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Hadamard Partitioned Difference Families

I AN. A few more Hadamard Partitioned Difference Families.
Bulletin of Institute of Combinatorics and its Applications 100, 54 - 72 (2024)

I Partitioned difference families (Ding, Yin, 2005)

I Constant-composition codes

I Application in electrical engineering: power line communication

I Hadamard partitioned difference families (Buratti, 2018)

I New sporadic examples

I (32, [22, 6, 22], 16), (24, [13, 22, 17], 12), (36, [3, 9, 24], 18), (40, [1, 3, 9, 27], 20)
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Difference Families

Definition (Difference Set)
I G additive group

I k-subset D of G is a (G, k, λ) difference set (DS) if each non-zero element of G
is covered λ times by the list of differences of D:

∆D = {x− y : x 6= y, x, y ∈ D} = λ (G \ {0}).

Definition (Difference Family)
I G additive group

I Collection of subsets F = {D1, . . . , Dt} of G of sizes k1, . . . , kt is a
(G, [k1, . . . , kt], λ) difference family (DF) if each non-zero element of G is
covered λ times by the list of differences of the blocks:

∆F = ]∆Di = λ (G \ {0}).
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Partitioned Difference Family

Definition (Partitioned Difference Families)
A (G, [k1, . . . , kt], λ) difference family is partitioned difference family (PDF) if its
blocks partition G.

Example

I G ' Z13

Z13 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}
I D1 = {0, 3, 12}

∆D1 = {±1,±3,±4}
I D2 = {5, 7, 10, 11}

∆D2 = {±1,±2,±3,±4,±5,±6}

I D3 = {1, 2, 4, 6, 8, 9}

∆D3 = {±1,±1,±2,±2,±2,±3,±3,±4,±4,±5,±5,±5± 6,±6,±6}

I F = {D1, D2, D3} is a (Z13, [3, 4, 6], 4)-PDF
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Partitioned Difference Families

Definition (Constant-Composition Code)
An (n,M, d, [λ0, λ1, . . . λq−1])q constant-composition code is a code C ⊂ Zq

n with
size M and minimum Hamming distance d such that in every codeword the element
i ∈ Zq appears exactly λi times.

Theorem (Ding, Yin, 2005)
(v, [λ0, λ1, . . . λq−1];λ)-PDF

⇓
optimal (n, n, n− λ, [λ0, λ1, . . . , λq−1])q-CCC

Aq(n, d, [w0, w1, . . . , wq−1]) ≤
nd

nd− n2 + (w2
00 + w2

1 + · · ·+ w2
q−1)

Example

I (Z7, [3, 4], 3)-PDF ⇒ optimal (7, 4, [3, 4])2-CCC of size A2(7, 4, [3, 4]) = 7

013 2456 124 3560 235 4601 346 5012 450 6123 561 0234 602 1345
↓ ↓ ↓

0001111 0110110 1011100 0111001 1101010 1100101 1010011
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Hadamard Partitioned Difference Families

Definition (Hadamard Partitioned Difference Family, Buratti, 2018)
A (G, [k1, . . . , kt], λ)-PDF F is said to be Hadamard if G has order 2λ.

Example (Partitioned difference families from difference sets)
I D is a (G, k, λ)-DS ⇒ {D,D = G \D} is a (G, [k, v− k], v− 2k+ 2λ)-PDF

I The converse is also true!

Definition (Hadamard Difference Set)
Hadamard difference set (HDS) is a difference set with parameters

(4u2, 2u2 − u, u2 − u), for some u.

Example

D is a (4u2, 2u2 − u, u2 − u)-HDS in G

⇓

(D,D = G \D) is a (4u2, [2u2 + u, 2u2 − u], 2u2)-HPDF
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HPDFs with two blocks

Proposition
A PDF with only two blocks necessarily consists of a difference set and its
complement. More specifically, a HPDF with only two blocks necessarily consists of a
Hadamard difference set and its complement.

|G| [k1, k2] λ
16 [10, 6] 8
36 [20, 16] 18
64 [34, 30] 32
100 [52, 48] 50
144 [74, 70] 72
196 [100, 96] 98
256 [130, 126] 128
324 [164, 160] 162
484 [244, 240] 242
576 [290, 286] 288
676 [340, 336] 338
784 [394, 390] 392
900 [452, 448] 450
1024 [514, 510] 512
1156 [580, 576] 578
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First sporadic example

Example (Buratti, 2018)
I G is a non-abelian group whose elements are all pairs of the Cartesian product

Z4 × Z8 and whose operation law is

(x1, y1) o (x2, y2) = (x1 + x2, 5
x2y1 + y2)

I There exists (32, [2, 2, 6, 22], 16)-HPDF in G with blocks

X1 = {(0, 0), (2, 0)}, X2 = {(1, 0), (3, 4)},

X3 = {(0, 1), (0, 3), (1, 2), (1, 5), (1, 6), (3, 3)}, X4 = G \ (X1 ∪X2 ∪X3)

Are there any other sporadic examples?
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Necessary conditions for (G, [k1, . . . , kt], λ)-HPDF

Proposition (Necessary conditions)
I k1 + · · ·+ kt = 2λ = |G|
I |∆F| = k1(k1−1) + · · ·+kt(kt−1) = λ(2λ−1) ⇒ k21 + · · · k2t = λ(2λ+ 1)

I λ ≡ 0 (mod 2) ⇒ |G| ≡ 0 (mod 4)

v K λ
20 [1, 2, 3, 14] 10
24 [13, 22, 17] 12
28 [1, 9, 18] 14
28 [3, 6, 19] 14
32 [22, 6, 22] 16
36 [3, 9, 24] 18
36 [3, 42, 25] 18
36 [15, 6, 25] 18
40 [1, 3, 9, 27] 20
40 [34, 28] 20
40 [12, 32, 4, 28] 20
40 [14, 42, 28] 20
40 [13, 22, 5, 28] 20
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HPDFs with three blocks

Proposition
In a (v, [k1, k2, k3], λ)-HPDF we necessarily have

k1,2 =
2λ− k3 ±

√
2λ(2k3 + 1)− 3k23

2

Corollary
The existence of a (v, [k1, k2, k3], λ)-HPDF necessarily implies that no prime divisor of
(2k1 + 1)(2k2 + 1)(2k3 + 1) is congruent to 5 (mod 6).

I As a consequence, in a (v, [k1, k2, k3], λ)-HPDF we cannot have, for instance,
blocks of size 2, 5, 7, 8, 11, 12, 14, 16, 17, . . .

Proposition
A (v, [k1, k2, 1], λ)-HPDF cannot exist.
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Exploiting subgroups of index 2

Proposition
Let F = {B1, . . . , Bt} be a (G, [k1, . . . , kt], λ)-HPDF, assume that G has a subgroup
H of index 2, and set |Bi ∩H| = si for i = 1, . . . , t. Then the following identities hold:

s1 + ... + st = λ and 2s1(k1 − s1) + ... + 2st(kt − st) = λ2

Corollary
If there exists a (G, [k1, . . . , kt], λ)-HPDF and G has a subgroup of index 2, then the
diophantine system{

x1 + ... + xt = λ
2x1(k1 − x1) + ... + 2xt(kt − xt) = λ2

has a solution (s1, . . . , st) with 0 ≤ si ≤ ki for each i.

As application of the above corollary one can see that none of these K, though
admissible, can be the multiset of block-sizes of a HPDF:

[1, 5, 20, 50]; [1, 1, 1, 2, 23, 52, ]; [2, 3, 38, 73];

[3, 8, 28, 77]; [3, 7, 31, 79]; [1, 1, 16, 21, 81]; [3, 14, 35, 104].
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Searching for HPDFs

I Necessary conditions

I Subgroups of index 2

I Computer search

v K λ

20 ���
�XXXX[1, 2, 3, 14] 10

24 [13, 22, 17] 12
28 ���

�XXXX[1, 9, 18] 14
28 ��

��XXXX[3, 6, 19] 14
32 [22, 6, 22] 16
36 [3, 9, 24] 18
36 ���

�XXXX[3, 42, 25] 18
36 ���

�XXXX[15, 6, 25] 18
40 [1, 3, 9, 27] 20
40 [34, 28] 20
40 [12, 32, 4, 28] 20

40 ���
�XXXX[14, 42, 28] 20

40 [13, 22, 5, 28] 20
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New sporadic examples of HPDFs

I (32, [22, 622], 16)

Group G
1. C32

2. (C4 × C2) o C4

3. C8 × C4

4. C8 o C4

5. (C8 × C2) o C2

6. ((C4 × C2) o C2) o C2

7. (C8 o C2) o C2

8. C2.((C4 × C2) o C2)
9. (C8 × C2) o C2

10. Q8 o C4

11. (C4 × C4) o C2

12. C4 o C8

13. C8 o C4

14. C8 o C4

15. C4.D4

16. C16 × C2

17. C16 o C2

18. D16

19. QD32

20. Q32
21. C4 × C4 × C2

22. C2 × ((C4 × C2) : C2)
23. C2 × (C4 o C4)
24. (C4 × C4) o C2

25. C4 × D4

26. C4 × Q8

Group G
27. (C2 × C2 × C2 × C2) o C2

28. (C4 × C2 × C2) o C2

29. (C2 × Q8) o C2

30. (C4 × C2 × C2) o C2

31. (C4 × C4) o C2

32. (C2 × C2).(C2 × C2 × C2)
33. (C4 × C4) o C2

34. (C4 × C4) o C2

35. C4 o Q8

36. C8 × C2 × C2

37. C2 × (C8 o C2)
38. (C8 × C2) o C2

39. C2 × D8

40. C2 × QD16

41. C2 × Q16

42. (C8 × C2) o C2

43. (C2 × D4) o C2

44. (C2 × Q8) o C2

45. C4 × C2 × C2 × C2

46. C2 × C2 × D4

47. C2 × C2 × Q8

48. C2 × ((C4 × C2) o C2)
49. (C2 × D4) o C2

50. (C2 × Q8) o C2

51. C2 × C2 × C2 × C2 × C2
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New sporadic examples of HPDFs

I (24, [13, 22, 17], 12)

Group G
1. C3 o C8

2. C24

3. SL(2, 3)
4. Dic6
5. C4 × S3

6. D12

7. C2 × Dic3
8. C3 oD4

9. C12 × C2

10. C3 ×D4

11. C3 ×Q8

12. S4

13. C2 ×A4

14. C2
2 × S3

15. C6 × C2
2
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New sporadic examples of (24, [13, 22, 17], 12)-HPDFs

I G = C3 o C8

I This is the semidirect product of C3 by C8 with defining relations

C3 o C8 = 〈a, b | a8 = b3 = 1, ab−1 = ba〉

I Thus the elements of G are of the form aibj with 0 ≤ i ≤ 7 and 0 ≤ j ≤ 2. The
difference (even though we should say “ratio” since we are in multiplicative
notation) between two elements ai1bj1 and ai2bj2 is given by

(ai1bj1 )(ai2bj2 )−1 = ai1−i2b(−1)i2 (j1−j2) (1)

I Let F = {B1, B2, B3, B4, B5, B6} be the partition of G defined as follows:

B1 = {1, a, a2, a3, a4, a6, a7, b, ab, a3b, a4b, a5b, a6b, b2, ab2, a2b2, a4b2};

B2 = {a3b2}; B3 = {a5b2}; B4 = {a7b2};

B5 = {a5, a2b}; B6 = {a7b, a6b2}.
I Using (1) it is straightforward to check that F is a (G, [13, 22, 17], 12)-HPDF.
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New sporadic examples of (24, [13, 22, 17], 12)-HPDFs

I G = SL(2, 3)

I This is the 2-dimensional special linear group over Z3. Its elements are the 2× 2
matrices with elements in Z3 and determinant equal to 1.

I Let F = {B1, B2, B3, B4, B5, B6} be the partition of G defined as follows:

B1 =

{(
2 1
0 2

)}
; B2 =

{(
1 2
0 1

)}
; B3 =

{(
0 2
1 2

)}
;

B4 =

{(
0 2
1 0

)
,

(
1 1
1 2

)}
; B5 =

{(
2 1
2 0

)
,

(
2 2
0 2

)}
;

B6 = G \ (B1 ∪ B2 ∪ B3 ∪ B4 ∪ B5).

I It is straightforward to check that F is a (G, [13, 22, 17], 12)-HPDF.
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New sporadic examples of (24, [13, 22, 17], 12)-HPDFs

I G = Z3 ×D8

D2n = 〈x, y | xn = 1; y2 = 1; yxi = x−iy〉

I The partition of G into the blocks listed below is a (G, [13, 22, 17], 12)-HPDF.

B1 = {(0, x2)}; B2 = {(2, xy)}; B3 = {(2, x3y)};

B4 = {(1, x3), (2, x3)}; B5 = {(1, y), (2, x2y)};

B6 = G \ (B1 ∪ B2 ∪ B3 ∪ B4 ∪ B5).
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New sporadic examples of Hadamard PDFs

I (36, [3, 9, 24], 18)

Group G
1. Z9 o Z4

2. Z36

3. (Z2 × Z2) : Z9

4. D18

5. Z18 × Z2

6. Z6 × Z6

7. Z3 × Z12

8. Z3 × Q12

9. D6 ×D6

10. Z6 ×D6

11. Z3 ×A4

12. Z3 o Q12

13. Z2
3 o Z4

14. Z2 × Z3 oD6
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New sporadic examples of (36, [3, 9, 24], 18)-HPDFs

I G = Z6 × Z6

A = {(1, 1), (1, 3), (1, 5)};
B = {{0, 2), (0, 3), (1, 4), (2, 0), (2, 5), (3, 4), (4, 1), (4, 4), (5, 4)};
C = G \ (A ∪ B).

I G = Z3 × Z12

A = {(1, 1), (1, 5), (1, 9)};
B = {{0, 2), (0, 3), (0, 4), (1, 2), (1, 8), (1, 11), (2, 0), (2, 2), (2, 7)};
C = G \ (A ∪ B).

I G = Z3 × Q12

A = {(0, xy), (1, xy), (2, xy)};
B = {{1, 1), (0, x3), (0, x2), (2, y), (1, x5), (2, x4y), (2, x4), (2, x2y), (2, x)};
C = G \ (A ∪ B).

I G = D6 ×D6

A = {(y, xy), (xy, xy), (x2y, xy)};
B = {(1, x2y), (x, y), (x2, 1), (x2, x), (x2, x2), (x2, xy), (y, 1), (xy, x2), (x2y, x)};
C = G \ (A ∪ B).

I G = Z6 ×D6

A = {(1, xy), (3, xy), (5, xy)};
B = {{0, x), (1, x2), (2, 1), (3, 1), (4, x2), (4, y), (4, xy), (4, x2y), (5, x)};

C = G \ (A ∪ B).
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New sporadic examples of (40, [1, 3, 9, 27], 20)-HPDFs

I (40, [1, 3, 9, 27], 20)

Group G
1. C5 o2 C8

2. C40

3. C5 o C8

4. Dic10
5. C4 ×D10

6. D20

7. C2 × Dic5

Group G
8. C5 oD4

9. C20 × C2

10. C5 ×D4

11. C5 ×Q8

12. C2 × F5

13. C2
2 ×D5

14. C10 × C2
2

Example

I D is a (Z40, 13, 4)-DS

D = {1, 2, 3, 5, 6, 9, 14, 15, 18, 20, 25, 27, 35}

D1 = {1}, D2 = {2, 5, 14}, D3 = {3, 6, 9, 15, 18, 20, 25, 27, 35}
I Z40 \D is a (40, 27, 8)-DS

{0, 4, 7, 8, 10, 11, 12, 13, 16, 17, 19, 21, 22, 23, 24, 26, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39}
I {D1, D2, D3,Z40 \D} is a (40, [1, 3, 9, 27], 20)-HPDF
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Open problem

The parameter set of (40, [1, 3, 9, 27], 20)-HPDF can be written as(
34 − 1

2
, [30, 31, 32, 33],

34 − 1

4

)
.

Inspired by this, we have noticed that(
q2n − 1

q − 1
, [q0, q1, q2, q3, . . . , q2n−1],

q2n − 1

q + 1

)
is an admissible parameter set of a PDF for every positive integer q (not necessarily a
prime power!).

Question
Given positive integers q and n, does there exist a PDF whose K is

[q0, q1, q2, q3, . . . , q2n−1]?
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Infinite families of PDFs

Theorem (Buratti, 2018)
If there exists a (G, [k1, . . . , kt], λ)-HPDF and all the components of 2n+ 1 are
greater than 2 ·max{k1, . . . , kt}, then there exists a
(2λ(2n+ 1), [(2k1)n, . . . , (2kt)n, 2λ], 2λ)-PDF in G× F2n+1.

Corollary
I (24, [17, 22, 31], 12)

If all the components of 2n+ 1 are greater than 34, then there exists a
(48n+ 24, [34n, 42n, 23n, 24], 24)-PDF in G× F2n+1 for each of the three groups G
considered earlier.
The first possible value of n = 18 gives (984, [3418, 436, 254, 24], 24)-PDF in G × F37.

I (36, [24, 9, 3], 18)

If all the components of 2n+ 1 are greater than 48, then there exists a
(72n+ 36, [6n, 18n, 48n, 36], 36)-PDF in G× F2n+1 for each of the nine groups G
considered earlier.
The first possible value of n = 24 gives (1764, [624, 1824, 4824, 36], 36], 36)-PDF in G × F49.

I (40, [27, 9, 3, 1], 20)

If all the components of 2n+ 1 are greater than 54, then there exists a
(80n+ 40, [2n, 6n, 18n, 54n, 40], 40)-PDF in Z40 × F2n+1.
The first value of n = 29 gives (2360, [229, 629, 1829, 5429, 40], 40)-PDF in Z40 × F59.
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Infinite families of constant composition codes

Theorem (Ding, Yin, 2005)
(v, [λ0, λ1, . . . λq−1];λ)-PDF

⇓
optimal (v, v, v − λ, [λ0, λ1, . . . , λq−1])q-CCC

Corollary
I (48n+ 24, [34n, 42n, 23n, 24], 24)-PDF

If the maximal prime power divisors of 2n+ 1 are all greater than 34, then there exists
an optimal (48n+ 24, 48n+ 24, 48n, [34n, 42n, 23n, 24])6n+1-CCC.

I (72n+ 36, [6n, 18n, 48n, 36], 36)-PDF

If the maximal prime power divisors of 2n+ 1 are all greater than 48, then there exists
an optimal (72n+ 36, 72n+ 36, 72n, [6n, 18n, 48n, 36])3n+1-CCC.

I (80n+ 40, [2n, 6n, 18n, 54n, 40], 40)-PDF

If the maximal prime power divisors of 2n+ 1 are all greater than 54, then there exists
an optimal (80n+ 40, 80n+ 40, 80n, [2n, 6n, 18n, 54n, 40])4n+1-CCC.
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Thank you for your attention!

24 / 24


