = Nucℓ(Q) ∩ Nucm(Q) ∩ Nucr (Q) .

Each of the three nuclei (and hence the nucleus) is a subloop.

None of the nuclei need be normal, though in “nice” classes of
loops, one or more of them often is.
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Moufang loops

The best known class of loops are Moufang loops. They are
defined by any one of the following identities:

(xy)(zx) = x((yz)x)
((xy)x)z = x(y(xz))
((zx)y)x = z(x(yx))

Examples: the nonzero octonions; the sphere S7 under
octonion multiplication.

Modulo CFSG, finite simple Moufang loops have been
classified: they are groups or loops in a particular infinite family.

Moufang loops are often thought of as being the most
“group-like” of loops.
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Bol loops

The 2nd best known class are (left) Bol loops, defined by the
following identity:

(x(yx))z = x(y(xz))

Right Bol loops are defined dually.

Left Bol + right Bol = Moufang.

Example: Let H+(n,C) be the set of n × n positive definite,
hermitian matrices. For A,B ∈ H+(n,C), take the polar
decomposition of AB:

AB = CU

where C ∈ H+(n,C) and U is unitary. (In fact, C = (AB2A)1/2.)
Define A ∗ B := C. Then (H+(n,C), ∗) is a left Bol loop.
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Loops of Bol-Moufang type

In 1969, F. Fenyves observed that both Bol loops and Moufang
loops were defined by identities with the same characteristics:

They involve only the multiplication (no divisions).
Three variables occur on each side of the equality, in the
same order.
One variable occurs twice on each side, the others only
once.

Moufang loops: x((yz)x) = (xy)(zx) (and the other 2
equivalent identities)

(left) Bol loops: (x(yx))z = x(y(xz))



Loops of Bol-Moufang type

Fenyves decided to classify all such identities, which he
referred to as identities of Bol-Moufang type, and to determine
how many distinct varieties of loops they define.

There are 60 such identities. It turns out that 30 of them are
equivalent to associativity; for example, (xy)(yz) = ((xy)y)z.

In all, there are 14 distinct classes defined by identities of
Bol-Moufang type.

Fenyves completed almost all of the classification; he only
missed a few inclusions, and gave very few examples to
separate the classes. These holes were later filled in by Phillips
and Vojtěchovský (2005).
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The 14 varieties

Flex LAlt RAlt LNucSq MNucSq RNucSq

LBol RBol LC RC

Moufang C

Ex

Grp



Defining Identities

Flex (xy)x = x(yx)
LAlt (xx)y = x(xy)
RAlt (xy)y = x(yy)
Left Nuclear Squares (xx)(yz) = ((xx)y)z
Middle Nuclear Squares (x(yy)z) = x((yy)z)
Right Nuclear Squares (xy)(zz) = x(y(zz))
Left Bol (x(yx))z = x(y(xz))
Right Bol ((xy)z)y = x((yz)y)
Left C (xx)(yz) = (x(xy))z
Right C (xy)(zz) = x((yz)z)
Moufang (xy)(zx) = x((yz)x)
C ((xy)y)z = x(y(yz))
Extra ((xy)z)x = x(y(zx))
Groups (xy)z = x(yz)



Comments

The strange names “extra” and “C” are due to Fenyves. No
one knows exactly why he chose them.
One guess is that he thought of “extra loops” as Moufang
loops satisfying an “extra” condition (nuclear squares).
It has been speculated that the somewhat uninspiring “C”
is supposed to mean “central” (in the sense of middle, not
in any algebraic sense), but as with “extra,” there is no
direct evidence in Fenyves’ paper that this is what he had
in mind.
Anyway, there has been enough literature on these loops
that we are stuck with the names.



Normality of nuclei

Variety Coinciding normal? who?
Moufang ℓ = m = r yes R.H. Bruck
right Bol m = r yes D.A. Robinson
left Bol ℓ = m yes dual
C ℓ = m = r yes Phillips-Vojtěchovský
left C ℓ = m yes Phillips, Drápal-Kinyon
right C m = r yes dual

For the flexible, left alternative or right alternative varieties,
nothing can be said. By themselves (or even together), they
don’t have enough structure to prove anything interesting.

What about left, middle or right nuclear squares? Again, each
one alone has almost no structure. However. . .
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Main Result

Let

Nucℓ,m(Q) := Nucℓ(Q) ∩ Nucm(Q)

G := {La | a ∈ Nucℓ,m(Q)}

Theorem
Let Q be a loop with left and middle nuclear squares. Then:

1 G is a normal subgroup of Mlt(Q);
2 Nucℓ,m(Q) is a normal subloop of Q.

Also true for:
Loops with middle and right nuclear squares (duality)
Loops with left and right nuclear squares (paratopy)



Consequence

Corollary
If Q is a loop with left and middle nuclear squares, then
Q/Nucℓ,m(Q) has exponent 2 (x2 = 1).

Corollary
A simple loop with left and middle nuclear squares is a group or
a loop of exponent 2.



What is needed

If a ∈ Nucℓ,m(Q), then for all x ∈ Q, LaRx = RxLa.

Thus to show L(Nucℓ,m(Q)) is normal in Mlt(Q), it is enough to
show that it is normalized by each left translation Lx .
In other words, we must show that for all x ∈ Q,

LxLaL−1
x = L(xa)/x

L−1
x LaLx = Lx\(ax)

and that (xa)/x , x\(ax) ∈ Nucℓ,m(Q).

This is a purely equational problem! Let us not waste our
precious brain cells on it.
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Prover9

% loop
1 * x = x. x * 1 = x.
(x * y) / y = x. (x / y) * y = x.
x \ (x * y) = y. x * (x \ y) = y.

% left & middle nuclear squares
((x * x) * y) * z = (x * x) * (y * z).
(x * (y * y)) * z = x * ((y * y) * z).

% a in left & middle nucleus
(a * x) * y = a * (x * y).
(x * a) * y = x * (a * y).

% goals
x \ (a * (x * y)) = (x \ (a * x)) * y.
x * (a * (x \ y)) = ((x * a) / x) * y.



Success! (But then what?)

There are different attitudes about how to react once an
automated theorem prover succeeds in finding a proof:

Archiving the proof is enough.
One should humanize the proof.

I come down somewhere between these. For very long proofs,
the Law of Diminishing Returns kicks in as to whether or not
humanization is worthwhile. Otherwise it is worth trying.

“Humanization” does not just mean doing a line-by-line literal
translation of the proof. It means writing a proof for human
consumption that uses existing theory to simplify steps and
then identifies new key steps.

In this case, the Prover9 proofs were reasonably short (a few
hundred steps), so it was straightforward to humanize them.
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Loops with central squares

Finally, consider loops with central squares: Nuclear squares +
commuting squares: x2y = yx2.

Such loops are power-associative, that is, each 1-generated
subloop is a group. Informally, powers of elements are
unambiguous.

Lemma
The following are equivalent in a loop with central squares:

Automorphic inverse property (AIP): (xy)−1 = x−1y−1;
Endomorphic squaring (ES): (xy)2 = x2y2.
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Decomposition

Theorem
Let Q be a loop with squares in two nuclei. If Q has AIP or ES,
then it has central squares (hence both AIP and ES).

Theorem
Let Q be a finite loop with squares in two nuclei and AIP/ES.
Then

Q ∼= E × O

where
E is a loop in which every element has order a power of 2,
and
O is a loop of odd order.



Now let’s have coffee!
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