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Mosaics of combinatorial designs
O. W. Gnilke, M. Greferath, M. O. Pavčević, Mosaics of combinatorial
designs, Des. Codes Cryptogr. 86 (2018), no. 1, 85–95.

Definition.
Let ti -(v , ki , λi ), i = 1, . . . , c be parameters of combinatorial designs, all
with v points and b blocks and

∑c
i=1 ki = v . A mosaic with parameters

t1-(v , k1, λ1)⊕ · · · ⊕ tc -(v , kc , λc)

is a v × b matrix with entries from {1, . . . , c} such that the entries i
represent incidences of a ti -(v , ki , λi ) design, for i = 1, . . . , c. Here, c
is the number of colors and the matrix is also called a c-mosaic.

Related concept: (strong) colored t-design

A. Bonnecaze, E. Rains, P. Solé, 3-colored 5-designs and Z4-codes,
J. Statist. Plann. Inference 86 (2000), no. 2, 349–368.
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designs, Des. Codes Cryptogr. 86 (2018), no. 1, 85–95.

Definition.
Let ti -(v , ki , λi ), i = 1, . . . , c be parameters of combinatorial designs, all
with v points and b blocks and

∑c
i=1 ki = v . A mosaic with parameters

t1-(v , k1, λ1)⊕ · · · ⊕ tc -(v , kc , λc)

is a v × b matrix with entries from {1, . . . , c} such that the entries i
represent incidences of a ti -(v , ki , λi ) design, for i = 1, . . . , c. Here, c
is the number of colors and the matrix is also called a c-mosaic.
Theorem.
A resolvable t-(v , k, λ) design gives rise to a c-mosaic

t-(v , k, λ)⊕ · · · ⊕ t-(v , k, λ)
with c = v/k colors.
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i=1 ki = v . A mosaic with parameters

t1-(v , k1, λ1)⊕ · · · ⊕ tc -(v , kc , λc)

is a v × b matrix with entries from {1, . . . , c} such that the entries i
represent incidences of a ti -(v , ki , λi ) design, for i = 1, . . . , c. Here, c
is the number of colors and the matrix is also called a c-mosaic.
Theorem.
A resolvable t-(v , k, λ) design gives rise to a homogenous c-mosaic

t-(v , k, λ)⊕ · · · ⊕ t-(v , k, λ)
with c = v/k colors.
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Mosaics of combinatorial designs

2-(15, 3, 1)⊕ 2-(15, 3, 1)⊕ 2-(15, 3, 1)⊕ 2-(15, 3, 1)⊕ 2-(15, 3, 1)
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Are there mosaics that are not homogenous?

Trivial examples:
t-(v , k, λ)⊕ t-(v , v − k, λ), λ = λ

(v−t
k
)
/
(v−t

k−t
)

2-(7, 3, 1)⊕ 2-(7, 4, 2)
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V. Krčadinac (University of Zagreb) On mosaics of designs 11.7.2024. 6 / 41



Are there mosaics that are not homogenous?
Trivial examples:

t-(v , k, λ)⊕ t-(v , v − k, λ), λ = λ
(v−t

k
)
/
(v−t

k−t
)

2-(7, 3, 1)⊕ 2-(7, 1, 0)⊕ 2-(7, 1, 0)⊕ 2-(7, 1, 0)⊕ 2-(7, 1, 0)

Proposition.
Every partial mosaic of symmetric designs, with v = b and

∑c
i=1 ki < v

2-(v , k1, λ1)⊕ · · · ⊕ 2-(v , kc , λc)
can be completed by adding 2-(v , 1, 0) designs.
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Are there mosaics that are not homogenous?
Nontrivial: c ≥ 3, ti ≥ 2 and ki ≥ 3 for i = 1, . . . , c

O. W. Gnilke, M. Greferath, M. O. Pavčević, Mosaics of combinatorial
designs, Des. Codes Cryptogr. 86 (2018), no. 1, 85–95.
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)
⊕ 2-(v, 1, 0).

Specifically, for v = 31, we have the example and we ask, if, particularly for v = b = 31,
there exist other decompositions of this kind.

Purely arithmetically, we may think of

2-(31, 15, 7) ⊕ 2-(31, 10, 3) ⊕ 2-(31, 6, 1),

however, so far, we have not been able to provide an example of a 3-valued incidence matrix
giving rise to this decomposition.

This paper is devoted to developing a formalisation of the general idea underlying these
thoughts. Square matrices with these properties have appeared in different settings, e.g.,
every Latin square of size v × v is a mosaic of trivial 1-(v, 1, 1) designs, see also [3] for
a connection to Costas arrays. Mosaics of symmetric designs have been investigated in the
context of Hadamard designs [9], and tilings with difference sets [2].

To the best of our knowledge, there has not been a general approach to this phenomenon
in the past, and we hope to contribute to a new chapter in the theory of combinatorial designs
and possibly also that of designs over GF(q).

2 Main definition and necessary conditions

Let us recapitulate the main notion introduced in the previous section.We can take the all-one
matrix J of dimensions v × b and try to write it as a sum of incidence matrices of t-designs:

J = M1 + M2 + · · · + Mc,

where Mj ’s are incidence matrices of designs B j . Since the complement Mi := J − Mi of a
design is a design again [with parameters (v, ki , λi )], this equation is equivalent to the next
one:

Mi = M1 + M2 + · · · + Mi−1 + Mi+1 + · · · + Mc.

If we look at the last expression structurally, we see that we have decomposed every block
of the design Bi into c − 1 differently coloured subblocks in the way that every set of b
subblocks of the same colour constitutes a design. This fact justifies the way we have written
down our constellations:

t-(v, v, b) = t1- (v, k1, λ1) ⊕ t2- (v, k2, λ2) ⊕ · · · ⊕ tc- (v, kc, λc) , (1)

or equivalently

ti -
(
v, ki , λi

) = t1- (v, k1, λ1) ⊕ t2- (v, k2, λ2) ⊕ · · · ⊕ ti−1- (v, ki−1, λi−1)

⊕ti+1- (v, ki+1, λi+1) ⊕ · · · ⊕ tc- (v, kc, λc) . (2)

We would like to point out that it is more natural and elegant to look at this decomposition
on the level of incidence matrices.

Remark 2.1 We want to call a set of designs Bi , with the same number of points v and the
same number of blocks b, disjoint, if there exist incidence matrices Mi for each design, such
that the entrywise maximum of their sum is 1. This is equivalent to no pair of incidence
matrices sharing a common incidence.

123

Number of non-isomorphic designs:
2-(31, 15, 7) ≥ 22 478 260 (Hadamard)

2-(31, 10, 3) 151 (E. Spence, 1992)

2-(31, 6, 1) 1 (PG(2, 5))
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Are there mosaics that are not homogenous?

2-(31, 15, 7)⊕ 2-(31, 6, 1)
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Are there mosaics that are not homogenous?
O. Gnilke, P. Ó Catháin, O. Olmez, G. Nuñez Ponasso, Invariants of
quadratic forms and applications in design theory, Linear Algebra Appl.
682 (2024), 1–27.

2-(31, 6, 1)⊕ 2-(31, 15, 7)⊕ 2-(31, 10, 3)

O.W. Gnilke et al. / Linear Algebra and its Applications 682 (2024) 1–27 23

Remark 34. By the Hasse local-global principle, the conditions (n, (−1)(v−1)/2λ)p = 1
for all odd primes p, together with n = k − λ > 0 (non-triviality of the design), imply 
that z2 = nx2 + (−1)(v−1)/2λy2, has a non-trivial rational solution. Multiplying by 
a common denominator of x, y, and z, we find a non-trivial integral solution to the 
Diophantine equation

z2 = nx2 + (−1)(v−1)/2λy2.

This is how the Bruck-Ryser-Chowla theorem is typically presented in the design theory 
literature. This formulation suggests to the reader the possibility of constructing explicit 
solutions to the given equation. These provide no insight into the existence of the design, 
and are typically much harder to compute than the Hilbert symbols themselves.

4.3. Decomposition of symmetric designs

We consider the following question: when can the incidence matrix of a symmetric 
design be written as the sum of two disjoint {0, 1} matrices, each of which is the inci-
dence matrix of a symmetric design? The obvious necessary condition is that designs 
with suitable parameters should exist individually. In this section, we develop a further 
necessary condition in terms of invariants of quadratic forms.

Proposition 35. Suppose that M is the incidence matrix of a symmetric (v, k, λ) design, 
and that M = M1 + M2 where Mi is the incidence matrix of a (v, ki, λi) design.

Then k = k1 + k2 and λ = λ1 + λ2 + α where α = 2k1k2
v−1 is an integer. Furthermore, 

M1M
�
2 + M2M

�
1 = α(J − I).

Proof. A standard counting argument establishes that λi = ki(ki−1)
v−1 . Then

λ = (k1 + k2)(k1 + k2) − 1
v − 1 = λ1 + λ2 + 2k1k2

v − 1 .

This establishes the claim about α.
For the second claim, compute (M1 +M2)(M1 +M2)� = M1M

�
1 +M2M

�
2 +M1M

�
2 +

M2M
�
1 and use the formula for the Gram matrix of the incidence matrix of a symmetric 

design. �
We will apply the theory of quadratic forms in essentially the same way as in the 

Bruck-Ryser-Chowla theorem. A quick computation shows that taking X = M1M
�
2 and 

computing necessary conditions for the existence of X�X yields nothing in addition to 
the existence conditions for M1 and M2. So we are led to the following matrix.

Proposition 36. Let Q = M1M
�
2 +I. Then QQ� = σI+τJ where σ = (k1 − λ1) (k2 − λ2)

− α + 1 and τ = vλ1λ2 + λ2(k1 − λ1) + λ1(k2 − λ2) + α.

O.W. Gnilke et al. / Linear Algebra and its Applications 682 (2024) 1–27 23
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dence matrix of a symmetric design? The obvious necessary condition is that designs 
with suitable parameters should exist individually. In this section, we develop a further 
necessary condition in terms of invariants of quadratic forms.

Proposition 35. Suppose that M is the incidence matrix of a symmetric (v, k, λ) design, 
and that M = M1 + M2 where Mi is the incidence matrix of a (v, ki, λi) design.

Then k = k1 + k2 and λ = λ1 + λ2 + α where α = 2k1k2
v−1 is an integer. Furthermore, 

M1M
�
2 + M2M

�
1 = α(J − I).

Proof. A standard counting argument establishes that λi = ki(ki−1)
v−1 . Then

λ = (k1 + k2)(k1 + k2) − 1
v − 1 = λ1 + λ2 + 2k1k2

v − 1 .

This establishes the claim about α.
For the second claim, compute (M1 +M2)(M1 +M2)� = M1M

�
1 +M2M

�
2 +M1M

�
2 +

M2M
�
1 and use the formula for the Gram matrix of the incidence matrix of a symmetric 

design. �
We will apply the theory of quadratic forms in essentially the same way as in the 

Bruck-Ryser-Chowla theorem. A quick computation shows that taking X = M1M
�
2 and 

computing necessary conditions for the existence of X�X yields nothing in addition to 
the existence conditions for M1 and M2. So we are led to the following matrix.

Proposition 36. Let Q = M1M
�
2 +I. Then QQ� = σI+τJ where σ = (k1 − λ1) (k2 − λ2)

− α + 1 and τ = vλ1λ2 + λ2(k1 − λ1) + λ1(k2 − λ2) + α.
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Remark 34. By the Hasse local-global principle, the conditions (n, (−1)(v−1)/2λ)p = 1
for all odd primes p, together with n = k − λ > 0 (non-triviality of the design), imply 
that z2 = nx2 + (−1)(v−1)/2λy2, has a non-trivial rational solution. Multiplying by 
a common denominator of x, y, and z, we find a non-trivial integral solution to the 
Diophantine equation

z2 = nx2 + (−1)(v−1)/2λy2.

This is how the Bruck-Ryser-Chowla theorem is typically presented in the design theory 
literature. This formulation suggests to the reader the possibility of constructing explicit 
solutions to the given equation. These provide no insight into the existence of the design, 
and are typically much harder to compute than the Hilbert symbols themselves.

4.3. Decomposition of symmetric designs

We consider the following question: when can the incidence matrix of a symmetric 
design be written as the sum of two disjoint {0, 1} matrices, each of which is the inci-
dence matrix of a symmetric design? The obvious necessary condition is that designs 
with suitable parameters should exist individually. In this section, we develop a further 
necessary condition in terms of invariants of quadratic forms.

Proposition 35. Suppose that M is the incidence matrix of a symmetric (v, k, λ) design, 
and that M = M1 + M2 where Mi is the incidence matrix of a (v, ki, λi) design.

Then k = k1 + k2 and λ = λ1 + λ2 + α where α = 2k1k2
v−1 is an integer. Furthermore, 

M1M
�
2 + M2M

�
1 = α(J − I).

Proof. A standard counting argument establishes that λi = ki(ki−1)
v−1 . Then

λ = (k1 + k2)(k1 + k2) − 1
v − 1 = λ1 + λ2 + 2k1k2

v − 1 .

This establishes the claim about α.
For the second claim, compute (M1 +M2)(M1 +M2)� = M1M

�
1 +M2M

�
2 +M1M

�
2 +

M2M
�
1 and use the formula for the Gram matrix of the incidence matrix of a symmetric 

design. �
We will apply the theory of quadratic forms in essentially the same way as in the 

Bruck-Ryser-Chowla theorem. A quick computation shows that taking X = M1M
�
2 and 

computing necessary conditions for the existence of X�X yields nothing in addition to 
the existence conditions for M1 and M2. So we are led to the following matrix.

Proposition 36. Let Q = M1M
�
2 +I. Then QQ� = σI+τJ where σ = (k1 − λ1) (k2 − λ2)

− α + 1 and τ = vλ1λ2 + λ2(k1 − λ1) + λ1(k2 − λ2) + α.
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Remark 34. By the Hasse local-global principle, the conditions (n, (−1)(v−1)/2λ)p = 1
for all odd primes p, together with n = k − λ > 0 (non-triviality of the design), imply 
that z2 = nx2 + (−1)(v−1)/2λy2, has a non-trivial rational solution. Multiplying by 
a common denominator of x, y, and z, we find a non-trivial integral solution to the 
Diophantine equation

z2 = nx2 + (−1)(v−1)/2λy2.

This is how the Bruck-Ryser-Chowla theorem is typically presented in the design theory 
literature. This formulation suggests to the reader the possibility of constructing explicit 
solutions to the given equation. These provide no insight into the existence of the design, 
and are typically much harder to compute than the Hilbert symbols themselves.

4.3. Decomposition of symmetric designs

We consider the following question: when can the incidence matrix of a symmetric 
design be written as the sum of two disjoint {0, 1} matrices, each of which is the inci-
dence matrix of a symmetric design? The obvious necessary condition is that designs 
with suitable parameters should exist individually. In this section, we develop a further 
necessary condition in terms of invariants of quadratic forms.

Proposition 35. Suppose that M is the incidence matrix of a symmetric (v, k, λ) design, 
and that M = M1 + M2 where Mi is the incidence matrix of a (v, ki, λi) design.

Then k = k1 + k2 and λ = λ1 + λ2 + α where α = 2k1k2
v−1 is an integer. Furthermore, 

M1M
�
2 + M2M

�
1 = α(J − I).

Proof. A standard counting argument establishes that λi = ki(ki−1)
v−1 . Then

λ = (k1 + k2)(k1 + k2) − 1
v − 1 = λ1 + λ2 + 2k1k2

v − 1 .

This establishes the claim about α.
For the second claim, compute (M1 +M2)(M1 +M2)� = M1M

�
1 +M2M

�
2 +M1M

�
2 +

M2M
�
1 and use the formula for the Gram matrix of the incidence matrix of a symmetric 

design. �
We will apply the theory of quadratic forms in essentially the same way as in the 

Bruck-Ryser-Chowla theorem. A quick computation shows that taking X = M1M
�
2 and 

computing necessary conditions for the existence of X�X yields nothing in addition to 
the existence conditions for M1 and M2. So we are led to the following matrix.

Proposition 36. Let Q = M1M
�
2 +I. Then QQ� = σI+τJ where σ = (k1 − λ1) (k2 − λ2)

− α + 1 and τ = vλ1λ2 + λ2(k1 − λ1) + λ1(k2 − λ2) + α.
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Remark 34. By the Hasse local-global principle, the conditions (n, (−1)(v−1)/2λ)p = 1
for all odd primes p, together with n = k − λ > 0 (non-triviality of the design), imply 
that z2 = nx2 + (−1)(v−1)/2λy2, has a non-trivial rational solution. Multiplying by 
a common denominator of x, y, and z, we find a non-trivial integral solution to the 
Diophantine equation

z2 = nx2 + (−1)(v−1)/2λy2.

This is how the Bruck-Ryser-Chowla theorem is typically presented in the design theory 
literature. This formulation suggests to the reader the possibility of constructing explicit 
solutions to the given equation. These provide no insight into the existence of the design, 
and are typically much harder to compute than the Hilbert symbols themselves.

4.3. Decomposition of symmetric designs

We consider the following question: when can the incidence matrix of a symmetric 
design be written as the sum of two disjoint {0, 1} matrices, each of which is the inci-
dence matrix of a symmetric design? The obvious necessary condition is that designs 
with suitable parameters should exist individually. In this section, we develop a further 
necessary condition in terms of invariants of quadratic forms.

Proposition 35. Suppose that M is the incidence matrix of a symmetric (v, k, λ) design, 
and that M = M1 + M2 where Mi is the incidence matrix of a (v, ki, λi) design.

Then k = k1 + k2 and λ = λ1 + λ2 + α where α = 2k1k2
v−1 is an integer. Furthermore, 

M1M
�
2 + M2M

�
1 = α(J − I).

Proof. A standard counting argument establishes that λi = ki(ki−1)
v−1 . Then

λ = (k1 + k2)(k1 + k2) − 1
v − 1 = λ1 + λ2 + 2k1k2

v − 1 .

This establishes the claim about α.
For the second claim, compute (M1 +M2)(M1 +M2)� = M1M

�
1 +M2M

�
2 +M1M

�
2 +

M2M
�
1 and use the formula for the Gram matrix of the incidence matrix of a symmetric 

design. �
We will apply the theory of quadratic forms in essentially the same way as in the 

Bruck-Ryser-Chowla theorem. A quick computation shows that taking X = M1M
�
2 and 

computing necessary conditions for the existence of X�X yields nothing in addition to 
the existence conditions for M1 and M2. So we are led to the following matrix.

Proposition 36. Let Q = M1M
�
2 +I. Then QQ� = σI+τJ where σ = (k1 − λ1) (k2 − λ2)

− α + 1 and τ = vλ1λ2 + λ2(k1 − λ1) + λ1(k2 − λ2) + α.
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Remark 34. By the Hasse local-global principle, the conditions (n, (−1)(v−1)/2λ)p = 1
for all odd primes p, together with n = k − λ > 0 (non-triviality of the design), imply 
that z2 = nx2 + (−1)(v−1)/2λy2, has a non-trivial rational solution. Multiplying by 
a common denominator of x, y, and z, we find a non-trivial integral solution to the 
Diophantine equation

z2 = nx2 + (−1)(v−1)/2λy2.

This is how the Bruck-Ryser-Chowla theorem is typically presented in the design theory 
literature. This formulation suggests to the reader the possibility of constructing explicit 
solutions to the given equation. These provide no insight into the existence of the design, 
and are typically much harder to compute than the Hilbert symbols themselves.

4.3. Decomposition of symmetric designs

We consider the following question: when can the incidence matrix of a symmetric 
design be written as the sum of two disjoint {0, 1} matrices, each of which is the inci-
dence matrix of a symmetric design? The obvious necessary condition is that designs 
with suitable parameters should exist individually. In this section, we develop a further 
necessary condition in terms of invariants of quadratic forms.

Proposition 35. Suppose that M is the incidence matrix of a symmetric (v, k, λ) design, 
and that M = M1 + M2 where Mi is the incidence matrix of a (v, ki, λi) design.

Then k = k1 + k2 and λ = λ1 + λ2 + α where α = 2k1k2
v−1 is an integer. Furthermore, 

M1M
�
2 + M2M

�
1 = α(J − I).

Proof. A standard counting argument establishes that λi = ki(ki−1)
v−1 . Then

λ = (k1 + k2)(k1 + k2) − 1
v − 1 = λ1 + λ2 + 2k1k2

v − 1 .

This establishes the claim about α.
For the second claim, compute (M1 +M2)(M1 +M2)� = M1M

�
1 +M2M

�
2 +M1M

�
2 +

M2M
�
1 and use the formula for the Gram matrix of the incidence matrix of a symmetric 

design. �
We will apply the theory of quadratic forms in essentially the same way as in the 

Bruck-Ryser-Chowla theorem. A quick computation shows that taking X = M1M
�
2 and 

computing necessary conditions for the existence of X�X yields nothing in addition to 
the existence conditions for M1 and M2. So we are led to the following matrix.

Proposition 36. Let Q = M1M
�
2 +I. Then QQ� = σI+τJ where σ = (k1 − λ1) (k2 − λ2)

− α + 1 and τ = vλ1λ2 + λ2(k1 − λ1) + λ1(k2 − λ2) + α.

O.W. Gnilke et al. / Linear Algebra and its Applications 682 (2024) 1–27 23

Remark 34. By the Hasse local-global principle, the conditions (n, (−1)(v−1)/2λ)p = 1
for all odd primes p, together with n = k − λ > 0 (non-triviality of the design), imply 
that z2 = nx2 + (−1)(v−1)/2λy2, has a non-trivial rational solution. Multiplying by 
a common denominator of x, y, and z, we find a non-trivial integral solution to the 
Diophantine equation

z2 = nx2 + (−1)(v−1)/2λy2.

This is how the Bruck-Ryser-Chowla theorem is typically presented in the design theory 
literature. This formulation suggests to the reader the possibility of constructing explicit 
solutions to the given equation. These provide no insight into the existence of the design, 
and are typically much harder to compute than the Hilbert symbols themselves.

4.3. Decomposition of symmetric designs

We consider the following question: when can the incidence matrix of a symmetric 
design be written as the sum of two disjoint {0, 1} matrices, each of which is the inci-
dence matrix of a symmetric design? The obvious necessary condition is that designs 
with suitable parameters should exist individually. In this section, we develop a further 
necessary condition in terms of invariants of quadratic forms.

Proposition 35. Suppose that M is the incidence matrix of a symmetric (v, k, λ) design, 
and that M = M1 + M2 where Mi is the incidence matrix of a (v, ki, λi) design.

Then k = k1 + k2 and λ = λ1 + λ2 + α where α = 2k1k2
v−1 is an integer. Furthermore, 

M1M
�
2 + M2M

�
1 = α(J − I).

Proof. A standard counting argument establishes that λi = ki(ki−1)
v−1 . Then

λ = (k1 + k2)(k1 + k2) − 1
v − 1 = λ1 + λ2 + 2k1k2

v − 1 .

This establishes the claim about α.
For the second claim, compute (M1 +M2)(M1 +M2)� = M1M

�
1 +M2M

�
2 +M1M

�
2 +

M2M
�
1 and use the formula for the Gram matrix of the incidence matrix of a symmetric 

design. �
We will apply the theory of quadratic forms in essentially the same way as in the 

Bruck-Ryser-Chowla theorem. A quick computation shows that taking X = M1M
�
2 and 

computing necessary conditions for the existence of X�X yields nothing in addition to 
the existence conditions for M1 and M2. So we are led to the following matrix.

Proposition 36. Let Q = M1M
�
2 +I. Then QQ� = σI+τJ where σ = (k1 − λ1) (k2 − λ2)

− α + 1 and τ = vλ1λ2 + λ2(k1 − λ1) + λ1(k2 − λ2) + α.
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183 − 14 = 132 and 793 − 264 = 232. But Theorem 37 requires that 132 · 232 − 121 =
26 · 32 · 5 · 31 be a perfect square, which it is not. �

In contrast, the conditions at odd orders are rather weaker. We observe that the 
incidence matrix of a (91, 81, 72)-design (the complementary design of a projective plane 
of order 9) cannot be written as the sum of designs with parameters (91, 36, 14)-design 
and a (91, 45, 22)-design. The relevant parameters for the computation are

k1 = 36, λ1 = 14, k2 = 45, λ2 = 22, α = 36, σ = 471

The local invariants are (471, 471)p(471, 91)p for all primes p. The prime 3 divides 471, 
so the invariant at p = 3 simplifies to (3, 3)p(1, 3)p = −1. So Theorem 37 shows that this 
decomposition does not exist.

These methods cannot rule out the existence of a (31, 25, 20)-design (the comple-
ment of a projective plane of order 5) which decomposes into a (31, 15, 7)-design and a 
(31, 10, 3)-design. This is the smallest open case for a decomposition. Finally, we observe 
that solutions to this problem do exist, the sum of a skew-Hadamard design with param-
eters (4t −1, 2t −1, t −1) with a trivial (4t −1, 1, 0)-design gives a (4t −1, 2t, t)-design, so 
the concept is not vacuous [10]. This topic will be considered more fully in forthcoming 
work of the authors.

4.4. Bose-Connor theorem

The Bose-Connor theorem gives non-existence conditions for group-divisible designs.

Definition 39. Let V be a set of size mn, divided into m groups of size n. Let B be a 
set of blocks, each of size k. Then (V, B) is a group-divisible design with parameters 
(mn, n, k, λ1, λ2) if any pair of points from the same group occurs in λ1 blocks and any 
pair of points from distinct blocks occurs together in λ2 blocks.

Standard counting arguments show that each point appears in r = (n−1)λ1+n(m−1)λ2
k−1

blocks (and integrality of this quantity is a necessary condition for the existence of a 
group-divisible design). A group-divisible design is symmetric if the incidence matrix is 
square, in which case r = k as in the usual theory of symmetric designs.

Recall that the Kronecker product of matrices A and B is given (as a block-matrix) by 
[A ⊗B]ij = aijB. In particular, Im⊗Jn is an mn ×mn matrix with n ×n blocks of ones on 
the diagonal and zeros elsewhere. It follows from the definition that the incidence matrix 
of a symmetric group-divisible design is G = (r −λ1 −λ2)I +(λ1 −λ2)Im ⊗Jn +λ2Jmn. 
Non-existence conditions can be derived from the theory of quadratic forms by finding 
conditions under which G is not a Gram matrix. We refer the interested reader to the 
original paper for a proof.
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Remark 34. By the Hasse local-global principle, the conditions (n, (−1)(v−1)/2λ)p = 1
for all odd primes p, together with n = k − λ > 0 (non-triviality of the design), imply 
that z2 = nx2 + (−1)(v−1)/2λy2, has a non-trivial rational solution. Multiplying by 
a common denominator of x, y, and z, we find a non-trivial integral solution to the 
Diophantine equation

z2 = nx2 + (−1)(v−1)/2λy2.

This is how the Bruck-Ryser-Chowla theorem is typically presented in the design theory 
literature. This formulation suggests to the reader the possibility of constructing explicit 
solutions to the given equation. These provide no insight into the existence of the design, 
and are typically much harder to compute than the Hilbert symbols themselves.

4.3. Decomposition of symmetric designs

We consider the following question: when can the incidence matrix of a symmetric 
design be written as the sum of two disjoint {0, 1} matrices, each of which is the inci-
dence matrix of a symmetric design? The obvious necessary condition is that designs 
with suitable parameters should exist individually. In this section, we develop a further 
necessary condition in terms of invariants of quadratic forms.

Proposition 35. Suppose that M is the incidence matrix of a symmetric (v, k, λ) design, 
and that M = M1 + M2 where Mi is the incidence matrix of a (v, ki, λi) design.

Then k = k1 + k2 and λ = λ1 + λ2 + α where α = 2k1k2
v−1 is an integer. Furthermore, 

M1M
�
2 + M2M

�
1 = α(J − I).

Proof. A standard counting argument establishes that λi = ki(ki−1)
v−1 . Then

λ = (k1 + k2)(k1 + k2) − 1
v − 1 = λ1 + λ2 + 2k1k2

v − 1 .

This establishes the claim about α.
For the second claim, compute (M1 +M2)(M1 +M2)� = M1M

�
1 +M2M

�
2 +M1M

�
2 +

M2M
�
1 and use the formula for the Gram matrix of the incidence matrix of a symmetric 

design. �
We will apply the theory of quadratic forms in essentially the same way as in the 

Bruck-Ryser-Chowla theorem. A quick computation shows that taking X = M1M
�
2 and 

computing necessary conditions for the existence of X�X yields nothing in addition to 
the existence conditions for M1 and M2. So we are led to the following matrix.

Proposition 36. Let Q = M1M
�
2 +I. Then QQ� = σI+τJ where σ = (k1 − λ1) (k2 − λ2)

− α + 1 and τ = vλ1λ2 + λ2(k1 − λ1) + λ1(k2 − λ2) + α.
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Remark 34. By the Hasse local-global principle, the conditions (n, (−1)(v−1)/2λ)p = 1
for all odd primes p, together with n = k − λ > 0 (non-triviality of the design), imply 
that z2 = nx2 + (−1)(v−1)/2λy2, has a non-trivial rational solution. Multiplying by 
a common denominator of x, y, and z, we find a non-trivial integral solution to the 
Diophantine equation

z2 = nx2 + (−1)(v−1)/2λy2.

This is how the Bruck-Ryser-Chowla theorem is typically presented in the design theory 
literature. This formulation suggests to the reader the possibility of constructing explicit 
solutions to the given equation. These provide no insight into the existence of the design, 
and are typically much harder to compute than the Hilbert symbols themselves.

4.3. Decomposition of symmetric designs

We consider the following question: when can the incidence matrix of a symmetric 
design be written as the sum of two disjoint {0, 1} matrices, each of which is the inci-
dence matrix of a symmetric design? The obvious necessary condition is that designs 
with suitable parameters should exist individually. In this section, we develop a further 
necessary condition in terms of invariants of quadratic forms.

Proposition 35. Suppose that M is the incidence matrix of a symmetric (v, k, λ) design, 
and that M = M1 + M2 where Mi is the incidence matrix of a (v, ki, λi) design.

Then k = k1 + k2 and λ = λ1 + λ2 + α where α = 2k1k2
v−1 is an integer. Furthermore, 

M1M
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2 + M2M

�
1 = α(J − I).

Proof. A standard counting argument establishes that λi = ki(ki−1)
v−1 . Then

λ = (k1 + k2)(k1 + k2) − 1
v − 1 = λ1 + λ2 + 2k1k2

v − 1 .

This establishes the claim about α.
For the second claim, compute (M1 +M2)(M1 +M2)� = M1M

�
1 +M2M

�
2 +M1M

�
2 +

M2M
�
1 and use the formula for the Gram matrix of the incidence matrix of a symmetric 

design. �
We will apply the theory of quadratic forms in essentially the same way as in the 

Bruck-Ryser-Chowla theorem. A quick computation shows that taking X = M1M
�
2 and 

computing necessary conditions for the existence of X�X yields nothing in addition to 
the existence conditions for M1 and M2. So we are led to the following matrix.

Proposition 36. Let Q = M1M
�
2 +I. Then QQ� = σI+τJ where σ = (k1 − λ1) (k2 − λ2)

− α + 1 and τ = vλ1λ2 + λ2(k1 − λ1) + λ1(k2 − λ2) + α.
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183 − 14 = 132 and 793 − 264 = 232. But Theorem 37 requires that 132 · 232 − 121 =
26 · 32 · 5 · 31 be a perfect square, which it is not. �

In contrast, the conditions at odd orders are rather weaker. We observe that the 
incidence matrix of a (91, 81, 72)-design (the complementary design of a projective plane 
of order 9) cannot be written as the sum of designs with parameters (91, 36, 14)-design 
and a (91, 45, 22)-design. The relevant parameters for the computation are

k1 = 36, λ1 = 14, k2 = 45, λ2 = 22, α = 36, σ = 471

The local invariants are (471, 471)p(471, 91)p for all primes p. The prime 3 divides 471, 
so the invariant at p = 3 simplifies to (3, 3)p(1, 3)p = −1. So Theorem 37 shows that this 
decomposition does not exist.

These methods cannot rule out the existence of a (31, 25, 20)-design (the comple-
ment of a projective plane of order 5) which decomposes into a (31, 15, 7)-design and a 
(31, 10, 3)-design. This is the smallest open case for a decomposition. Finally, we observe 
that solutions to this problem do exist, the sum of a skew-Hadamard design with param-
eters (4t −1, 2t −1, t −1) with a trivial (4t −1, 1, 0)-design gives a (4t −1, 2t, t)-design, so 
the concept is not vacuous [10]. This topic will be considered more fully in forthcoming 
work of the authors.

4.4. Bose-Connor theorem

The Bose-Connor theorem gives non-existence conditions for group-divisible designs.

Definition 39. Let V be a set of size mn, divided into m groups of size n. Let B be a 
set of blocks, each of size k. Then (V, B) is a group-divisible design with parameters 
(mn, n, k, λ1, λ2) if any pair of points from the same group occurs in λ1 blocks and any 
pair of points from distinct blocks occurs together in λ2 blocks.

Standard counting arguments show that each point appears in r = (n−1)λ1+n(m−1)λ2
k−1

blocks (and integrality of this quantity is a necessary condition for the existence of a 
group-divisible design). A group-divisible design is symmetric if the incidence matrix is 
square, in which case r = k as in the usual theory of symmetric designs.

Recall that the Kronecker product of matrices A and B is given (as a block-matrix) by 
[A ⊗B]ij = aijB. In particular, Im⊗Jn is an mn ×mn matrix with n ×n blocks of ones on 
the diagonal and zeros elsewhere. It follows from the definition that the incidence matrix 
of a symmetric group-divisible design is G = (r −λ1 −λ2)I +(λ1 −λ2)Im ⊗Jn +λ2Jmn. 
Non-existence conditions can be derived from the theory of quadratic forms by finding 
conditions under which G is not a Gram matrix. We refer the interested reader to the 
original paper for a proof.
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Are there mosaics that are not homogenous?

2-(13, 3, 1)⊕ 2-(13, 4, 2)⊕ 2-(13, 6, 5)

F1 = ({0, 1, 4}, {0, 2, 7})
F2 = ({2, 6, 7, 9}, {1, 3, 10, 11})
F3 = ({3, 5, 8, 10, 11, 12}, {4, 5, 6, 8, 9, 12})

Z13
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Applications of mosaics

M. Wiese, H. Boche, Mosaics of combinatorial designs for information-
theoretic security, Des. Codes Cryptogr. 90 (2022), no. 3, 593–632.
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A related application of ACFU hash functions is to wiretap channels, see [30]. In this
application, an additional requirement is that the blocks {x : f (x, s) = α} have constant
size. We have seen in Sect. 3 that this poses no real restriction on the ACFU functions.

For application in privacy amplification and the wiretap channel problem, there exist
functions which have a smaller seed than ACFU hash functions if |S| > |X |, namely |S| =
|X |, butwhich also achieve the best knownkey or channel rates in the standard settings like the
i.i.d. source setting from the example. They are based on mosaics of near-Ramanujan graphs,
i.e., edge decompositions of a complete bipartite graph with equal-sized color classes into
subgraphs each of which has a very small second-largest eigenvalue [29]. However, so far we
do not know of any such mosaics whose corresponding functions are efficiently computable.

6 Open questions

After our extension results (Theorems 3 and 4), we discussed how the original function g and
thegenerated ĝ or ǧ relatewith respect to equalities in the lower boundson the seed sizes.What
remained open was whether every seed-optimal OCFU hash function can be derived from a
seed-optimal OU hash function. Formulated in terms of mosaics and designs, the question
is: Are the members of every mosaic of BIBDs resolvable? In other words, is the method
of Gnilke, Geferath and Pavčević (Corollary 3) essentially the only way of constructing a
mosaic of BIBDs? By Corollary 2, the members of a mosaics of BIBD(v, k, λ) certainly
need to satisfy the necessary condition b ≥ v + r − 1 for resolvable designs.

If this question can be answered in the positive, then this also implies that dually, any ε-
ACFU hash function with equality in (3.4) is the point extension of an ε-ASU hash function
satisfying equality in (3.11). Another consequence would be that the sum of a mosaic of
BIBDs is doubly-resolvable [5, Remark I.5.16].

More generally, a similar question can be posed about the structure of mosaics which
neither in their “primal” nor their dual version consist of BIBDs. In terms of ACFU hash
functions, this could in particular clarify the relation between seed-optimal ACFU hash
functionswith equality in (3.5) and seed-optimalASUhash functionswith equality in Lemma
8.
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Homogenous mosaics of non-resolvable designs

Number of non-isomorphic 2-(9, 3, 2) designs: 36 (resolvable: 9)

2-(9, 3, 2)⊕ 2-(9, 3, 2)⊕ 2-(9, 3, 2)

Contains 3 isomorphic copies of a non-resolvable design
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Homogenous mosaics of non-resolvable designs

Number of non-isomorphic 2-(9, 3, 2) designs: 36 (resolvable: 9)

2-(9, 3, 2)⊕ 2-(9, 3, 2)⊕ 2-(9, 3, 2)

Contains 3 non-isomorphic designs (1 resolvable, 2 non-resolvable)
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Prescribed Automorphism Groups

https://vkrcadinac.github.io/PAG/
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Autotopies and automorphisms of mosaics

Let A = [aij ] and B = [bij ] be c-mosaics of type v × b.

They are isotopic if there are permutations (α, β, γ) ∈ Sv × Sb × Sc
such that bij = γ(aα(i) β(j)) for all i = 1, . . . , v , j = 1, . . . , b.

If A = B, the triple (α, β, γ) is an autotopy of the mosaic.

If γ = id , the mosaics are isomorphic.

If A = B and γ = id , the pair (α, β) is an automorphism.

Similar as for Latin squares!
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Tiling groups with difference sets

A. Ćustić, V. Krčadinac, Y. Zhou, Tiling groups with difference sets,
Electron. J. Combin. 22 (2015), no. 2, Paper 2.56, 13 pp.

Definition.
A tiling of an additively written group G is a family of pairwise disjoint
(v , k, λ) difference sets {D1, . . . ,Dc} such that D1 ∪ · · · ∪ Dc = G \ {0}.

Theorem.
The development of a tiling of G with (v , k, λ) difference sets is a mosaic

2-(v , k, λ)⊕ · · · ⊕ 2-(v , k, λ)⊕ 2-(v , 1, 0)

of symmetric designs. It has G as an automorphism group acting regularly
on the rows and columns.
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Tiling groups with difference sets

Example. A tiling of Z31 = {0, . . . , 30} with (31, 6, 1) difference sets:

D1 = {1, 5, 11, 24, 25, 27}
D2 = {2, 10, 17, 19, 22, 23}
D3 = {3, 4, 7, 13, 15, 20}
D4 = {6, 8, 9, 14, 26, 30}
D5 = {12, 16, 18, 21, 28, 29}
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D3 = {3, 4, 7, 13, 15, 20}
D4 = {6, 8, 9, 14, 26, 30}
D5 = {12, 16, 18, 21, 28, 29}

with x, y ∈ D in exactly λ ways. Multiplicative notation is sometimes used, in which case
the “differences” are written as xy−1. For basic results on difference sets, see [2, 17, 22].
More recent surveys on difference sets are [14] and [26].

It is not possible to partition the whole group G into disjoint (v, k, λ) difference sets.
This follows from the necessary existence condition λ(v − 1) = k(k − 1) when v > k >
λ > 1, which is assumed throughout the paper. However, if k divides v − 1, it may be
possible to partition G \ {0} into difference sets. We introduce the following concept.

Definition 1. Let G be a finite group of order v with identity element 0. A (v, k, λ)
tiling of G is a collection {D1, . . . , Dt} of mutually disjoint (v, k, λ) difference sets such
that D1 ∪ · · · ∪Dt = G \ {0}.

Example 2. The following five difference sets are a (31, 6, 1) tiling of the cyclic group
Z31:

D1 = {1, 5, 11, 24, 25, 27},
D2 = {2, 10, 17, 19, 22, 23},
D3 = {3, 4, 7, 13, 15, 20},
D4 = {6, 8, 9, 14, 26, 30},
D5 = {12, 16, 18, 21, 28, 29}.

Tilings of cyclic groups have a nice combinatorial interpretation. We can visualize the
group Zv as a necklace of v beads, with the identity element coloured in black. A (v, k, λ)
tiling corresponds to a colouring of the remaining beads with t colours, such that there
are k beads of every colour. Furthermore, there are exactly λ pairs of equally coloured
beads at each possible distance, and for every colour. Here, a pair of beads is thought
to have two distances, counted clockwise and counterclockwise. The (31, 6, 1) tiling of
Example 2 can be represented as the necklace in Figure 1.

Figure 1: A (31, 6, 1) tiling of Z31.
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Tiling groups with difference sets

2-(31, 6, 1)⊕ 2-(31, 6, 1)⊕ 2-(31, 6, 1)⊕ 2-(31, 6, 1)⊕ 2-(31, 6, 1)⊕ 2-(31, 1, 0)
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Tiling groups with difference sets

https://www.imaginary.org/gallery/difference-bracelets

V. Krčadinac (University of Zagreb) On mosaics of designs 11.7.2024. 24 / 41

https://www.imaginary.org/gallery/difference-bracelets


Mosaics of projective planes

For what orders q are there q-mosaics of projective planes of order q?

(q2 + q + 1, q + 1, 1)⊕ · · · ⊕ (q2 + q + 1, q + 1, 1)⊕ (q2 + q + 1, 1, 0)

A. Ćustić, V. Krčadinac, Y. Zhou, Tiling groups with difference sets,
Electron. J. Combin. 22 (2015), no. 2, Paper 2.56, 13 pp.

q 2 3 4 5 7 8 9 · · ·
Tiling X 7 7 X X X ? · · ·

Mosaic · · ·
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Tiling X 7 7 X X X ? · · ·

Mosaic X X X X X · · ·

V. Krčadinac, Small examples of mosaics of combinatorial designs,
preprint, 2024. https://arxiv.org/abs/2405.12672
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A. Ćustić, V. Krčadinac, Y. Zhou, Tiling groups with difference sets,
Electron. J. Combin. 22 (2015), no. 2, Paper 2.56, 13 pp.

q 2 3 4 5 7 8 9 · · ·
Tiling X 7 7 X X X ? · · ·

Mosaic X X ? X X X ? · · ·

V. Krčadinac, Small examples of mosaics of combinatorial designs,
preprint, 2024. https://arxiv.org/abs/2405.12672
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Mosaics of projective planes

2-(13, 4, 1)⊕ 2-(13, 4, 1)⊕ 2-(13, 4, 1)⊕ 2-(13, 1, 0)
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Hadamard mosaics
A Hadamard mosaic is a mosaic consisting of two symmetric designs:

2-(v , k, λ)⊕ 2-(v , k, λ)⊕ 2-(v , 1, 0)

⇒ (v , k, λ) = (4n − 1, 2n − 1, n − 1)

A Hadamard matrix H is skew if it is of the form H = I + A, At = −A
(alternatively: if it satisfies H + Ht = 2I). Skew standard form:

1 − − 1 1 1 1 −
1 1 − 1 − 1 − 1
1 1 1 1 1 − 1 1
− − − 1 − − 1 1
− 1 − 1 1 − − −
− − 1 1 1 1 − 1
− 1 − − 1 1 1 1
1 − − − 1 − − 1


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V. Krčadinac (University of Zagreb) On mosaics of designs 11.7.2024. 33 / 41



Hadamard mosaics
A Hadamard mosaic is a mosaic consisting of two symmetric designs:

2-(v , k, λ)⊕ 2-(v , k, λ)⊕ 2-(v , 1, 0)

⇒ (v , k, λ) = (4n − 1, 2n − 1, n − 1)

A Hadamard matrix H is skew if it is of the form H = I + A, At = −A
(alternatively: if it satisfies H + Ht = 2I). Skew standard form:

1 1 1 1 1 1 1 1
− 1 − − 1 − 1 1
− 1 1 − − 1 − 1
− 1 1 1 − − 1 −
− − 1 1 1 − − 1
− 1 − 1 1 1 − −
− − 1 − 1 1 1 −
− − − 1 − 1 1 1


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Hadamard mosaics
A Hadamard mosaic is a mosaic consisting of two symmetric designs:
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A Hadamard matrix H is skew if it is of the form H = I + A, At = −A
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1 1 1 1 1 1 1 1
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− 1 0 2 2 1 2 1
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− 2 1 1 0 2 2 1
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− 2 2 1 2 1 1 0


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Hadamard mosaics
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Hadamard mosaics

2-(15, 7, 3)⊕ 2-(15, 7, 3)⊕ 2-(15, 1, 0)
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Hadamard mosaics

2-(35, 17, 8)⊕ 2-(35, 17, 8)⊕ 2-(35, 1, 0)
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Hadamard mosaics

2-(39, 19, 9)⊕ 2-(39, 19, 9)⊕ 2-(39, 1, 0)
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Hadamard mosaics

Conjecture: skew Hadamard matrices exist for all orders divisible by 4
(Jennifer Seberry)

Theorem.
Hadamard mosaics are equivalent with skew Hadamard matrices.

Padraig Ó Catháin, Nesting symmetric designs, Irish Math. Soc. Bull. 72
(2013), 71–74.

Theorem.
A symmetric 2-(v , k, λ) design can be extended to a 2-(v , k + 1, λ′) design
if and only if it comes from a skew Hadamard matrix.
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The End

Thanks for your attention!
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