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Theorem:

A wide Young diagram with at most two distinct 

row lengths is Latin.

Theorem:

A self-conjugate wide Young diagram with at 

most three distinct row lengths is Latin.

Theorem:

If the wide partition conjecture holds for self-

conjugate wide diagrams, then it holds for all 

wide diagrams.
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Edges:

�(
 � )  = ������| 1 ≤  ≤ !, �� ∈ �, �� ∈ �, 1 ≤ #, $ ≤ ��

A filling of � with symbols from � corresponds to a set of |�|
edges in 
(�). 

A Latin filling of � with symbols from � corresponds to a set of 

|�| edges in 
 � no two of which share more than one vertex. 

An edge ������ in 
(�) corresponds to the cell ( , #) with the 

symbol �� in it. 
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The th matching number

Definition: (Aharoni and Zerbib*, 2020)

a $-matching in a hypergraph 
 is a subset of E(
) in which 

every two edges share fewer than $ vertices. 

WPC is equivalent to:

Wide Partition Conjecture (hypergraph version):

If � is wide, then & � 
 � = |�|

The $th matching number & � (
) is the maximal size of a $-

matching in 
. 

(a 1-matching is a classical matching, i.e.,  a set of disjoint edges).

*R. Aharoni and S. Zerbib. A generalization of Tuza’s conjecture. J. Graph Theory 94 (2020), 445–462.
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The th covering number

Definition: (Aharoni and Zerbib, 2020)

A $-cover of a hypergraph is a set ' of $-subsets of ((
) covering 

all edges of 
. That is, every edge in 
 contains some element of '

Easy to see:

) � 
 ≥ & � 


The $th covering number ) � (
) is the minimal size of a $-cover 

in 
. 

(a 1-cover is a classical cover of a hypergraph by vertices).

(Given a $-matching + of maximal size & � (
), we need at least 

|+| $-sets of edges to cover its members.)
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A fractional version

A fractional 2-cover of a hypergraph 
 is a function 

K: ((
)
2 → ℝ12 subject to the constraint

∑ K(8)6∈ 5
�

≥ 1 for all 4 ∈ �(
)

) � ∗ 
 =       min        � K(8)
6∈ L(?)

�
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2 − cover on 


) � 
 ≥ ) � ∗ 
 = & � ∗ 
 ≥ & � 

By the definition and LP duality:
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A fractional version

Definition: 

A Young diagram � is said to be fractionally Latin if 

& � ∗ 
(�) = |�|

Theorem 3 (ABGK): 

If � is a fractionally Latin Young diagram, then � is wide

Conjecture: 

If � is a wide Young diagram, then � is fractionally Latin 
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� vs. �
Observation: 

For a Young diagram � ) 
 � = & (
 � )

Question: 

Is it true that  )(�) 
 � = &(�) (
 � ) for every wide

Young diagram �?

If the Wide Partition Conjecture is true, then the 

answer is YES
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-tableaux

m rows: 1 2, , ,
m

rr r

row lengths: 1 2, , ,
m

aa a respectively
m

a1

Question  (Chow, Fan, Goemans, Vondrak 2003*):

Given an +-tableau such that the elements in each row are 

independent, is it possible to rearrange the elements in each 

row so that the elements in each column are independent?

Y =
a1 columns: 

11 2, , ,
a

c c c

*

+ a matroid

An +-tableau is a Young diagram with an element of + in 

each of its cells 
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Generalized Rota's Basis Conjecture

Rota's Basis Conjecture  (Huang and Rota 1994):

If all the rows are of size rank(+) and ! ≤ rank(+), then 

the answer is Yes

Generalized WPC (Chow, Fan, Goemans, Vondrak 2003):

The answer is Yes if and only if � is wide
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