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2-designs

Definition
A 2-(v, k, \) design is a pair (V, B) such that
® V is a set of v points;
® B is a collection of k-subsets of V (called blocks), |B| = b;

® each 2-subset of V is contained exactly in A blocks.

Figure: the Fano plane is a 2-(7,3, 1) design



Graph decompositions - (K, ')-designs

a (Ky,I)-design is a decomposition of (the edges of) the
graph K, into copies of the graph I'

the graphs B ={I'1,...,Ip} are “blocks”
so a (K, Kk)-design is a 2-(v, k, 1) design
and a (AK,, Ki)-design is a 2-(v, k, \) design

Figure: a (K7, K3) design



Graph decompositions - (K, ')-designs

the most studied cases are [ = Cj a k-cycle (k-cycle system)
and [ = Py the path on k vertices (k-path system)

the existence problem is often easier wrt to “ordinary” designs
e.g. is completely solved for cycle and path systems

these exist if the obvious necessary conditions are satisfied



g-analogs

A2 (v.k \)g designis a (2=, 2L, X) design (V, B)
where V= points of PG(v — 1, q) and each block B is a

subspace

when A = 1 only non trivial known is for parameters

2 —(13,3,1)2 (Braun, Etzion, Ostergard, Vardy, Wassermann,
2016)

Buratti, Nakic and Wassermann (2021) introduced (K,,T),
the g-analogs of graph decompositions

obtaining many examples for [ a cycle, path, generalized
Petersen and other graphs

no infinite family, but many results applicable also to the
‘classical’ case (I' = K,)



Additive designs

e Let D=(V,B) be a2-(v,k,\) design
® D is called additive if V C G, G an abelian group and
> beg b =0 forall B € B (Caggegi, Falcone, Pavone 2017)

® D is strictly additive if V = G
® D is almost strictly additive if V = G \ {0}

(0,0,1)

(0,1,1) (1,1,0) (1,0,1)

Figure: the Fano plane is almost strictly additive, G = Z3



Examples of additive designs

first examples come from geometry; many examples with
“big" A, less for A =1
see Caggegi, Falcone, Pavone 2017 & 2021, C 23, FP 21,
Buratti and Naki¢ 2023, 2024+
when A\ = 1 we have
® the point-line design of AG(n7 q) is a strictly additive
(g", g, 1)-design, G ( ,+)
the point-line 2- ( — L g +1,1) design of PG(n, q)
the 2-(8191,7,1) ie 2 (13,3,1), design of BEOVW
A sporadic 2-(124,4,1) design
the super regular designs (more later, very large v)

no additive (v, k, 1) design is known with v “reasonable” or k
not a prime power or a prime power+1



Additive (K, I)-designs

* A (K,,IN-design {T'1,T2,...,Ip} is G-additive if vertex set
V(K,) is a subset of an abelian group G and the sets
V(T1), V(T2),... V(Tp) are zero-sum in G

e it is strictly additive if V(K,) = G, almost strictly additive if

V(K,) = G\ {0}
u X O‘L,,’Pq) s
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® an additive (v, k, 1) design + (K, ') design, |V(I)| = k
= additive (K, I") design
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G-super regular designs

a a (K,,I)-design is regular if there is an automorphism group
G of K,

® acting sharply transitively on the vertices of K,
(so we identify V(K,) with G)

® permuting the blocks of B

® to describe a G-regular design it is enough to provide a set of
base blocks, (representatives of the orbits of G on blocks)

if a design is both G-regular and strictly G-additive
we call it a G-super regular design (Buratti and Naki¢, 2023)

note that it is not enough to assume only that the base blocks
are zero-sum



G-super regular cycle systems

® using constructions from Buratti and Naki¢

® and finding suitable base cycles, we can prove

Theorem

let k > 3 be odd, and let m s.t. each prime divisor of m divides k,
there exists a G-additive (Kym, Cx)-design, where G = 7 x I,
notation: m = p;* - ... pS, with F,, we denote Foa X oo X Fpes
® note that in the ‘classical’ design case, the smallest nr of
points for an additive (v, 15, 1)-design is v=3 - 53! ~ 10%°!
® we can build an additive (K,, Ci5) design with v = 45



an additive (Kys, Ci5) design

we build a G-additive (Kys, Ci5) design with G = Z15 X Z3
45 cycles are the G-translates of the base cycle

B :((8, 0)7 (17 1)7 (_17 2)7 (2, 1)7 (_27 2)7 (37 1)7 (_37 2)a
(_47 1)7 (_47 2)7 (_37 1)7 (3, 2)7 (_27 1)7 (27 2)7 (_17 1), (17 2))

this decomposes K315 (equipartite graph, 3 parts of size 15)
if {Cy,..., Gz} is a hamiltonian cycle decomposition for Kis,
vertices labelled by Zis, with G; = (cpi, c1,is - - -, C6.i)

take the 21 zero-sum cycles

Gij = ((co,irg); (c1,isg) .-+, (ce,irj)) fori=1,...,7,j € Zs3



elementary abelian (K|, Cx)-designs

Some graph decompositions already in the literature are
additive (and super regular)

Benini and Pasotti (2009) study G-regular cycle systems,
G elementary abelian

amongst their results, we have

for p an odd prime, p” =1 (mod 4) there exist a Zp-regular
Cap-cycle system (a Zg-regular (p", Cyp)-design)

these CS are also strictly Zg-additive, so Zp-super regular

also, there exist Zp-super regular (p”, C3)-designs for p" =
(mod 6) and (p", C4p)-designs for p” =1 (mod 8)



elementary abelian (K, I')-designs

Some graph decompositions already in the literature are
additive (and super regular)

Bonisoli, Buratti, Rinaldi (2007) studied decompositions of K,
into generalized Petersen graphs

some of their constructions give graphs strictly Z-regular and
Zgp-additive designs (ie super regular)

for instance, there exist a super regular decomposition of K,
into Petersen graphs for v = 52n G = Zg”



Fact

a technique

A non-trivial subgroup of ¥y and all its cosets are zero-sum.

from a cyclic (K,, I')-design with base blocks I'1,...,Is s.t.
V(T;),1 <i<sis the union of cosets of subgroups of Z,

or a 1-rotational (K,+1,)-design, b.b. T1,...,Ts, T

take a prime power ¢ =1 (mod v), say g = vt + 1, and let G
be the group of order v and index t in Fy

if Fy = (g), then G = (g =r)

we can obtain an additive (K, [')-design where the points are
the elements of G

resp. an additive (K1, )-design where the points are the
elements of G U {0}

relabeling the points and base blocks with the map

w:Zy — Gst. p(x)=r"

resp. ¢ : Z, U{oo} = GU{0} s.t. p(x) =r*,p(c0) =0
and developing multiplicatively



application to cycles

® a theorem of Buratti (2003) guarantees the existence of a
1-rotational (v + 1, Cx)-design for all admissible (v + 1, k),
with k odd, not a prime power, and v + 1 < 3k

® this result gives a different proof of existence of k-cycle
systems, k odd

® easy to note that in such a CS all cycles have non trivial
stabilizer, so that each base cycle the set of vertices is the
union of cosets of a subgroup of Z,

Theorem
There is an additive (v + 1, Ci)-design for all admissible (v + 1, k),
with k odd, not a prime power, and v + 1 < 3k



1-rotational (K1, Ci5)-design

® Ex: take k =15 and v + 1 = 21; two base cycles
developed (mod 20), with oo a fixed point

o B, =(0,1,19,0+4,1+4,19+4,0+8...) =
(0,1,19,4,5,3,8,9,7,12,13,11,16,17,15)

o B =(00,0,3,19,5,18,6,17,7, 16,8, 15,9, 13, 10)



additive (K1, Ci5)-design

from the 1-rotational (21, Cis5)-design we obtain an additive
(21, Cy5)-design

additive under Zay

let C? is the subgroup of order 20 = v in Z};, C? = (g)
(C? = squares of Zs1, C2 = (2))

label the vertices of K,—1 with the elements of C? U {0}
map the vertices of the two base cycles into C? U {0}

@ Zno U {oo} — C2U {0}

p(0) =0, ¢(x) =g*(= 2" (mod 41))

the two base cycles of the 1-rotational (21, Ci5)-design map
to (20,21,219 24 . 215) and (0,2°0,23,...,210)

and the full set of cycles is obtained as

2. (1,2,21,16,32,8,10,20,5,37, 33,39, 18, 36, 9),
2i.(0,1,8,21,32,31,23,36,5,18, 10,9, 20, 33, 40),



other examples

the same, or similar ideas can be applied to obtain additive
path decompositions

many sporadic examples

a (somewhat special) infinite class obtained recursively: an
additive (K, Ps) design with v = 7"

infinite classes for other graph decompositions, eg

a general construction using Skolem sequences for all
admissible even v and [ = 3K>

by exhibiting a cyclic system with vertices of base blocks are
union of cosets of subgroups of Z,
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an example with [ = Ps

an example of a Z3-additive (Kig, Ps)-decomposition
identify F16 with Zo[x]/(x* +x + 1)
take x root of the primitive polynomial x* 4 x 41

the paths are

[0, x, x>, x8, x15] - x' for 0 < i < 15; [x, x5, x8 x%, x5 - x' for
0<i<15.

in the additive group of F1 >~ Z3, [0, x, x>, x8, x1] is the zero
sum set [0000,0100,0110,1010,1000] and [x, x%, x8, x?, x19]
is [0100,0011, 1010, 0101, 1000]

interesting because strictly G-additive but not G-regular,

G =174

and no Steiner 2-design with this property is known

(open question in Buratti and Naki¢ 2023)
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