Hadamard Partitioned Difference Families

Anamari Nakić

CODESCO 2024 July 2024, Sevilla, Spain

> <ロト < 合ト < 言ト < 言ト 言 の < で 1/24

Hadamard Partitioned Difference Families

 AN. A few more Hadamard Partitioned Difference Families. Bulletin of Institute of Combinatorics and its Applications 100, 54 - 72 (2024)

- Partitioned difference families (Ding, Yin, 2005)
- Constant-composition codes
- Application in electrical engineering: power line communication
- Hadamard partitioned difference families (Buratti, 2018)
- New sporadic examples
- $\blacktriangleright (32, [2^2, 6, 22], 16), (24, [1^3, 2^2, 17], 12), (36, [3, 9, 24], 18), (40, [1, 3, 9, 27], 20)$

Definition (Difference Set)

- ▶ G additive group
- k-subset D of G is a (G, k, λ) difference set (DS) if each non-zero element of G is covered λ times by the list of differences of D:

$$\Delta D = \{x - y : x \neq y, x, y \in D\} = \lambda \left(G \setminus \{0\}\right).$$

Definition (Difference Family)

- ▶ G additive group
- Collection of subsets F = {D₁,..., D_t} of G of sizes k₁, ..., k_t is a (G, [k₁,..., k_t], λ) difference family (DF) if each non-zero element of G is covered λ times by the list of differences of the blocks:

$$\Delta \mathcal{F} = \uplus \Delta D_i = \lambda \left(G \setminus \{0\} \right).$$

Definition (Partitioned Difference Families)

A $(G, [k_1, \ldots, k_t], \lambda)$ difference family is *partitioned difference family* (PDF) if its blocks partition G.

Example

 $\blacktriangleright G \simeq \mathbb{Z}_{13}$

$$\mathbb{Z}_{13} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$$

▶ $D_1 = \{0, 3, 12\}$

$$\Delta D_1 = \{\pm 1, \pm 3, \pm 4\}$$

 $\blacktriangleright D_2 = \{5, 7, 10, 11\}$

$$\Delta D_2 = \{\pm 1, \pm 2, \pm 3, \pm 4, \pm 5, \pm 6\}$$

 $\blacktriangleright D_3 = \{1, 2, 4, 6, 8, 9\}$

 $\Delta D_3 = \{\pm 1, \pm 1, \pm 2, \pm 2, \pm 2, \pm 3, \pm 3, \pm 4, \pm 4, \pm 5, \pm 5, \pm 5, \pm 6, \pm 6, \pm 6, \pm 6\}$

• $\mathcal{F} = \{D_1, D_2, D_3\}$ is a $(\mathbb{Z}_{13}, [3, 4, 6], 4)$ -PDF

Definition (Constant-Composition Code)

An $(n, M, d, [\lambda_0, \lambda_1, \dots, \lambda_{q-1}])_q$ constant-composition code is a code $C \subset \mathbb{Z}_n^q$ with size M and minimum Hamming distance d such that in every codeword the element $i \in \mathbb{Z}_q$ appears exactly λ_i times.

Theorem (Ding, Yin, 2005) $(v, [\lambda_0, \lambda_1, \dots, \lambda_{q-1}]; \lambda)$ -PDF \downarrow optimal $(n, n, n - \lambda, [\lambda_0, \lambda_1, \dots, \lambda_{q-1}])_q$ -CCC

$$A_q(n, d, [w_0, w_1, \dots, w_{q-1}]) \le \frac{nd}{nd - n^2 + (w_0^2 + w_1^2 + \dots + w_{q-1}^2)}$$

Example

Definition (Hadamard Partitioned Difference Family, Buratti, 2018) A $(G, [k_1, \ldots, k_t], \lambda)$ -PDF \mathcal{F} is said to be *Hadamard* if G has order 2λ .

Example (Partitioned difference families from difference sets)

- ► D is a (G, k, λ) -DS \Rightarrow $\{D, \overline{D} = G \setminus D\}$ is a $(G, [k, v k], v 2k + 2\lambda)$ -PDF
- The converse is also true!

Definition (Hadamard Difference Set) Hadamard difference set (HDS) is a difference set with parameters $(4u^2, 2u^2 - u, u^2 - u)$, for some u.

Example

$$D$$
 is a $(4u^2,2u^2-u,u^2-u)\text{-}\mathsf{HDS}$ in G

∜

 $(D,\overline{D}=G\setminus D)$ is a $(4u^2,[2u^2+u,2u^2-u],2u^2)\text{-}\mathsf{HPDF}$

Proposition

A PDF with only two blocks necessarily consists of a difference set and its complement. More specifically, a HPDF with only two blocks necessarily consists of a Hadamard difference set and its complement.

G	$[k_1,k_2]$	λ
16	[10, 6]	8
36	[20, 16]	18
64	[34, 30]	32
100	[52, 48]	50
144	[74, 70]	72
196	[100, 96]	98
256	[130, 126]	128
324	[164, 160]	162
484	[244, 240]	242
576	[290, 286]	288
676	[340, 336]	338
784	[394, 390]	392
900	[452, 448]	450
1024	[514, 510]	512
1156	[580, 576]	578

Example (Buratti, 2018)

• G is a non-abelian group whose elements are all pairs of the Cartesian product $\mathbb{Z}_4 \times \mathbb{Z}_8$ and whose operation law is

$$(x_1, y_1) \rtimes (x_2, y_2) = (x_1 + x_2, 5^{x_2}y_1 + y_2)$$

• There exists (32, [2, 2, 6, 22], 16)-HPDF in G with blocks

 $X_1 = \{(0,0), (2,0)\}, \qquad X_2 = \{(1,0), (3,4)\},\$

 $X_3 = \{(0,1), (0,3), (1,2), (1,5), (1,6), (3,3)\}, \qquad X_4 = G \setminus (X1 \cup X2 \cup X3)$

Are there any other sporadic examples?

Proposition (Necessary conditions)

$$\begin{aligned} & \mathbf{k}_1 + \dots + k_t = 2\lambda = |G| \\ & \mathbf{b}_1 |\Delta \mathcal{F}| = k_1(k_1 - 1) + \dots + k_t(k_t - 1) = \lambda(2\lambda - 1) \quad \Rightarrow \quad k_1^2 + \dots + k_t^2 = \lambda(2\lambda + 1) \\ & \mathbf{b}_2 | \lambda \equiv 0 \pmod{2} \quad \Rightarrow \quad |G| \equiv 0 \pmod{4} \end{aligned}$$

v	K	λ
20	[1, 2, 3, 14]	10
24	$[1^3, 2^2, 17]$	12
28	[1, 9, 18]	14
28	[3, 6, 19]	14
32	$[2^2, 6, 22]$	16
36	[3, 9, 24]	18
36	$[3, 4^2, 25]$	18
36	$[1^5, 6, 25]$	18
40	[1, 3, 9, 27]	20
40	$[3^4, 28]$	20
40	$[1^2, 3^2, 4, 28]$	20
40	$[1^4, 4^2, 28]$	20
40	$[1^3, 2^2, 5, 28]$	20

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ● ● ●

Proposition

In a $(v, [k_1, k_2, k_3], \lambda)$ -HPDF we necessarily have

$$k_{1,2} = \frac{2\lambda - k_3 \pm \sqrt{2\lambda(2k_3 + 1) - 3k_3^2}}{2}$$

Corollary

The existence of a $(v, [k_1, k_2, k_3], \lambda)$ -HPDF necessarily implies that no prime divisor of $(2k_1 + 1)(2k_2 + 1)(2k_3 + 1)$ is congruent to 5 (mod 6).

As a consequence, in a $(v, [k_1, k_2, k_3], \lambda)$ -HPDF we cannot have, for instance, blocks of size $2, 5, 7, 8, 11, 12, 14, 16, 17, \ldots$

Proposition $A(v, [k_1, k_2, 1], \lambda)$ -HPDF cannot exist.

Proposition

Let $\mathcal{F} = \{B_1, \ldots, B_t\}$ be a $(G, [k_1, \ldots, k_t], \lambda)$ -HPDF, assume that G has a subgroup H of index 2, and set $|B_i \cap H| = s_i$ for $i = 1, \ldots, t$. Then the following identities hold:

 $s_1 + \dots + s_t = \lambda$ and $2s_1(k_1 - s_1) + \dots + 2s_t(k_t - s_t) = \lambda^2$

Corollary

If there exists a $(G, [k_1, \ldots, k_t], \lambda)$ -HPDF and G has a subgroup of index 2, then the diophantine system

$$\begin{cases} x_1 + \dots + x_t = \lambda \\ 2x_1(k_1 - x_1) + \dots + 2x_t(k_t - x_t) = \lambda^2 \end{cases}$$

has a solution (s_1, \ldots, s_t) with $0 \le s_i \le k_i$ for each *i*.

As application of the above corollary one can see that none of these K, though admissible, can be the multiset of block-sizes of a HPDF:

 $[1, 5, 20, 50]; \quad [1, 1, 1, 2, 23, 52,]; \quad [2, 3, 38, 73]; \\ [3, 8, 28, 77]; \quad [3, 7, 31, 79]; \quad [1, 1, 16, 21, 81]; \quad [3, 14, 35, 104]. \\ \hfill \end{tabular}$

Searching for HPDFs

- Necessary conditions
- Subgroups of index 2
- Computer search

v	K	λ
20	1,2,3,14	10
24	$[1^3, 2^2, 17]$	12
28	129,18	14
28	3,6,19	14
32	$[2^2, 6, 22]$	16
36	[3, 9, 24]	18
36	3,42,25	18
36	15,6,25	18
40	[1, 3, 9, 27]	20
40	$[3^4, 28]$	20
40	$[1^2, 3^2, 4, 28]$	20
40	14, 12, 28	20
40	$[1^3, 2^2, 5, 28]$	20

 \blacktriangleright (32, [2², 622], 16)

	Group G		Group G
1.	C_{32}	27.	$(C_2 \times C_2 \times C_2 \times C_2) \rtimes C_2$
2.	$(C_4 \times C_2) \rtimes C_4$	28.	$(C_4 \times C_2 \times C_2) \rtimes C_2$
3.	$C_8 imes C_4$	29.	$(C_2 \times Q_8) \rtimes C_2$
4.	$C_8 times C_4$	30.	$(C_4 \times C_2 \times C_2) \rtimes C_2$
5.	$(C_8 \times C_2) \rtimes C_2$	31.	$(C_4 \times C_4) \rtimes C_2$
6.	$((C_4 \times C_2) \rtimes C_2) \rtimes C_2$	32.	$(C_2 \times C_2).(C_2 \times C_2 \times C_2)$
7.	$(C_8 \rtimes C_2) \rtimes C_2$	33.	$(C_4 \times C_4) \rtimes C_2$
8.	$C_2.((C_4 \times C_2) \rtimes C_2)$	34.	$(C_4 \times C_4) \rtimes C_2$
9.	$(C_8 \times C_2) \rtimes C_2$	35.	$C_4 \rtimes Q_8$
10.	$Q_8 \rtimes C_4$	36.	$C_8 \times C_2 \times C_2$
11.	$(C_4 \times C_4) \rtimes C_2$	37.	$C_2 \times (C_8 \rtimes C_2)$
12.	$C_4 \rtimes C_8$	38.	$(C_8 \times C_2) \rtimes C_2$
13.	$C_8 \rtimes C_4$	39.	$C_2 \times D_8$
14.	$C_8 \rtimes C_4$	40.	$C_2 \times QD_{16}$
15.	$C_4.D_4$	41.	$C_2 \times Q_{16}$
16.	$C_{16} \times C_2$	42.	$(C_8 \times C_2) \rtimes C_2$
17.	$C_{16} \rtimes C_2$	43.	$(C_2 \times D_4) \rtimes C_2$
18.	D_{16}	44.	$(C_2 \times Q_8) \rtimes C_2$
19.	QD_{32}	45.	$C_4 \times C_2 \times C_2 \times C_2$
20.	$Q_{3}2$	46.	$C_2 \times C_2 \times D_4$
21.	$C_4 \times C_4 \times C_2$	47.	$C_2 \times C_2 \times Q_8$
22.	$C_2 \times ((C_4 \times C_2) : C_2)$	48.	$C_2 \times ((C_4 \times C_2) \rtimes C_2)$
23.	$C_2 \times (C_4 \rtimes C_4)$	49.	$(C_2 \times D_4) \rtimes C_2$
24.	$(C_4 \times C_4) \rtimes C_2$	50.	$(C_2 \times Q_8) \rtimes C_2$
25.	$C_4 imes D_4$	51.	$C_2 \times C_2 \times C_2 \times C_2 \times C_2$
26.	$C_4 imes Q_8$		◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─ 臣

New sporadic examples of HPDFs

$$\blacktriangleright (24, [1^3, 2^2, 17], 12)$$

	$Group\ G$
1.	$C_3 \rtimes C_8$
2.	C_{24}
3.	SL(2, 3)
4.	Dic_6
5.	$C_4 \times S_3$
6.	D_{12}
7.	$C_2 \times Dic_3$
8.	$C_3 \rtimes D_4$
9.	$C_{12} \times C_2$
10.	$C_3 \times D_4$
11.	$C_3 \times Q_8$
12.	S_4
13.	$C_2 \times A_4$
14.	$C_2^2 \times S_3$
15.	$\tilde{C_6} \times C_2^2$

New sporadic examples of $(24, [1^3, 2^2, 17], 12)$ -HPDFs

- $\blacktriangleright G = C_3 \rtimes C_8$
- This is the semidirect product of C_3 by C_8 with defining relations

$$C_3 \rtimes C_8 = \langle a, b \, | \, a^8 = b^3 = 1, ab^{-1} = ba \rangle$$

► Thus the elements of G are of the form aⁱb^j with 0 ≤ i ≤ 7 and 0 ≤ j ≤ 2. The difference (even though we should say "ratio" since we are in multiplicative notation) between two elements aⁱ¹b^{j1} and aⁱ²b^{j2} is given by

$$(a^{i_1}b^{j_1})(a^{i_2}b^{j_2})^{-1} = a^{i_1-i_2}b^{(-1)^{i_2}(j_1-j_2)}$$
(1)

Let $\mathcal{F} = \{B_1, B_2, B_3, B_4, B_5, B_6\}$ be the partition of G defined as follows:

$$B_{1} = \{1, a, a^{2}, a^{3}, a^{4}, a^{6}, a^{7}, b, ab, a^{3}b, a^{4}b, a^{5}b, a^{6}b, b^{2}, ab^{2}, a^{2}b^{2}, a^{4}b^{2}\};$$
$$B_{2} = \{a^{3}b^{2}\}; \quad B_{3} = \{a^{5}b^{2}\}; \quad B_{4} = \{a^{7}b^{2}\};$$
$$B_{5} = \{a^{5}, a^{2}b\}; \quad B_{6} = \{a^{7}b, a^{6}b^{2}\}.$$

• Using (1) it is straightforward to check that \mathcal{F} is a $(G, [1^3, 2^2, 17], 12)$ -HPDF.

New sporadic examples of $(24, [1^3, 2^2, 17], 12)$ -HPDFs

- $\blacktriangleright G = SL(2,3)$
- ▶ This is the 2-dimensional special linear group over \mathbb{Z}_3 . Its elements are the 2×2 matrices with elements in \mathbb{Z}_3 and determinant equal to 1.
- Let $\mathcal{F} = \{B_1, B_2, B_3, B_4, B_5, B_6\}$ be the partition of G defined as follows:

$$B_1 = \left\{ \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix} \right\}; \qquad B_2 = \left\{ \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \right\}; \qquad B_3 = \left\{ \begin{pmatrix} 0 & 2 \\ 1 & 2 \end{pmatrix} \right\};$$
$$B_4 = \left\{ \begin{pmatrix} 0 & 2 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \right\}; \qquad B_5 = \left\{ \begin{pmatrix} 2 & 1 \\ 2 & 0 \end{pmatrix}, \begin{pmatrix} 2 & 2 \\ 0 & 2 \end{pmatrix} \right\};$$
$$B_6 = G \setminus (B_1 \cup B_2 \cup B_3 \cup B_4 \cup B_5).$$

▶ It is straightforward to check that \mathcal{F} is a $(G, [1^3, 2^2, 17], 12)$ -HPDF.

New sporadic examples of $(24, [1^3, 2^2, 17], 12)$ -HPDFs

$$\blacktriangleright G = \mathbb{Z}_3 \times D_8$$

$$D_{2n} = \langle x, y \mid x^n = 1; y^2 = 1; yx^i = x^{-i}y \rangle$$

• The partition of G into the blocks listed below is a $(G, [1^3, 2^2, 17], 12)$ -HPDF.

$$B_1 = \{(0, x^2)\}; \quad B_2 = \{(2, xy)\}; \quad B_3 = \{(2, x^3y)\};$$
$$B_4 = \{(1, x^3), (2, x^3)\}; \quad B_5 = \{(1, y), (2, x^2y)\};$$
$$B_6 = G \setminus (B_1 \cup B_2 \cup B_3 \cup B_4 \cup B_5).$$

New sporadic examples of Hadamard PDFs

▶ (36, [3, 9, 24], 18)

	Group G
1.	$\mathbb{Z}_9 \rtimes \mathbb{Z}_4$
2.	\mathbb{Z}_{36}
3.	$(\mathbb{Z}_2 imes \mathbb{Z}_2) : \mathbb{Z}_9$
4.	D_{18}
5.	$\mathbb{Z}_{18} \times \mathbb{Z}_2$
6.	$\mathbb{Z}_6 imes \mathbb{Z}_6$
7.	$\mathbb{Z}_3 \times \mathbb{Z}_{12}$
8.	$\mathbb{Z}_3 imes Q_{12}$
9.	$D_6 \times D_6$
10.	$\mathbb{Z}_6 \times D_6$
11.	$\mathbb{Z}_3 imes A_4$
12.	$\mathbb{Z}_3 \rtimes Q_{12}$
13.	$\mathbb{Z}_3^2 \rtimes \mathbb{Z}_4$
14.	$\mathbb{Z}_2 \times \mathbb{Z}_3 \rtimes D_6$

New sporadic examples of (36, [3, 9, 24], 18)-HPDFs

$$\begin{array}{l} G = \mathbb{Z}_{6} \times \mathbb{Z}_{6} \\ A = \{(1,1), (1,3), (1,5)\}; \\ B = \{\{0,2), (0,3), (1,4), (2,0), (2,5), (3,4), (4,1), (4,4), (5,4)\}; \\ C = G \setminus (A \cup B). \\ \hline G = \mathbb{Z}_{3} \times \mathbb{Z}_{12} \\ A = \{(1,1), (1,5), (1,9)\}; \\ B = \{\{0,2), (0,3), (0,4), (1,2), (1,8), (1,11), (2,0), (2,2), (2,7)\}; \\ C = G \setminus (A \cup B). \\ \hline G = \mathbb{Z}_{3} \times \mathbb{Q}_{12} \\ A = \{(0,xy), (1,xy), (2,xy)\}; \\ B = \{\{1,1), (0,x^{3}), (0,x^{2}), (2,y), (1,x^{5}), (2,x^{4}y), (2,x^{4}), (2,x^{2}y), (2,x)\}; \\ C = G \setminus (A \cup B). \\ \hline G = D_{6} \times D_{6} \\ A = \{(y,xy), (xy,xy), (x^{2}y,xy)\}; \\ B = \{(1,x^{2}y), (x,y), (x^{2}, 1), (x^{2}, x), (x^{2}, x^{2}), (x^{2}, xy), (y, 1), (xy, x^{2}), (x^{2}y, x)\}; \\ C = G \setminus (A \cup B). \\ \hline G = \mathbb{Z}_{6} \times D_{6} \\ A = \{(1,xy), (3,xy), (5,xy)\}; \\ B = \{\{0,x), (1,x^{2}), (2,1), (3,1), (4,x^{2}), (4,y), (4,xy), (4,x^{2}y), (5,x)\}; \\ C = G \setminus (A \cup B). \\ \hline \end{array} \right.$$

New sporadic examples of (40, [1, 3, 9, 27], 20)-HPDFs

$$(40, [1, 3, 9, 27], 20)$$

	Group G			$Group\ G$
1.	$C_5 \rtimes_2 C_8$	8.		$C_5 \rtimes D_4$
2.	C_{40}	9.		$C_{20} \times C_2$
3.	$C_5 \rtimes C_8$	10	0.	$C_5 \times D_4$
4.	Dic_{10}	1	1.	$C_5 \times Q_8$
5.	$C_4 \times D_{10}$	12	2.	$C_2 \times F_5$
6.	D_{20}	1:	3.	$C_2^2 \times D_5$
7.	$C_2 imes Dic_5$	14	4.	$\bar{C_{10}} \times C_2^2$

Example

▶ *D* is a (ℤ₄₀, 13, 4)-DS

 $D = \{1, 2, 3, 5, 6, 9, 14, 15, 18, 20, 25, 27, 35\}$

 $D_1 = \{1\}, \quad D_2 = \{2, 5, 14\}, \quad D_3 = \{3, 6, 9, 15, 18, 20, 25, 27, 35\}$

Z₄₀ \ D is a (40, 27, 8)-DS {0, 4, 7, 8, 10, 11, 12, 13, 16, 17, 19, 21, 22, 23, 24, 26, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39}
{D₁, D₂, D₃, Z₄₀ \ D} is a (40, [1, 3, 9, 27], 20)-HPDF The parameter set of (40, [1, 3, 9, 27], 20)-HPDF can be written as

$$\left(\frac{3^4-1}{2}, [3^0, 3^1, 3^2, 3^3], \frac{3^4-1}{4}\right).$$

Inspired by this, we have noticed that

$$\left(\frac{q^{2n}-1}{q-1}, [q^0, q^1, q^2, q^3, \dots, q^{2n-1}], \frac{q^{2n}-1}{q+1}\right)$$

is an admissible parameter set of a PDF for every positive integer q (not necessarily a prime power!).

Question

Given positive integers q and n, does there exist a PDF whose K is

$$[q^0, q^1, q^2, q^3, \dots, q^{2n-1}]?$$

Theorem (Buratti, 2018)

If there exists a $(G, [k_1, \ldots, k_t], \lambda)$ -HPDF and all the components of 2n + 1 are greater than $2 \cdot \max\{k_1, \ldots, k_t\}$, then there exists a $(2\lambda(2n+1), [(2k_1)^n, \ldots, (2k_t)^n, 2\lambda], 2\lambda)$ -PDF in $G \times \mathbb{F}_{2n+1}$.

Corollary

▶ (24, [17, ²2, ³1], 12)

If all the components of 2n + 1 are greater than 34, then there exists a $(48n + 24, [34^n, 4^{2n}, 2^{3n}, 24], 24)$ -PDF in $G \times \mathbb{F}_{2n+1}$ for each of the three groups G considered earlier.

The first possible value of n = 18 gives $(984, [34^{18}, 4^{36}, 2^{54}, 24], 24)$ -PDF in $G \times \mathbb{F}_{37}$.

► (36, [24, 9, 3], 18)

If all the components of 2n + 1 are greater than 48, then there exists a $(72n + 36, [6^n, 18^n, 48^n, 36], 36)$ -PDF in $G \times \mathbb{F}_{2n+1}$ for each of the nine groups G considered earlier.

The first possible value of n = 24 gives $(1764, [6^{24}, 18^{24}, 48^{24}, 36], 36], 36)$ -PDF in $G \times \mathbb{F}_{49}$.

▶ (40, [27, 9, 3, 1], 20)

If all the components of 2n + 1 are greater than 54, then there exists a $(80n + 40, [2^n, 6^n, 18^n, 54^n, 40], 40)$ -PDF in $\mathbb{Z}_{40} \times \mathbb{F}_{2n+1}$. The first value of n = 29 gives $(2360, [2^{29}, 6^{29}, 18^{29}, 54^{29}, 40], 40)$ -PDF in $\mathbb{Z}_{40} \times \mathbb{F}_{59}$.

うく(~ 22/24 Theorem (Ding, Yin, 2005) $(v, [\lambda_0, \lambda_1, \dots, \lambda_{q-1}]; \lambda)$ -PDF \downarrow optimal $(v, v, v - \lambda, [\lambda_0, \lambda_1, \dots, \lambda_{q-1}])_q$ -CCC

Corollary

• $(48n + 24, [34^n, 4^{2n}, 2^{3n}, 24], 24)$ -PDF

If the maximal prime power divisors of 2n + 1 are all greater than 34, then there exists an optimal $(48n + 24, 48n + 24, 48n, [34^n, 4^{2n}, 2^{3n}, 24])_{6n+1}$ -CCC.

▶ $(72n + 36, [6^n, 18^n, 48^n, 36], 36)$ -PDF

If the maximal prime power divisors of 2n + 1 are all greater than 48, then there exists an optimal $(72n + 36, 72n + 36, 72n, [6^n, 18^n, 48^n, 36])_{3n+1}$ -CCC.

• $(80n + 40, [2^n, 6^n, 18^n, 54^n, 40], 40)$ -PDF

If the maximal prime power divisors of 2n + 1 are all greater than 54, then there exists an optimal $(80n + 40, 80n + 40, 80n, [2^n, 6^n, 18^n, 54^n, 40])_{4n+1}$ -CCC.

Thank you for your attention!