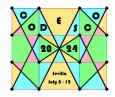
Some results on Graphic Topology defined on Tournaments

Inés Mora-Caro and Desamparados Fernández-Ternero

Dpto. Geometría y Topología, Universidad de Sevilla



July 12, 2024

I. Mora-Caro, D. Fernández-Ternero

Some results on Graphic Topology defined on Tournaments

Universidad de Sevilla

Preliminaries

Graphic topology on tournaments

Properties of the graphic topology

Universidad de Sevilla

イロト イヨト イヨト イヨ

I. Mora-Caro, D. Fernández-Ternero

Overview

Properties that determine if a tournament with few vertices is decomposable.

- Properties of the graphic topology defined on finite indecomposable tournaments.
- Non-isomorphic indecomposable tournaments with homeomorphic graphic topologies.

I. Mora-Caro, D. Fernández-Ternero

Some results on Graphic Topology defined on Tournaments

Universidad de Sevilla

(日) (同) (日) (日)

- Properties that determine if a tournament with few vertices is decomposable.
- Properties of the graphic topology defined on finite indecomposable tournaments.
- Non-isomorphic indecomposable tournaments with homeomorphic graphic topologies.

Universidad de Sevilla

- Properties that determine if a tournament with few vertices is decomposable.
- Properties of the graphic topology defined on finite indecomposable tournaments.
- Non-isomorphic indecomposable tournaments with homeomorphic graphic topologies.

Universidad de Sevilla

Index

Preliminaries

Graphic topology on tournaments

Properties of the graphic topology

Universidad de Sevilla

イロト イヨト イヨト イヨ

I. Mora-Caro, D. Fernández-Ternero

Definition

A topological space (X, \mathcal{T}) is an **Alexandroff** space if every arbitrary intersection of open sets is an open set. Finite topological space \implies Alexandroff space.

Definition

A topological space (X, \mathcal{T}) is **T**₀ if for any two points of X, there exists an open set that includes one of them but not the other one.

I. Mora-Caro, D. Fernández-Ternero

Some results on Graphic Topology defined on Tournaments

Universidad de Sevilla

Definition

A topological space (X, \mathcal{T}) is an **Alexandroff** space if every arbitrary intersection of open sets is an open set. Finite topological space \implies Alexandroff space.

Definition

A topological space (X, \mathcal{T}) is \mathbf{T}_0 if for any two points of X, there exists an open set that includes one of them but not the other one.

I. Mora-Caro, D. Fernández-Ternero

Some results on Graphic Topology defined on Tournaments

Universidad de Sevilla

• • • • • • • • • • • •

Definition

For any $x \in X$, the **minimal open set of x**, U_x , is the intersection of all open sets that contain x.

Definition

We define a **relation** \leq over the set X as

$$x \leq y$$
 iff $x \in U_y \equiv U_x \subseteq U_y$.

I. Mora-Caro, D. Fernández-Ternero

Some results on Graphic Topology defined on Tournaments

Universidad de Sevilla

イロト イヨト イヨト イヨ

Definition

For any $x \in X$, the **minimal open set of x**, U_x , is the intersection of all open sets that contain x.

Definition

We define a **relation** \leq over the set X as

$$x \leq y$$
 iff $x \in U_y \equiv U_x \subseteq U_y$.

I. Mora-Caro, D. Fernández-Ternero

Some results on Graphic Topology defined on Tournaments

Universidad de Sevilla

< □ > < 同 > < 回 > < Ξ > < Ξ

The family of open sets $\{U_x\}_{x \in X}$ is the unique minimal basis of the finite space (X, \mathcal{T}) .

Proposition

There exists a biyective correspondence between T_0 finite spaces and finite partially ordered sets (finite posets).

Universidad de Sevilla

< □ > < 同 > < 回 > < Ξ > < Ξ

I. Mora-Caro, D. Fernández-Ternero

The family of open sets $\{U_x\}_{x \in X}$ is the unique minimal basis of the finite space (X, \mathcal{T}) .

Proposition

There exists a biyective correspondence between T_0 finite spaces and finite partially ordered sets (finite posets).

I. Mora-Caro, D. Fernández-Ternero

Some results on Graphic Topology defined on Tournaments

Universidad de Sevilla

< □ > < 同 > < 回 > < Ξ > < Ξ

Tournaments

Definition

A **tournament** is an oriented complete graph, i. e., a directed graph or digraph in which any pair of vertices is connected by only one directed edge.

Definition

Let T = (V, A) be a tournament. **x dominates y**, $x \to y$, if there is a directed edge from x to y, i. e. $(x, y) \in A$.

I. Mora-Caro, D. Fernández-Ternero

Some results on Graphic Topology defined on Tournaments

Universidad de Sevilla

イロト イボト イヨト イヨ

Tournaments

Definition

A **tournament** is an oriented complete graph, i. e., a directed graph or digraph in which any pair of vertices is connected by only one directed edge.

Definition

Let T = (V, A) be a tournament. **x dominates y**, $x \rightarrow y$, if there is a directed edge from x to y, i. e. $(x, y) \in A$.

I. Mora-Caro, D. Fernández-Ternero

Some results on Graphic Topology defined on Tournaments

Universidad de Sevilla

• • • • • • • • • • • •

Properties of the graphic topology

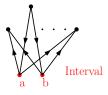
Tournaments

Definition

Let T = (V, A) be a tournament. A subset $I \subseteq V$ is an **interval** if for any $a, b \in I$ it is true that for all $x \in V \setminus I$, $(a, x) \in A$ if and only if $(b, x) \in A$.

Definition

The **trivial intervals** of a tournament are the subsets \emptyset , V and $\{x\}, \forall x \in V$.



Definition

A tournament is **indecomposable** if all its intervals are trivial ones. Otherwise, the tournament is called **decomposable**.

< □ > < 同 > < 回 > < Ξ > < Ξ

Universidad de Sevilla

Properties of the graphic topology

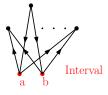
Tournaments

Definition

Let T = (V, A) be a tournament. A subset $I \subseteq V$ is an **interval** if for any $a, b \in I$ it is true that for all $x \in V \setminus I$, $(a, x) \in A$ if and only if $(b, x) \in A$.

Definition

The **trivial intervals** of a tournament are the subsets \emptyset , V and $\{x\}, \forall x \in V$.



Definition

A tournament is **indecomposable** if all its intervals are trivial ones. Otherwise, the tournament is called **decomposable**.

• • • • • • • • • • • •

Universidad de Sevilla

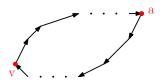
. Mora-Caro, D. Fernández-Ternero

Properties of the graphic topology 000000000

Tournaments

Definition

A finite tournament T = (V, A)of three or more vertices is **strongly connected** if $\exists a \in V$ so that $\forall v \in V, v \neq a$, there exist paths in *T* from *a* to *v* and from *v* to *a*.



Definition

A **path in T** is a sequence $x = z_0, z_1, \dots, z_n = y$ so that $\forall i \in \{0, \dots, n-1\}, z_i \rightarrow z_{i+1}.$

Image: A mathematical states and a mathem

I. Mora-Caro, D. Fernández-Ternero

Some results on Graphic Topology defined on Tournaments

Universidad de Sevilla

Tournaments

Proposition

A tournament of three or more vertices is strongly connected if and only if it is indecomposable.

Definition

Let T = (V, A) be a tournament.

• Outset:
$$N_x^+ = \{y \in V : x \to y\}$$

Inset:
$$N_x^- = \{y \in V : y \to x\}$$

• Out-degree:
$$d^+(x) = |N_x^+|$$

ln-degree:
$$d^-(x) = |N_x^-|$$

ù Ì

I. Mora-Caro, D. Fernández-Ternero

Some results on Graphic Topology defined on Tournaments

Universidad de Sevilla

• • • • • • • • • • • •

Tournaments

Proposition

A tournament of three or more vertices is strongly connected if and only if it is indecomposable.

Definition

Let T = (V, A) be a tournament.

• Outset:
$$N_x^+ = \{y \in V : x \to y\}$$

• Inset:
$$N_x^- = \{ y \in V : y \to x \}$$

• Out-degree:
$$d^+(x) = |N_x^+|$$

ln-degree:
$$d^-(x) = |N_x^-|$$

û 🤇

I. Mora-Caro, D. Fernández-Ternero

Some results on Graphic Topology defined on Tournaments

Universidad de Sevilla

Image: A math a math

Preliminaries

Graphic topology on tournaments

Properties of the graphic topology

I. Mora-Caro, D. Fernández-Ternero

Some results on Graphic Topology defined on Tournaments

Universidad de Sevilla

イロト イヨト イヨト イヨ

12/33

Properties of the graphic topology

Lemma

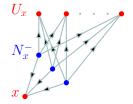
 $\mathbf{S_T} = \{N_x^+ : x \in V\}$ is a subbasis for a certain topology \mathcal{T}_T on V.

Definition

The topology T_T on V generated by the subbasis S_T is named the **graphic topology** of T.

_emma

For all $x \in V$, $U_x = \bigcap_{y \in N_x^-} N_y^+$.



イロト イボト イヨト イヨ

Proposition

Let T = (V, A) be a finite indecomposable tournament, $|V| \ge 3$. Then (V, \mathcal{T}_T) is a T_0 finite space.

I. Mora-Caro, D. Fernández-Ternero

Some results on Graphic Topology defined on Tournaments

Universidad de Sevilla

Properties of the graphic topology

Lemma

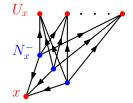
 $\mathbf{S_T} = \{N_x^+ : x \in V\}$ is a subbasis for a certain topology \mathcal{T}_T on V.

Definition

The topology T_T on V generated by the subbasis S_T is named the **graphic topology** of T.

Lemma

For all
$$x \in V$$
,
 $U_x = \bigcap_{y \in N_x^-} N_y^+$.



イロト イボト イヨト イヨ

Proposition

Let T = (V, A) be a finite indecomposable tournament, $|V| \ge 3$. Then (V, T_T) is a T_0 finite space.

I. Mora-Caro, D. Fernández-Ternero

Some results on Graphic Topology defined on Tournaments

Universidad de Sevilla

Properties of the graphic topology

Lemma

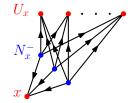
 $\mathbf{S_T} = \{N_x^+ : x \in V\}$ is a subbasis for a certain topology \mathcal{T}_T on V.

Definition

The topology T_T on V generated by the subbasis S_T is named the **graphic topology** of T.

Lemma

For all
$$x \in V$$
,
 $U_x = \bigcap_{y \in N_x^-} N_y^+$.

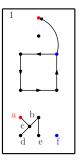


Proposition

Let T = (V, A) be a finite indecomposable tournament, $|V| \ge 3$. Then (V, T_T) is a T_0 finite space.

Properties of the graphic topology

Notation (tournaments via diagrams)



- ▶ No edge $\equiv \downarrow$
- ▶ Alphabetic order: ↓ ↺

< < >> < <</>

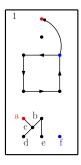
I. Mora-Caro, D. Fernández-Ternero

Some results on Graphic Topology defined on Tournaments

14/33

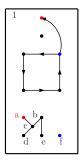
Universidad de Sevilla

Notation (graphic topology)



- First level: vertices with unitary minimal open sets.
- ► Nth level: vertices with minimal open sets that contain at least one vertex from level n − 1.
- Vertices in the same level are placed in a horizontal line.
- "x ≤ y and ∄ z ≠ x, y with x ≤ z ≤ y" iff the vertex y is in a level immediately superior to the level of x and there is a line binding them.

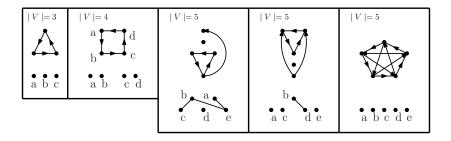
Notation (graphic topology)



- First level: vertices with unitary minimal open sets.
- ► Nth level: vertices with minimal open sets that contain at least one vertex from level n − 1.
- Vertices in the same level are placed in a horizontal line.
- "x ≤ y and ∄ z ≠ x, y with x ≤ z ≤ y" iff the vertex y is in a level immediately superior to the level of x and there is a line binding them.

Universidad de Sevilla

Table 1



I. Mora-Caro, D. Fernández-Ternero

Some results on Graphic Topology defined on Tournaments

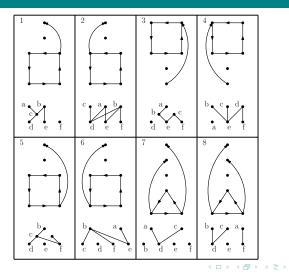
ৰ≣ ► ≣ পিও Universidad de Sevilla

< ロ > < 回 > < 回 > < 回 > < 回 >

16/33

Properties of the graphic topology 000000000

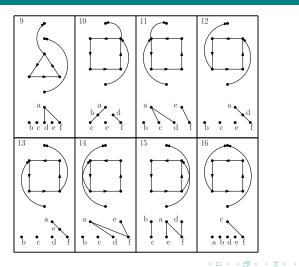
Table 2



I. Mora-Caro, D. Fernández-Ternero

ৰ≣► ≣ ৵৭০ Universidad de Sevilla

Table 3

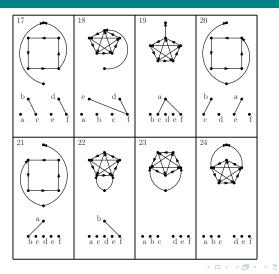


I. Mora-Caro. D. Fernández-Ternero

Some results on Graphic Topology defined on Tournaments

-

Table 4

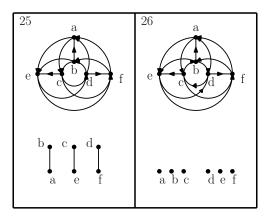


I. Mora-Caro, D. Fernández-Ternero

2 Universidad de Sevilla

Properties of the graphic topology 000000000

Table 5



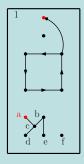
I. Mora-Caro, D. Fernández-Ternero

Some results on Graphic Topology defined on Tournaments

< ロ > < 回 > < 回 > < 回 > < 回 >

20 / 33

Example (Indecomposable tournament)

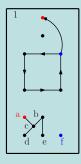


 $\forall v \in V \ (v \neq a)$, there exist paths from a to v and from v to a. $a \longrightarrow b \longrightarrow c \longrightarrow d \longrightarrow e \longrightarrow f \longrightarrow a$.

Universidad de Sevilla

(日) (同) (日) (日)

I. Mora-Caro, D. Fernández-Ternero



$$N_{a}^{-} = \{f\}, N_{a}^{+} = \{b, c, d, e\}$$

$$N_{b}^{-} = \{a\}, N_{b}^{+} = \{c, d, e, f\}$$

$$N_{c}^{-} = \{a, b, f\}, N_{c}^{+} = \{d, e\}$$

$$N_{d}^{-} = \{a, b, c, f\}, N_{d}^{+} = \{e\}$$

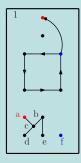
$$N_{e}^{-} = \{a, b, c, d\}, N_{e}^{+} = \{f\}$$

$$N_{f}^{-} = \{b, e\}, N_{f}^{+} = \{a, c, d\}$$

Universidad de Sevilla

< ロ > < 回 > < 回 > < 回 > < 回 >

I. Mora-Caro, D. Fernández-Ternero

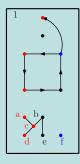


$$\begin{split} N_a^- &= \{f\}, \, N_a^+ = \{b, c, d, e\} \\ N_b^- &= \{a\}, \, N_b^+ = \{c, d, e, f\} \\ N_c^- &= \{a, b, f\}, \, N_c^+ = \{d, e\} \\ N_d^- &= \{a, b, c, f\}, \, N_d^+ = \{e\} \\ N_e^- &= \{a, b, c, d\}, \, N_e^+ = \{f\} \\ N_f^- &= \{b, e\}, \, N_f^+ = \{a, c, d\} \end{split}$$

Universidad de Sevilla

< ロ > < 回 > < 回 > < 回 > < 回 >

I. Mora-Caro, D. Fernández-Ternero



$$U_x = \cap_{y \in N_x^-} N_y^+, \ \forall x \in V.$$

$$U_{a} = N_{f}^{+} = \{a, c, d\}$$

$$U_{b} = N_{a}^{+} = \{b, c, d, e\}$$

$$U_{c} = N_{a}^{+} \cap N_{b}^{+} \cap N_{f}^{+} = \{c, d\}$$

$$U_{d} = N_{a}^{+} \cap N_{b}^{+} \cap N_{c}^{+} \cap N_{f}^{+} = \{d\}$$

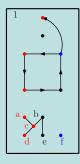
$$U_{e} = N_{a}^{+} \cap N_{b}^{+} \cap N_{c}^{+} \cap N_{d}^{+} = \{e\}$$

$$U_{f} = N_{b}^{+} \cap N_{e}^{+} = \{f\}$$

Universidad de Sevilla

< ロ > < 回 > < 回 > < 回 > < 回 >

I. Mora-Caro, D. Fernández-Ternero



$$U_x = \cap_{y \in N_x^-} N_y^+, \ \forall x \in V.$$

$$U_{a} = N_{f}^{+} = \{a, c, d\}$$

$$U_{b} = N_{a}^{+} = \{b, c, d, e\}$$

$$U_{c} = N_{a}^{+} \cap N_{b}^{+} \cap N_{f}^{+} = \{c, d\}$$

$$U_{d} = N_{a}^{+} \cap N_{b}^{+} \cap N_{c}^{+} \cap N_{f}^{+} = \{d\}$$

$$U_{e} = N_{a}^{+} \cap N_{b}^{+} \cap N_{c}^{+} \cap N_{d}^{+} = \{e\}$$

$$U_{f} = N_{b}^{+} \cap N_{e}^{+} = \{f\}$$

U .

I. Mora-Caro, D. Fernández-Ternero

Some results on Graphic Topology defined on Tournaments

Universidad de Sevilla

< ロ > < 回 > < 回 > < 回 > < 回 >

23/33

Index

Preliminaries

Graphic topology on tournaments

Properties of the graphic topology

I. Mora-Caro, D. Fernández-Ternero

Some results on Graphic Topology defined on Tournaments

Universidad de Sevilla

(日)

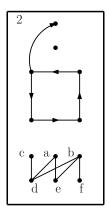
24 / 33

Graphic topology on tournaments

Properties of the graphic topology

Connectivity

There is only one indecomposable tournament of six vertices with a connected graphic topology.



< < >> < <</>

I. Mora-Caro, D. Fernández-Ternero

Some results on Graphic Topology defined on Tournaments

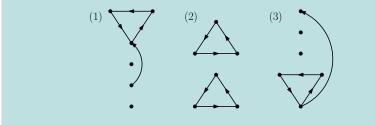
Proposition

A tournament of n vertices, with $3 \le n \le 6$, is decomposable iff its representation (following the chosen notation) verifies one of these properties:

- (1) There is a vertex v over or bellow the rest of the representation, without incident edges.
- (2) There is a directed cycle represented, with fewer than n vertices, that does not have any exterior incident edges.
- (3) There are two points, one bellow the other one, without exterior incident edges.

Universidad de Sevilla

Example (Tournaments that verify the previous proposition)



I. Mora-Caro, D. Fernández-Ternero

Some results on Graphic Topology defined on Tournaments

Universidad de Sevilla

Image: A math a math

27 / 33

Proposition

There exist T_0 finite spaces of six vertices that can't be obtained from the graphic topology of an indecomposable tournament.

I. Mora-Caro, D. Fernández-Ternero

Some results on Graphic Topology defined on Tournaments

Theorem

The graphic topologies of the tournaments of each one of the following families are homeomorphic:

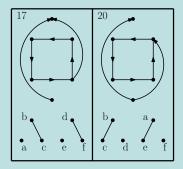
I. Mora-Caro, D. Fernández-Ternero

Some results on Graphic Topology defined on Tournaments

Universidad de Sevilla

イロト イポト イヨト イヨト

Example (Homeomorphism between topologies of Family 5)



$$h := \begin{cases} a \longmapsto d \\ b \longmapsto b \\ c \longmapsto c \\ d \longmapsto a \\ e \longmapsto f \\ f \longmapsto e \end{cases}$$

Image: A math a math

I. Mora-Caro, D. Fernández-Ternero

Some results on Graphic Topology defined on Tournaments

Conclusions and future work

- We have characterized indecomposable tournaments from three to six vertices and obtained the graphic topologies of the non-isomorphic ones.
- We have proven that the family of graphic topologies of non-isomorphic indecomposable tournaments of six vertices is strictly included in the family of T₀ finite spaces of six vertices.
- We have proven that there exist non-isomorphic indecomposable tournaments of six vertices with homeomorphic graphic topologies.

Universidad de Sevilla

Conclusions and future work

- We have characterized indecomposable tournaments from three to six vertices and obtained the graphic topologies of the non-isomorphic ones.
- We have proven that the family of graphic topologies of non-isomorphic indecomposable tournaments of six vertices is strictly included in the family of T₀ finite spaces of six vertices.
- We have proven that there exist non-isomorphic indecomposable tournaments of six vertices with homeomorphic graphic topologies.

Conclusions and future work

- We have characterized indecomposable tournaments from three to six vertices and obtained the graphic topologies of the non-isomorphic ones.
- We have proven that the family of graphic topologies of non-isomorphic indecomposable tournaments of six vertices is strictly included in the family of T₀ finite spaces of six vertices.
- We have proven that there exist non-isomorphic indecomposable tournaments of six vertices with homeomorphic graphic topologies.

References

- J. Dammak, R. Salem, Graphic topology on tournaments, *Adv. Pure Appl. Math.* **9**(4) (2018), 279–285. https://doi.org/10.1515/apam-2018-0024
- S. M. Jafarian Amiri, A. Jafarzadeh, H. Khatibzadehan, Alexandroff topology on graphs, *Bull. Iranian Math. Soc.* 39(4) (2013), 647-–662.

THANK YOU FOR YOUR ATTENTION

I. Mora-Caro, D. Fernández-Ternero

Universidad de Sevilla

< □ > < 同 > < 回 > < Ξ > < Ξ

Some results on Graphic Topology defined on Tournaments

References

- J. Dammak, R. Salem, Graphic topology on tournaments, *Adv. Pure Appl. Math.* **9**(4) (2018), 279–285. https://doi.org/10.1515/apam-2018-0024
- S. M. Jafarian Amiri, A. Jafarzadeh, H. Khatibzadehan, Alexandroff topology on graphs, *Bull. Iranian Math. Soc.* 39(4) (2013), 647-–662.

THANK YOU FOR YOUR ATTENTION

I. Mora-Caro, D. Fernández-Ternero

Universidad de Sevilla

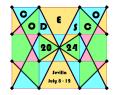
< □ > < 同 > < 回 > < Ξ > < Ξ

Some results on Graphic Topology defined on Tournaments

Some results on Graphic Topology defined on Tournaments

Inés Mora-Caro and Desamparados Fernández-Ternero

Dpto. Geometría y Topología, Universidad de Sevilla



July 12, 2024

I. Mora-Caro, D. Fernández-Ternero

Some results on Graphic Topology defined on Tournaments

Universidad de Sevilla

< □ > < 同 > < 回 > < Ξ > < Ξ

33/33