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a
< 1 > MIOwWs: F,h,....T,
row lengths: a,,a,,...,a, respectively
= m a, columns: ¢, c,,...,c,
m
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Question (Chow, Fan, Goemans, Vondrak 2003%):

Is it possible to place in each row , the numbers 1,2,...,a
so that the entries in each column are distinct?

*T. Y. Chow, C. K. Fan, M. X. Goemans, and J. Vondrak. Wide partitions, Latin tableaux, and Rota’s basis
conjecture. Adv. in Appl. Math. 31 (2003). 334 358.



Young diagram

a
- 1 > MIIOWS:  F,h,....T,
row lengths: q,,a,,...,a_ respectively
= m a, columns: ¢,c,,...,c,
m
t—>
i i=1

Question (Chow, Fan, Goemans, Vondrak 2003%):
Is it possible to place in each row , the numbers 1,2,...,a

so that the entries in each column are distinct?

If the answer is Yes we say that Y is Latin

*T. Y. Chow, C. K. Fan, M. X. Goemans, and J. Vondrak. Wide partitions, Latin tableaux, and Rota’s basis
conjecture. Adv. in Appl. Math. 31 (2003). 334 358.
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Some easy examples

a=a,=...=a_ =k
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Some easy examples

a=a,=...=a_ =k

m< ko) (a Latin rectangle)

>k = 0

6 3|12(1] |a]?

3|7 2| 31 3|21 |43]2 11(3 |2

? 1 2|1 3121 3(2 |1
1 1 1 2 (1

Yes Yes Yes

These diagrams are "too narrow"
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Some partial results by Chow et al.

Theorem:
A wide Young diagram with at most two distinct
row lengths is Latin.

Theorem:
A self-conjugate wide Young diagram with at

most three distinct row lengths is Latin.

Theorem:

If the wide partition conjecture holds for self-
conjugate wide diagrams, then it holds for all
wide diagrams.




The 3-hypergraph H(Y)

To a Young diagram Y we assign a tripartite 3-hypergraph H(Y)
as follows:

Sides: R=R(Y) ={r,1y,..,1,} (therows)
C=C(Y) = {cl,cz, ...,cal} (the columns)
S=S5) = {51,52, ...,Sal} (the symbols)

Edges:

E(H(Y)) = {ricjskl 1<i<mc€Cs,€S51<j,k< ai}
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The 3-hypergraph H(Y)

Edges:

E(H(Y)) = {ricj5k| 1<i<m,c; €C s, €S 1=<j,k< ai}

An edge 1;cjsy in H(Y) corresponds to the cell (i, j) with the
symbol s, init.

A filling of Y with symbols from S corresponds to a set of |Y|
edgesin H(Y).

A Latin filling of Y with symbols from S corresponds to a set of
|Y| edges in H(Y) no two of which share more than one vertex.
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The kth matching number

Definition: (Aharoni and Zerbib*, 2020)

a k-matching in a hypergraph H is a subset of E(H) in which
every two edges share fewer than k vertices.

(a 1-matching is a classical matching, i.e., a set of disjoint edges).

The kth matching number v¥) (H) is the maximal size of a k-
matching in H.

WPC is equivalent to:

Wide Partition Conjecture (hypergraph version):

If Y is wide, then v? (H(Y)) = |Y|

*R. Aharoni and S. Zerbib. A generalization of Tuza’s conjecture. J. Graph Theory 94 (2020), 445-462.
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The kth covering number

Definition: (Aharoni and Zerbib, 2020)

A k-cover of a hypergraph is a set P of k-subsets of V(H) covering
all edges of H. That is, every edge in H contains some element of P

(a 1-cover is a classical cover of a hypergraph by vertices).

The kth covering number ) (H) is the minimal size of a k-cover

in H.

Easy to see:

t0O(H) = v® (1)

(Given a k-matching M of maximal size v®) (H), we need at least
|M| k-sets of edges to cover its members.)
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A weak version of WPC

Theorem 1 (A,B,G,K, 2023):

If a Young diagram Y is wide, then @ (H(Y)) = |Y]

(This is weaker than WPC, since 7® (H) = v® (H))

The easier (but not trivial) direction:

Theorem 2 (A,B,G,K 2023):

If T2 (H(Y)) = |Y|, then the Young diagram Y is wide

This strengthens Observation 1:

Yis Latin @y vVI@(HY)) = |Y| Byt @ (H(Y)) = |Y| B Y is wide
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A fractional version

A fractional 2-matching in a hypergraph H is a function
f:E(H) — R5, subject to the constraint

Ze:pge f(e) <1forall p € (V(ZH))

v@)*(H) = max z f(e)

f fractional
2 — matchingon H €€EE(H)
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A fractional version

A fractional 2-cover of a hypergraph H is a function

g: (VD

) ) — R. subject to the constraint

> e)g(p) > 1 foralle € E(H)

pe(z

(@)= min > g(p)

g fractional

2 — coveron H pE(V(H))

By the definition and LP duality:

t®OH) = t®*(H) = vO*(H) = v (H)
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A fractional version

Definition:
A Young diagram Y is said to be fractionally Latin if
v@*(H(Y)) = Y]

Theorem 3 (ABGK):
If Y is a fractionally Latin Young diagram, then Y is wide

Conjecture:
If Y is a wide Young diagram, then Y is fractionally Latin
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v(2) ys. £(2)

Observation:
For a Young diagram Y T(H(Y)) =220:109)

Question:
Is it true that 7(? (H(Y)) = v@ (H(Y)) for every
Young diagram Y?

If the Wide Partition Conjecture is true, then the
answer is YES
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M -tableaux

Pl
|

v

t MIOWS:  F,l,...,T,
row lengths: a,,a,,...,a, respectively
—_— m
a, columns: ¢, c,,...,c,
; M a matroid

An M-tableau is a Young diagram with an element of M in
each of its cells

Question (Chow, Fan, Goemans, Vondrak 2003%):
Given an M-tableau such that the elements in each row are

independent, is it possible to rearrange the elements in each
row so that the elements in each column are independent?

T. Y. Chow, C. K. Fan, M. X. Goemans, and J. Vondrak. Wide partitions, Latin tableaux, and Rota’s basis
conjecture. Adv. in Appl. Math. 31 (2003), 334 358.
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Rota's Basis Conjecture (Huang and Rota 1994):

If all the rows are of size rank(M) and m < rank(M), then
the answer is Yes




Generalized Rota's Basis Conjecture

Rota's Basis Conjecture (Huang and Rota 1994):
If all the rows are of size rank(M) and m < rank(M), then

the answer is Yes

Generalized WPC (Chow, Fan, Goemans, Vondrak 2003):
The answer is Yes if and only if Y is wide







