On Latin Young Diagrams
 Daniel Kotlar
 Tel-Hai College

Joint work with Ron Aharoni, Eli Berger and He Guo

Young diagram

$$
Y=
$$

Young diagram

m rows: $\quad r_{1}, r_{2}, \ldots, r_{m}$
row lengths: $a_{1}, a_{2}, \ldots, a_{m}$ respectively
a_{1} columns: $c_{1}, c_{2}, \ldots, c_{a_{1}}$

$$
|Y|=\sum_{i=1}^{m} a_{i}
$$

Young diagram

m rows: $\quad r_{1}, r_{2}, \ldots, r_{m}$ row lengths: $a_{1}, a_{2}, \ldots, a_{m}$ respectively a_{1} columns: $c_{1}, c_{2}, \ldots, c_{a_{1}}$

$$
|Y|=\sum_{i=1}^{m} a_{i}
$$

Young diagram

m rows: $\quad r_{1}, r_{2}, \ldots, r_{m}$ row lengths: $a_{1}, a_{2}, \ldots, a_{m}$ respectively a_{1} columns: $c_{1}, c_{2}, \ldots, c_{a_{1}}$

$$
|Y|=\sum_{i=1}^{m} a_{i}
$$

Question (Chow, Fan, Goemans, Vondrak 2003*): Is it possible to place in each row r_{i} the numbers $1,2, \ldots, a_{i}$ so that the entries in each column are distinct?

[^0]
Young diagram

m rows: $\quad r_{1}, r_{2}, \ldots, r_{m}$
row lengths: $a_{1}, a_{2}, \ldots, a_{m}$ respectively
a_{1} columns: $c_{1}, c_{2}, \ldots, c_{a_{1}}$

$$
|Y|=\sum_{i=1}^{m} a_{i}
$$

Question (Chow, Fan, Goemans, Vondrak 2003*):

 Is it possible to place in each row r_{i} the numbers $1,2, \ldots, a_{i}$ so that the entries in each column are distinct?
If the answer is Yes we say that Y is Latin

[^1]
Some easy examples

Some easy examples

$$
a_{1}=a_{2}=\ldots=a_{m}=k
$$

Some easy examples

$$
\begin{aligned}
& a_{1}=a_{2}=\ldots=a_{m}=k \\
& m \leq k
\end{aligned}
$$

Some easy examples

$$
\begin{aligned}
& a_{1}=a_{2}=\ldots=a_{m}=k \\
& m \leq k \quad{ }^{2} \\
& \text { Yes } \quad \text { (a Latin rectangle) }
\end{aligned}
$$

Some easy examples

$$
\begin{aligned}
& a_{1}=a_{2}=\ldots=a_{m}=k \\
& m \leq k \quad \text { Yes } \quad \text { (a Latin rectangle) } \\
& m>k \quad \text { No }
\end{aligned}
$$

Some easy examples

$$
\begin{aligned}
& a_{1}=a_{2}=\ldots=a_{m}=k \\
& m \leq k \quad \text { Yes } \quad \text { (a Latin rectangle) } \\
& m>k \quad \text { No }
\end{aligned}
$$

Some easy examples

$$
\begin{aligned}
& a_{1}=a_{2}=\ldots=a_{m}=k \\
& m \leq k \quad \text { Yes } \quad \text { (a Latin rectangle) } \\
& m>k \quad \text { No }
\end{aligned}
$$

Some easy examples

$$
\begin{aligned}
& a_{1}=a_{2}=\ldots=a_{m}=k \\
& m \leq k \quad \text { Yes } \quad \text { (a Latin rectangle) } \\
& m>k \quad \text { No }
\end{aligned}
$$

Some easy examples

$$
\begin{aligned}
& a_{1}=a_{2}=\ldots=a_{m}=k \\
& m \leq k \quad \text { Yes } \quad \text { (a Latin rectangle) } \\
& m>k \quad \text { No }
\end{aligned}
$$

Some easy examples

$$
\begin{aligned}
& a_{1}=a_{2}=\ldots=a_{m}=k \\
& m \leq k \quad \text { Yes } \quad \text { (a Latin rectangle) } \\
& m>k \quad \text { No }
\end{aligned}
$$

Some easy examples

$$
\begin{aligned}
& a_{1}=a_{2}=\ldots=a_{m}=k \\
& m \leq k \quad \text { Yes } \quad \text { (a Latin rectangle) } \\
& m>k \quad \text { No }
\end{aligned}
$$

3		
2	1	
1	2	

Some easy examples

$$
\begin{aligned}
& a_{1}=a_{2}=\ldots=a_{m}=k \\
& m \leq k \quad \text { Yes } \quad \text { (a Latin rectangle) } \\
& m>k \quad \text { No }
\end{aligned}
$$

3	$?$	
2	1	
1	2	

Some easy examples

$$
\begin{aligned}
& a_{1}=a_{2}=\ldots=a_{m}=k \\
& m \leq k \quad \text { Yes } \quad \text { (a Latin rectangle) } \\
& m>k \quad \text { No }
\end{aligned}
$$

3	$?$	
2	1	
1	2	

Some easy examples

$$
\begin{aligned}
& a_{1}=a_{2}=\ldots=a_{m}=k \\
& m \leq k \quad \text { Yes } \quad \text { (a Latin rectangle) } \\
& m>k \quad \text { No }
\end{aligned}
$$

3	$?$	
2	1	
1	2	

2	3	1
1		

Some easy examples

$$
\begin{aligned}
& a_{1}=a_{2}=\ldots=a_{m}=k \\
& m \leq k \quad \text { Yes } \quad \text { (a Latin rectangle) } \\
& m>k \quad \text { No }
\end{aligned}
$$

3	$?$	
2	1	
1	2	

Some easy examples

$$
\begin{aligned}
& a_{1}=a_{2}=\ldots=a_{m}=k \\
& m \leq k \quad \text { Yes } \quad \text { (a Latin rectangle) } \\
& m>k \longrightarrow \text { No }
\end{aligned}
$$

No

3	$?$	
2	1	
1	2	

No

3	2	1
2	1	
1		

Yes

Some easy examples

$$
\begin{aligned}
& a_{1}=a_{2}=\ldots=a_{m}=k \\
& m \leq k \quad \text { Yes } \\
& m>k \quad \text { No }
\end{aligned} \quad \text { (a Latin rectangle) }
$$

No

3	$?$	
2	1	
1	2	

No

2	3	1
1		

3	2

Yes

Yes

Some easy examples

$$
\begin{aligned}
& a_{1}=a_{2}=\ldots=a_{m}=k \\
& m \leq k \quad \text { Yes } \quad \text { (a Latin rectangle) } \\
& m>k \quad \text { No }
\end{aligned}
$$

No

3	$?$	
2	1	
1	2	

No

2	3	1
1		

3	2	1
2	1	
1		

Yes Yes

Some easy examples

$$
\begin{aligned}
& a_{1}=a_{2}=\ldots=a_{m}=k \\
& m \leq k \quad \text { Yes } \quad \text { (a Latin rectangle) } \\
& m>k \quad \text { No }
\end{aligned}
$$

No

No

Yes

Yes

Some easy examples

$$
\begin{aligned}
& a_{1}=a_{2}=\ldots=a_{m}=k \\
& m \leq k \quad \text { Yes } \quad \text { (a Latin rectangle) } \\
& m>k \quad \text { No }
\end{aligned}
$$

No

No

2	3	1
1		

3	2	1
2	1	

6	5	4	3	2	1
4	3	2	1		
3	2	1			
1					

1	3	2	
3	2	1	
2	1		

Yes

Some easy examples

$$
\begin{aligned}
& a_{1}=a_{2}=\ldots=a_{m}=k \\
& m \leq k \quad \text { Yes } \quad \text { (a Latin rectangle) } \\
& m>k \quad \text { No }
\end{aligned}
$$

No

No

2	3	1
1		

3	2	1
2	1	

6	5	4	3	2	1
4	3	2	1		
3	2	1			
1					

4			
1	3	2	
3	2	1	
2	1		

Yes

Some easy examples

$$
\begin{aligned}
& a_{1}=a_{2}=\ldots=a_{m}=k \\
& m \leq k \quad \text { Yes } \quad \text { (a Latin rectangle) } \\
& m>k \quad \text { No }
\end{aligned}
$$

No

No

2	3	1
1		

3	2	1
2	1	

6	5	4	3	2	1
4	3	2	1		
3	2	1			
1					

4	$?$		
1	3	2	
3	2	1	
2	1		

Yes

Some easy examples

$$
\begin{aligned}
& a_{1}=a_{2}=\ldots=a_{m}=k \\
& m \leq k \quad \text { Yes } \quad \text { (a Latin rectangle) } \\
& m>k \quad \text { No }
\end{aligned}
$$

No

No

2	3	1
1		

3	2

Yes

6	5	4	3	2	1
4	3	2	1		
3	2	1			
1					

Yes

4	$?$		
1	3	2	
3	2	1	
2	1		

No

Some easy examples

$$
\begin{aligned}
& a_{1}=a_{2}=\ldots=a_{m}=k \\
& m \leq k \quad \text { Yes } \quad \text { (a Latin rectangle) } \\
& m>k \quad \text { No }
\end{aligned}
$$

No

No

Yes

6	5	4	3	2	1
4	3	2	1		
3	2	1			
1					

Yes

4	$?$		
1	3	2	
3	2	1	
2	1		

No

These diagrams are "too narrow"

Wide diagrams

Wide diagrams

$$
\begin{aligned}
& A=\left(a_{1}, a_{2}, \cdots\right), a_{1}+a_{2}+\cdots=n, \quad a_{1} \geq a_{2} \geq \cdots \\
& B=\left(b_{1}, b_{2}, \ldots\right), b_{1}+b_{2}+\cdots=n, \quad b_{1} \geq b_{2} \geq \cdots \\
& A \text { dominates } B \text { if } \quad \forall k \quad \sum_{i=1}^{k} a_{i} \geq \sum_{i=1}^{k} b_{i}
\end{aligned}
$$

Wide diagrams

$$
\begin{aligned}
& A=\left(a_{1}, a_{2}, \ldots\right), a_{1}+a_{2}+\cdots=n, \quad a_{1} \geq a_{2} \geq \cdots \\
& B=\left(b_{1}, b_{2}, \ldots\right), b_{1}+b_{2}+\cdots=n, \quad b_{1} \geq b_{2} \geq \cdots \\
& A \text { dominates } B \text { if } \forall k \quad \sum_{i=1}^{k} a_{i} \geq \sum_{i=1}^{k} b_{i}
\end{aligned}
$$

Definition (Chow et al.):
A Young diagram Y is wide if every sub-diagram Z formed by a subset of the rows of Y dominates Z^{\prime}, the conjugate of Z.

Wide diagrams

$A=\left(a_{1}, a_{2}, \ldots\right), a_{1}+a_{2}+\cdots=n, \quad a_{1} \geq a_{2} \geq \cdots$
$B=\left(b_{1}, b_{2}, \cdots\right), b_{1}+b_{2}+\cdots=n, \quad b_{1} \geq b_{2} \geq \cdots$
A dominates B if $\quad \forall k \quad \sum_{i=1}^{k} a_{i} \geq \sum_{i=1}^{k} b_{i}$
Definition (Chow et al.):
A Young diagram Y is wide if every sub-diagram Z formed by a subset of the rows of Y dominates Z^{\prime}, the conjugate of Z.

Examples: wide

Wide diagrams

$$
\begin{aligned}
& A=\left(a_{1}, a_{2}, \ldots\right), a_{1}+a_{2}+\cdots=n, \quad a_{1} \geq a_{2} \geq \cdots \\
& B=\left(b_{1}, b_{2}, \ldots\right), b_{1}+b_{2}+\cdots=n, \quad b_{1} \geq b_{2} \geq \cdots
\end{aligned}
$$

A dominates B if $\quad \forall k \quad \sum_{i=1}^{k} a_{i} \geq \sum_{i=1}^{k} b_{i}$
Definition (Chow et al.):
A Young diagram Y is wide if every sub-diagram Z formed by a subset of the rows of Y dominates Z^{\prime}, the conjugate of Z.

Examples: not wide

The Wide Partition Conjecture

The Wide Partition Conjecture

Observation 1 (Chow et al.):
Every Latin Young diagram is wide

The Wide Partition Conjecture

Observation 1 (Chow et al.):
Every Latin Young diagram is wide

Wide Partition Conjecture (Chow and Taylor):
Every wide Young diagram is Latin

The Wide Partition Conjecture

Observation 1 (Chow et al.):
Every Latin Young diagram is wide

Wide Partition Conjecture (Chow and Taylor):
Every wide Young diagram is Latin

Some partial results by Chow et al.

Some partial results by Chow et al.

Theorem:
A wide Young diagram with at most two distinct row lengths is Latin.

Some partial results by Chow et al.

Theorem:
 A wide Young diagram with at most two distinct row lengths is Latin.

Theorem:

A self-conjugate wide Young diagram with at most three distinct row lengths is Latin.

Some partial results by Chow et al.

Theorem:

A wide Young diagram with at most two distinct row lengths is Latin.

Theorem:

A self-conjugate wide Young diagram with at most three distinct row lengths is Latin.

Theorem:

If the wide partition conjecture holds for selfconjugate wide diagrams, then it holds for all wide diagrams.

The 3-hypergraph $H(Y)$

To a Young diagram Y we assign a tripartite 3-hypergraph $H(Y)$ as follows:

Sides:

$$
\begin{array}{ll}
R=R(Y)=\left\{r_{1}, r_{2}, \ldots, r_{m}\right\} & \text { (the rows) } \\
C=C(Y)=\left\{c_{1}, c_{2}, \ldots, c_{a_{1}}\right\} & \text { (the columns) } \\
S=S(Y)=\left\{s_{1}, s_{2}, \ldots, s_{a_{1}}\right\} & \text { (the symbols) }
\end{array}
$$

Edges:

$$
E(H(Y))=\left\{r_{i} c_{j} s_{k} \mid 1 \leq i \leq m, c_{j} \in C, s_{k} \in S, 1 \leq j, k \leq a_{i}\right\}
$$

The 3-hypergraph $H(Y)$

Edges:

$$
E(H(Y))=\left\{r_{i} c_{j} s_{k} \mid 1 \leq i \leq m, c_{j} \in C, s_{k} \in S, 1 \leq j, k \leq a_{i}\right\}
$$

The 3-hypergraph $H(Y)$

Edges:

$$
E(H(Y))=\left\{r_{i} c_{j} s_{k} \mid 1 \leq i \leq m, c_{j} \in C, s_{k} \in S, 1 \leq j, k \leq a_{i}\right\}
$$

An edge $r_{i} c_{j} s_{k}$ in $H(Y)$ corresponds to the cell (i, j) with the symbol s_{k} in it.

The 3-hypergraph $H(Y)$

Edges:

$$
E(H(Y))=\left\{r_{i} c_{j} s_{k} \mid 1 \leq i \leq m, c_{j} \in C, s_{k} \in S, 1 \leq j, k \leq a_{i}\right\}
$$

An edge $r_{i} c_{j} s_{k}$ in $H(Y)$ corresponds to the cell (i, j) with the symbol s_{k} in it.

A filling of Y with symbols from S corresponds to a set of $|Y|$ edges in $H(Y)$.

The 3-hypergraph $H(Y)$

Edges:

$$
E(H(Y))=\left\{r_{i} c_{j} s_{k} \mid 1 \leq i \leq m, c_{j} \in C, s_{k} \in S, 1 \leq j, k \leq a_{i}\right\}
$$

An edge $r_{i} c_{j} s_{k}$ in $H(Y)$ corresponds to the cell (i, j) with the symbol s_{k} in it.

A filling of Y with symbols from S corresponds to a set of $|Y|$ edges in $H(Y)$.

A Latin filling of Y with symbols from S corresponds to a set of $|Y|$ edges in $H(Y)$ no two of which share more than one vertex.

The k th matching number

Definition: (Aharoni and Zerbib*, 2020)
a k-matching in a hypergraph H is a subset of $\mathrm{E}(H)$ in which every two edges share fewer than k vertices.

[^2]
The k th matching number

> Definition: (Aharoni and Zerbib*, 2020)
> a k-matching in a hypergraph H is a subset of $\mathrm{E}(H)$ in which every two edges share fewer than k vertices.

(a 1-matching is a classical matching, i.e., a set of disjoint edges).

[^3]
The k th matching number

Definition: (Aharoni and Zerbib*, 2020)
a k-matching in a hypergraph H is a subset of $\mathrm{E}(H)$ in which every two edges share fewer than k vertices.
(a 1-matching is a classical matching, i.e., a set of disjoint edges).
The k th matching number $v^{(k)}(H)$ is the maximal size of a k matching in H.

[^4]
The k th matching number

Definition: (Aharoni and Zerbib*, 2020)
a k-matching in a hypergraph H is a subset of $\mathrm{E}(H)$ in which every two edges share fewer than k vertices.
(a 1-matching is a classical matching, i.e., a set of disjoint edges).
The k th matching number $v^{(k)}(H)$ is the maximal size of a k matching in H.

WPC is equivalent to:
Wide Partition Conjecture (hypergraph version):
If Y is wide, then $v^{(2)}(H(Y))=|Y|$

[^5]
The k th covering number

Definition: (Aharoni and Zerbib, 2020)
A k-cover of a hypergraph is a set P of k-subsets of $V(H)$ covering all edges of H. That is, every edge in H contains some element of P

The k th covering number

Definition: (Aharoni and Zerbib, 2020)
A k-cover of a hypergraph is a set P of k-subsets of $V(H)$ covering all edges of H. That is, every edge in H contains some element of P
(a 1-cover is a classical cover of a hypergraph by vertices).

The k th covering number

Definition: (Aharoni and Zerbib, 2020)
A k-cover of a hypergraph is a set P of k-subsets of $V(H)$ covering all edges of H. That is, every edge in H contains some element of P
(a 1-cover is a classical cover of a hypergraph by vertices).
The k th covering number $\tau^{(k)}(H)$ is the minimal size of a k-cover in H.

The k th covering number

Definition: (Aharoni and Zerbib, 2020)
A k-cover of a hypergraph is a set P of k-subsets of $V(H)$ covering all edges of H. That is, every edge in H contains some element of P
(a 1-cover is a classical cover of a hypergraph by vertices).
The k th covering number $\tau^{(k)}(H)$ is the minimal size of a k-cover in H.

Easy to see:

$$
\tau^{(k)}(H) \geq v^{(k)}(H)
$$

(Given a k-matching M of maximal size $v^{(k)}(H)$, we need at least $|M| k$-sets of edges to cover its members.)

A weak version of WPC

Theorem 1 (A,B,G,K, 2023):
If a Young diagram Y is wide, then $\tau^{(2)}(H(Y))=|Y|$

A weak version of WPC

Theorem 1 (A,B,G,K, 2023):
If a Young diagram Y is wide, then $\tau^{(2)}(H(Y))=|Y|$
(This is weaker than WPC, since $\tau^{(2)}(H) \geq v^{(2)}(H)$)

A weak version of WPC

Theorem 1 (A,B,G,K, 2023):
If a Young diagram Y is wide, then $\tau^{(2)}(H(Y))=|Y|$
(This is weaker than WPC, since $\tau^{(2)}(H) \geq v^{(2)}(H)$)

The easier (but not trivial) direction:
Theorem 2 (A, B, G, K 2023):
If $\tau^{(2)}(H(Y))=|Y|$, then the Young diagram Y is wide

A weak version of WPC

Theorem 1 (A,B,G,K, 2023):
If a Young diagram Y is wide, then $\tau^{(2)}(H(Y))=|Y|$
(This is weaker than WPC, since $\tau^{(2)}(H) \geq v^{(2)}(H)$)

The easier (but not trivial) direction:
Theorem 2 (A, B, G, K 2023):
If $\tau^{(2)}(H(Y))=|\mathrm{Y}|$, then the Young diagram Y is wide
This strengthens Observation 1:

A weak version of WPC

Theorem 1 (A,B,G,K, 2023):
If a Young diagram Y is wide, then $\tau^{(2)}(H(Y))=|Y|$
(This is weaker than WPC, since $\tau^{(2)}(H) \geq v^{(2)}(H)$)

The easier (but not trivial) direction:
Theorem 2 (A, B, G, K 2023):
If $\tau^{(2)}(H(Y))=|Y|$, then the Young diagram Y is wide
This strengthens Observation 1:
Y is Latin

A weak version of WPC

Theorem 1 (A,B,G,K, 2023):
If a Young diagram Y is wide, then $\tau^{(2)}(H(Y))=|Y|$
(This is weaker than WPC, since $\tau^{(2)}(H) \geq v^{(2)}(H)$)

The easier (but not trivial) direction:
Theorem 2 (A, B, G, K 2023):
If $\tau^{(2)}(H(Y))=|\mathrm{Y}|$, then the Young diagram Y is wide
This strengthens Observation 1:
Y is Latin $\Rightarrow v^{(2)}(H(Y))=|Y|$

A weak version of WPC

Theorem 1 (A,B,G,K, 2023):
If a Young diagram Y is wide, then $\tau^{(2)}(H(Y))=|Y|$
(This is weaker than WPC, since $\tau^{(2)}(H) \geq v^{(2)}(H)$)

The easier (but not trivial) direction:
Theorem 2 (A, B, G, K 2023):
If $\tau^{(2)}(H(Y))=|Y|$, then the Young diagram Y is wide
This strengthens Observation 1:
Y is Latin $\Delta v^{(2)}(H(Y))=|Y| \Delta \tau^{(2)}(H(Y))=|Y|$

A weak version of WPC

Theorem 1 (A,B,G,K, 2023):
If a Young diagram Y is wide, then $\tau^{(2)}(H(Y))=|Y|$
(This is weaker than WPC, since $\tau^{(2)}(H) \geq v^{(2)}(H)$)

The easier (but not trivial) direction:
Theorem 2 (A, B, G, K 2023):
If $\tau^{(2)}(H(Y))=|Y|$, then the Young diagram Y is wide
This strengthens Observation 1:
Y is Latin $\Rightarrow v^{(2)}(H(Y))=|Y| \Rightarrow \tau^{(2)}(H(Y))=|Y| \Delta Y$ is wide

A fractional version

A fractional 2-matching in a hypergraph H is a function $f: E(H) \rightarrow \mathbb{R}_{\geq 0}$ subject to the constraint

$$
\sum_{e: p \subseteq e} f(e) \leq 1 \text { for all } p \in\binom{V(H)}{2}
$$

A fractional version

A fractional 2-matching in a hypergraph H is a function $f: E(H) \rightarrow \mathbb{R}_{\geq 0}$ subject to the constraint

$$
\begin{gathered}
\sum_{e: p \subseteq e} f(e) \leq 1 \text { for all } p \in\binom{V(H)}{2} \\
v^{(2) *}(H)=\max _{\substack{f \text { fractional } \\
2-\text { matching on } H}} \sum_{e \in E(H)} f(e)
\end{gathered}
$$

A fractional version

A fractional 2-cover of a hypergraph H is a function $g:\binom{V(H)}{2} \rightarrow \mathbb{R}_{\geq 0}$ subject to the constraint

$$
\sum_{p \in\binom{e}{2}} g(p) \geq 1 \text { for all } e \in E(H)
$$

A fractional version

A fractional 2-cover of a hypergraph H is a function $g:\binom{V(H)}{2} \rightarrow \mathbb{R}_{\geq 0}$ subject to the constraint

$$
\begin{aligned}
& \sum_{p \in\binom{e}{2}} g(p) \geq 1 \text { for all } e \in E(H) \\
& \tau^{(2) *}(H)=\min _{\substack{g \text { fractional } \\
2-\text { cover on } H}} \sum_{p \in\binom{V(H)}{2}} g(p)
\end{aligned}
$$

A fractional version

A fractional 2-cover of a hypergraph H is a function $g:\binom{V(H)}{2} \rightarrow \mathbb{R}_{\geq 0}$ subject to the constraint

$$
\begin{aligned}
& \sum_{p \in\binom{e}{2}} g(p) \geq 1 \text { for all } e \in E(H) \\
& \tau^{(2) *}(H)=\min _{\substack{g \text { fractional } \\
2-\text { cover on } H}} \sum_{p \in\binom{V(H)}{2}} g(p)
\end{aligned}
$$

By the definition and LP duality:
$\tau^{(k)}(H) \geq \tau^{(k) *}(H)=\nu^{(k) *}(H) \geq \nu^{(k)}(H)$

A fractional version

A fractional version

Definition:

A Young diagram Y is said to be fractionally Latin if
$\nu^{(2) *}(H(Y))=|Y|$

A fractional version

Definition:

A Young diagram Y is said to be fractionally Latin if
$\nu^{(2) *}(H(Y))=|Y|$

Theorem 3 (ABGK):
If Y is a fractionally Latin Young diagram, then Y is wide

A fractional version

Definition:

A Young diagram Y is said to be fractionally Latin if
$v^{(2) *}(H(Y))=|Y|$

Theorem 3 (ABGK):
If Y is a fractionally Latin Young diagram, then Y is wide

Conjecture:
If Y is a wide Young diagram, then Y is fractionally Latin
$v^{(2)}$ Vs. $\tau^{(2)}$

$v^{(2)}$ Vs. $\tau^{(2)}$

Observation:
For a Young diagram $Y \tau(H(Y))=v(H(Y))$

$v^{(2)}$ Vs. $\tau^{(2)}$

Observation:

For a Young diagram $Y \tau(H(Y))=v(H(Y))$

Question:

Is it true that $\tau^{(2)}(H(Y))=v^{(2)}(H(Y))$ for every Young diagram Y ?

$v^{(2)}$ Vs. $\tau^{(2)}$

Observation:

For a Young diagram $Y \tau(H(Y))=v(H(Y))$

Question:

Is it true that $\tau^{(2)}(H(Y))=v^{(2)}(H(Y))$ for every wide Young diagram Y ?

$v^{(2)}$ Vs. $\tau^{(2)}$

Observation:

For a Young diagram $Y \tau(H(Y))=v(H(Y))$

Question:

Is it true that $\tau^{(2)}(H(Y))=v^{(2)}(H(Y))$ for every wide Young diagram Y ?

If the Wide Partition Conjecture is true, then the answer is YES

M-tableaux

a_{1}

m rows: $\quad r_{1}, r_{2}, \ldots, r_{m}$
row lengths: $a_{1}, a_{2}, \ldots, a_{m}$ respectively
a_{1} columns: $c_{1}, c_{2}, \ldots, c_{a_{1}}$
M a matroid
An M-tableau is a Young diagram with an element of M in each of its cells

M-tableaux

a_{1}

m rows: $\quad r_{1}, r_{2}, \ldots, r_{m}$
row lengths: $a_{1}, a_{2}, \ldots, a_{m}$ respectively
a_{1} columns: $c_{1}, c_{2}, \ldots, c_{a_{1}}$
M a matroid
An M-tableau is a Young diagram with an element of M in each of its cells

Question (Chow, Fan, Goemans, Vondrak 2003*):

Given an M-tableau such that the elements in each row are independent, is it possible to rearrange the elements in each row so that the elements in each column are independent?

[^6]
Generalized Rota's Basis Conjecture

Rota's Basis Conjecture (Huang and Rota 1994):
If all the rows are of size $\operatorname{rank}(M)$ and $m \leq \operatorname{rank}(M)$, then the answer is Yes

Generalized Rota's Basis Conjecture

> Rota's Basis Conjecture (Huang and Rota 1994):
> If all the rows are of size $\operatorname{rank}(M)$ and $m \leq \operatorname{rank}(M)$, then the answer is Yes

Generalized WPC (Chow, Fan, Goemans, Vondrak 2003):
The answer is Yes if and only if Y is wide

[^0]: * T. Y. Chow, C. K. Fan, M. X. Goemans, and J. Vondrak. Wide partitions, Latin tableaux, and Rota's basis coniecture. Adv. in Appl. Math. 31 (2003), 334-358.

[^1]: * T. Y. Chow, C. K. Fan, M. X. Goemans, and J. Vondrak. Wide partitions, Latin tableaux, and Rota's basis conjecture. Adv. in Appl. Math. 31 (2003), 334-358.

[^2]: *R. Aharoni and S. Zerbib. A generalization of Tuza's conjecture. J. Graph Theory 94 (2020), 445-462.

[^3]: *R. Aharoni and S. Zerbib. A generalization of Tuza's conjecture. J. Graph Theory 94 (2020), 445-462.

[^4]: *R. Aharoni and S. Zerbib. A generalization of Tuza's conjecture. J. Graph Theory 94 (2020), 445-462.

[^5]: *R. Aharoni and S. Zerbib. A generalization of Tuza's conjecture. J. Graph Theory 94 (2020), 445-462.

[^6]: T. Y. Chow, C. K. Fan, M. X. Goemans, and J. Vondrak. Wide partitions, Latin tableaux, and Rota's basis conjecture. Adv. in Appl. Math. 31 (2003), 334-358.

