Hadamard Partitioned Difference Families

Anamari Nakić

CODESCO 2024
July 2024, Sevilla, Spain

- AN. A few more Hadamard Partitioned Difference Families. Bulletin of Institute of Combinatorics and its Applications 100, 54-72 (2024)

- Partitioned difference families (Ding, Yin, 2005)
- Constant-composition codes
- Application in electrical engineering: power line communication
- Hadamard partitioned difference families (Buratti, 2018)
- New sporadic examples
- $\left(32,\left[2^{2}, 6,22\right], 16\right),\left(24,\left[1^{3}, 2^{2}, 17\right], 12\right),(36,[3,9,24], 18),(40,[1,3,9,27], 20)$

Definition (Difference Set)

- G additive group
- k-subset D of G is a (G, k, λ) difference set (DS) if each non-zero element of G is covered λ times by the list of differences of D :

$$
\Delta D=\{x-y: x \neq y, x, y \in D\}=\lambda(G \backslash\{0\})
$$

Definition (Difference Family)

- G additive group
- Collection of subsets $\mathcal{F}=\left\{D_{1}, \ldots, D_{t}\right\}$ of G of sizes k_{1}, \ldots, k_{t} is a $\left(G,\left[k_{1}, \ldots, k_{t}\right], \lambda\right)$ difference family (DF) if each non-zero element of G is covered λ times by the list of differences of the blocks:

$$
\Delta \mathcal{F}=\uplus \Delta D_{i}=\lambda(G \backslash\{0\}) .
$$

Definition (Partitioned Difference Families)

A $\left(G,\left[k_{1}, \ldots, k_{t}\right], \lambda\right)$ difference family is partitioned difference family (PDF) if its blocks partition G.

Example

- $G \simeq \mathbb{Z}_{13}$

$$
\mathbb{Z}_{13}=\{0,1,2,3,4,5,6,7,8,9,10,11,12\}
$$

- $D_{1}=\{0,3,12\}$

$$
\Delta D_{1}=\{ \pm 1, \pm 3, \pm 4\}
$$

- $D_{2}=\{5,7,10,11\}$

$$
\Delta D_{2}=\{ \pm 1, \pm 2, \pm 3, \pm 4, \pm 5, \pm 6\}
$$

- $D_{3}=\{1,2,4,6,8,9\}$

$$
\Delta D_{3}=\{ \pm 1, \pm 1, \pm 2, \pm 2, \pm 2, \pm 3, \pm 3, \pm 4, \pm 4, \pm 5, \pm 5, \pm 5 \pm 6, \pm 6, \pm 6\}
$$

- $\mathcal{F}=\left\{D_{1}, D_{2}, D_{3}\right\}$ is a $\left(\mathbb{Z}_{13},[3,4,6], 4\right)$-PDF

Partitioned Difference Families

Definition (Constant-Composition Code)

An $\left(n, M, d,\left[\lambda_{0}, \lambda_{1}, \ldots \lambda_{q-1}\right]\right)_{q}$ constant-composition code is a code $C \subset \mathbb{Z}_{n}^{q}$ with size M and minimum Hamming distance d such that in every codeword the element $i \in \mathbb{Z}_{q}$ appears exactly λ_{i} times.

Theorem (Ding, Yin, 2005)

$$
\begin{gathered}
\left(v,\left[\lambda_{0}, \lambda_{1}, \ldots \lambda_{q-1}\right] ; \lambda\right)-P D F \\
\Downarrow \\
\text { optimal }\left(n, n, n-\lambda,\left[\lambda_{0}, \lambda_{1}, \ldots, \lambda_{q-1}\right]\right)_{q}-C C C
\end{gathered}
$$

$$
A_{q}\left(n, d,\left[w_{0}, w_{1}, \ldots, w_{q-1}\right]\right) \leq \frac{n d}{n d-n^{2}+\left(w_{0}^{2} 0+w_{1}^{2}+\cdots+w_{q-1}^{2}\right)}
$$

Example

- $\left(\mathbb{Z}_{7},[3,4], 3\right)$-PDF $\Rightarrow \quad$ optimal $(7,4,[3,4])_{2}$-CCC of size $A_{2}(7,4,[3,4])=7$

0132456	1243560	2354601	3465012	4506123	5610234	6021345
	\downarrow	\downarrow		\downarrow		
0001111	0110110	1011100	0111001	1101010	1100101	1010011

Hadamard Partitioned Difference Families

Definition (Hadamard Partitioned Difference Family, Buratti, 2018)
A $\left(G,\left[k_{1}, \ldots, k_{t}\right], \lambda\right)$-PDF \mathcal{F} is said to be Hadamard if G has order 2λ.

Example (Partitioned difference families from difference sets)

- D is a (G, k, λ)-DS $\Rightarrow\{D, \bar{D}=G \backslash D\}$ is a $(G,[k, v-k], v-2 k+2 \lambda)$-PDF
- The converse is also true!

Definition (Hadamard Difference Set)

Hadamard difference set (HDS) is a difference set with parameters
$\left(4 u^{2}, 2 u^{2}-u, u^{2}-u\right)$, for some u.

Example

$$
\begin{gathered}
D \text { is a }\left(4 u^{2}, 2 u^{2}-u, u^{2}-u\right) \text {-HDS in G } \\
\Downarrow \\
(D, \bar{D}=G \backslash D) \text { is a }\left(4 u^{2},\left[2 u^{2}+u, 2 u^{2}-u\right], 2 u^{2}\right) \text {-HPDF }
\end{gathered}
$$

Proposition

A PDF with only two blocks necessarily consists of a difference set and its complement. More specifically, a HPDF with only two blocks necessarily consists of a Hadamard difference set and its complement.

$\|G\|$	$\left[k_{1}, k_{2}\right]$	λ
16	$[10,6]$	8
36	$[20,16]$	18
64	$[34,30]$	32
100	$[52,48]$	50
144	$[74,70]$	72
196	$[100,96]$	98
256	$[130,126]$	128
324	$[164,160]$	162
484	$[244,240]$	242
576	$[290,286]$	288
676	$[340,336]$	338
784	$[394,390]$	392
900	$[452,448]$	450
1024	$[514,510]$	512
1156	$[580,576]$	578

Example (Buratti, 2018)

- G is a non-abelian group whose elements are all pairs of the Cartesian product $\mathbb{Z}_{4} \times \mathbb{Z}_{8}$ and whose operation law is

$$
\left(x_{1}, y_{1}\right) \rtimes\left(x_{2}, y_{2}\right)=\left(x_{1}+x_{2}, 5^{x_{2}} y_{1}+y_{2}\right)
$$

- There exists (32, [2, 2, 6, 22], 16)-HPDF in G with blocks

$$
\begin{gathered}
X_{1}=\{(0,0),(2,0)\}, \quad X_{2}=\{(1,0),(3,4)\}, \\
X_{3}=\{(0,1),(0,3),(1,2),(1,5),(1,6),(3,3)\}, \quad X_{4}=G \backslash(X 1 \cup X 2 \cup X 3)
\end{gathered}
$$

Are there any other sporadic examples?

Proposition (Necessary conditions)

- $k_{1}+\cdots+k_{t}=2 \lambda=|G|$
- $|\Delta \mathcal{F}|=k_{1}\left(k_{1}-1\right)+\cdots+k_{t}\left(k_{t}-1\right)=\lambda(2 \lambda-1) \quad \Rightarrow \quad k_{1}^{2}+\cdots k_{t}^{2}=\lambda(2 \lambda+1)$
- $\lambda \equiv 0(\bmod 2) \quad \Rightarrow \quad|G| \equiv 0(\bmod 4)$

v	K	λ
20	$[1,2,3,14]$	10
24	$\left[1^{3}, 2^{2}, 17\right]$	12
28	$[1,9,18]$	14
28	$[3,6,19]$	14
32	$\left[2^{2}, 6,22\right]$	16
36	$[3,9,24]$	18
36	$\left[3,4^{2}, 25\right]$	18
36	$\left[1^{5}, 6,25\right]$	18
40	$[1,3,9,27]$	20
40	$\left[3^{4}, 28\right]$	20
40	$\left[1^{2}, 3^{2}, 4,28\right]$	20
40	$\left[1^{4}, 4^{2}, 28\right]$	20
40	$\left[1^{3}, 2^{2}, 5,28\right]$	20

Proposition
In a $\left(v,\left[k_{1}, k_{2}, k_{3}\right], \lambda\right)$-HPDF we necessarily have

$$
k_{1,2}=\frac{2 \lambda-k_{3} \pm \sqrt{2 \lambda\left(2 k_{3}+1\right)-3 k_{3}^{2}}}{2}
$$

Corollary

The existence of a ($\left.v,\left[k_{1}, k_{2}, k_{3}\right], \lambda\right)$-HPDF necessarily implies that no prime divisor of $\left(2 k_{1}+1\right)\left(2 k_{2}+1\right)\left(2 k_{3}+1\right)$ is congruent to $5(\bmod 6)$.

- As a consequence, in a ($\left.v,\left[k_{1}, k_{2}, k_{3}\right], \lambda\right)$-HPDF we cannot have, for instance, blocks of size $2,5,7,8,11,12,14,16,17, \ldots$

Proposition
A ($\left.v,\left[k_{1}, k_{2}, 1\right], \lambda\right)$-HPDF cannot exist.

Proposition
Let $\mathcal{F}=\left\{B_{1}, \ldots, B_{t}\right\}$ be a $\left(G,\left[k_{1}, \ldots, k_{t}\right], \lambda\right)$-HPDF, assume that G has a subgroup H of index 2 , and set $\left|B_{i} \cap H\right|=s_{i}$ for $i=1, \ldots, t$. Then the following identities hold:

$$
s_{1}+\ldots+s_{t}=\lambda \quad \text { and } \quad 2 s_{1}\left(k_{1}-s_{1}\right)+\ldots+2 s_{t}\left(k_{t}-s_{t}\right)=\lambda^{2}
$$

Corollary

If there exists a $\left(G,\left[k_{1}, \ldots, k_{t}\right], \lambda\right)$-HPDF and G has a subgroup of index 2 , then the diophantine system

$$
\left\{\begin{array}{rlll}
x_{1} & +\ldots+ & x_{t} & = \\
\lambda \\
2 x_{1}\left(k_{1}-x_{1}\right) & +\ldots+ & 2 x_{t}\left(k_{t}-x_{t}\right) & = \\
\lambda^{2}
\end{array}\right.
$$

has a solution $\left(s_{1}, \ldots, s_{t}\right)$ with $0 \leq s_{i} \leq k_{i}$ for each i.

As application of the above corollary one can see that none of these K, though admissible, can be the multiset of block-sizes of a HPDF:

$$
\begin{gathered}
{[1,5,20,50] ; \quad[1,1,1,2,23,52,] ; \quad[2,3,38,73] ;} \\
{[3,8,28,77] ; \quad[3,7,31,79] ; \quad[1,1,16,21,81] ; \quad[3,14,35,104] .}
\end{gathered}
$$

- Necessary conditions
- Subgroups of index 2
- Computer search

v	K	λ
20	$[1,2,3,14]$	10
24	$\left[1^{3}, 2^{2}, 17\right]$	12
28	$1,9,18]$	14
28	$3,6,19]$	14
32	$\left[2^{2}, 6,22\right]$	16
36	$[3,9,24]$	18
36	$3,4,25]$	18
36	$15,6,25]$	18
40	$[1,3,9,27]$	20
40	$\left[3^{4}, 28\right]$	20
40	$\left[1^{2}, 3^{2}, 4,28\right]$	20
40	$\left[1^{4}, 42,28\right]$	20
40	$\left[1^{3}, 2^{2}, 5,28\right]$	20

- (32, $\left.\left[2^{2}, 622\right], 16\right)$

	Group G
1.	C_{32}
2.	$\left(C_{4} \times C_{2}\right) \rtimes C_{4}$
3.	$C_{8} \times C_{4}$
4.	$C_{8} \rtimes C_{4}$
5.	$\left(C_{8} \times C_{2}\right) \rtimes C_{2}$
6.	$\left(\left(C_{4} \times C_{2}\right) \rtimes C_{2}\right) \rtimes C_{2}$
7.	$\left(C_{8} \rtimes C_{2}\right) \rtimes C_{2}$
8.	$C_{2} .\left(\left(C_{4} \times C_{2}\right) \rtimes C_{2}\right)$
9.	$\left(C_{8} \times C_{2}\right) \rtimes C_{2}$
10.	$Q_{8} \rtimes C_{4}$
11.	$\left(C_{4} \times C_{4}\right) \rtimes C_{2}$
12.	$C_{4} \rtimes C_{8}$
13.	$C_{8} \rtimes C_{4}$
14.	$C_{8} \rtimes C_{4}$
15.	$C_{4} . D_{4}$
16.	$C_{16} \times C_{2}$
17.	$C_{16} \rtimes C_{2}$
18.	D_{16}
19.	Q_{32}
20.	$Q_{3} 2$
21.	$C_{4} \times C_{4} \times C_{2}$
22.	$C_{2} \times\left(\left(C_{4} \times C_{2}\right): C_{2}\right)$
23.	$C_{2} \times\left(C_{4} \rtimes C_{4}\right)$
24.	$\left(C_{4} \times C_{4}\right) \rtimes C_{2}$
25.	$C_{4} \times D_{4}$
26.	$C_{4} \times Q_{8}$

	Group G
27.	$\left(C_{2} \times C_{2} \times C_{2} \times C_{2}\right) \rtimes C_{2}$
28.	$\left(C_{4} \times C_{2} \times C_{2}\right) \rtimes C_{2}$
29.	$\left(C_{2} \times Q_{8}\right) \rtimes C_{2}$
30.	$\left(C_{4} \times C_{2} \times C_{2}\right) \rtimes C_{2}$
31.	$\left(C_{4} \times C_{4}\right) \rtimes C_{2}$
32.	$\left(C_{2} \times C_{2}\right) .\left(C_{2} \times C_{2} \times C_{2}\right)$
33.	$\left(C_{4} \times C_{4}\right) \rtimes C_{2}$
34.	$\left(C_{4} \times C_{4}\right) \rtimes C_{2}$
35.	$C_{4} \times Q_{8}$
36.	$C_{8} \times C_{2} \times C_{2}$
37.	$C_{2} \times\left(C_{8} \rtimes C_{2}\right)$
38.	$\left(C_{8} \times C_{2}\right) \rtimes C_{2}$
39.	$C_{2} \times D_{8}$
40.	$C_{2} \times Q D_{16}$
41.	$C_{2} \times Q_{16}$
42.	$\left(C_{8} \times C_{2}\right) \rtimes C_{2}$
43.	$\left(C_{2} \times D_{4}\right) \rtimes C_{2}$
44.	$\left(C_{2} \times Q_{8}\right) \rtimes C_{2}$
45.	$C_{4} \times C_{2} \times C_{2} \times C_{2}$
46.	$C_{2} \times C_{2} \times D_{4}$
47.	$C_{2} \times C_{2} \times Q_{8}$
48.	$C_{2} \times\left(\left(C_{4} \times C_{2}\right) \rtimes C_{2}\right)$
49.	$\left(C_{2} \times D_{4}\right) \rtimes C_{2}$
50.	$\left(C_{2} \times Q_{8}\right) \rtimes C_{2}$
51.	$C_{2} \times C_{2} \times C_{2} \times C_{2} \times C_{2}$

- $\left(24,\left[1^{3}, 2^{2}, 17\right], 12\right)$

	Group G
1.	$C_{3} \rtimes C_{8}$
2.	C_{24}
3.	$S L(2,3)$
4.	Dic_{6}
5.	$C_{4} \times S_{3}$
6.	D_{12}
7.	$C_{2} \times \mathrm{Dic}_{3}$
8.	$C_{3} \rtimes D_{4}$
9.	$C_{12} \times C_{2}$
10.	$C_{3} \times D_{4}$
11.	$C_{3} \times Q_{8}$
12.	S_{4}
13.	$C_{2} \times A_{4}$
14.	$C_{2}^{2} \times S_{3}$
15.	$C_{6} \times C_{2}^{2}$

- $G=C_{3} \rtimes C_{8}$
- This is the semidirect product of C_{3} by C_{8} with defining relations

$$
C_{3} \rtimes C_{8}=\left\langle a, b \mid a^{8}=b^{3}=1, a b^{-1}=b a\right\rangle
$$

- Thus the elements of G are of the form $a^{i} b^{j}$ with $0 \leq i \leq 7$ and $0 \leq j \leq 2$. The difference (even though we should say "ratio" since we are in multiplicative notation) between two elements $a^{i_{1}} b^{j_{1}}$ and $a^{i_{2}} b^{j_{2}}$ is given by

$$
\begin{equation*}
\left(a^{i_{1}} b^{j_{1}}\right)\left(a^{i_{2}} b^{j_{2}}\right)^{-1}=a^{i_{1}-i_{2}} b^{(-1)^{i_{2}}\left(j_{1}-j_{2}\right)} \tag{1}
\end{equation*}
$$

- Let $\mathcal{F}=\left\{B_{1}, B_{2}, B_{3}, B_{4}, B_{5}, B_{6}\right\}$ be the partition of G defined as follows:

$$
\begin{gathered}
B_{1}=\left\{1, a, a^{2}, a^{3}, a^{4}, a^{6}, a^{7}, b, a b, a^{3} b, a^{4} b, a^{5} b, a^{6} b, b^{2}, a b^{2}, a^{2} b^{2}, a^{4} b^{2}\right\} \\
B_{2}=\left\{a^{3} b^{2}\right\} ; \quad B_{3}=\left\{a^{5} b^{2}\right\} ; \quad B_{4}=\left\{a^{7} b^{2}\right\} ; \\
B_{5}=\left\{a^{5}, a^{2} b\right\} ; \quad B_{6}=\left\{a^{7} b, a^{6} b^{2}\right\}
\end{gathered}
$$

- Using (1) it is straightforward to check that \mathcal{F} is a (G, $\left[1^{3}, 2^{2}, 17\right], 12$)-HPDF.
- $G=S L(2,3)$
- This is the 2-dimensional special linear group over \mathbb{Z}_{3}. Its elements are the 2×2 matrices with elements in \mathbb{Z}_{3} and determinant equal to 1 .
Let $\mathcal{F}=\left\{B_{1}, B_{2}, B_{3}, B_{4}, B_{5}, B_{6}\right\}$ be the partition of G defined as follows:

$$
\begin{gathered}
B_{1}=\left\{\left(\begin{array}{ll}
2 & 1 \\
0 & 2
\end{array}\right)\right\} ; \quad B_{2}=\left\{\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right)\right\} ; \quad B_{3}=\left\{\left(\begin{array}{ll}
0 & 2 \\
1 & 2
\end{array}\right)\right\} \\
B_{4}=\left\{\left(\begin{array}{ll}
0 & 2 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right)\right\} ; \\
B_{5}=\left\{\left(\begin{array}{ll}
2 & 1 \\
2 & 0
\end{array}\right),\left(\begin{array}{ll}
2 & 2 \\
0 & 2
\end{array}\right)\right\} \\
B_{6}=G \backslash\left(B_{1} \cup B_{2} \cup B_{3} \cup B_{4} \cup B_{5}\right)
\end{gathered}
$$

- It is straightforward to check that \mathcal{F} is a $\left(G,\left[1^{3}, 2^{2}, 17\right], 12\right)$-HPDF.
- $G=\mathbb{Z}_{3} \times D_{8}$

$$
D_{2 n}=\left\langle x, y \mid x^{n}=1 ; y^{2}=1 ; y x^{i}=x^{-i} y\right\rangle
$$

- The partition of G into the blocks listed below is a $\left(G,\left[1^{3}, 2^{2}, 17\right], 12\right)$-HPDF.

$$
\begin{gathered}
B_{1}=\left\{\left(0, x^{2}\right)\right\} ; \quad B_{2}=\{(2, x y)\} ; \quad B_{3}=\left\{\left(2, x^{3} y\right)\right\} \\
B_{4}=\left\{\left(1, x^{3}\right),\left(2, x^{3}\right)\right\} ; \quad B_{5}=\left\{(1, y),\left(2, x^{2} y\right)\right\} \\
B_{6}=G \backslash\left(B_{1} \cup B_{2} \cup B_{3} \cup B_{4} \cup B_{5}\right)
\end{gathered}
$$

- (36, [3, 9, 24], 18)

	Group G
1.	$\mathbb{Z}_{9} \rtimes \mathbb{Z}_{4}$
2.	\mathbb{Z}_{36}
3.	$\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right): \mathbb{Z}_{9}$
4.	D_{18}
5.	$\mathbb{Z}_{18} \times \mathbb{Z}_{2}$
6.	$\mathbb{Z}_{6} \times \mathbb{Z}_{6}$
7.	$\mathbb{Z}_{3} \times \mathbb{Z}_{12}$
8.	$\mathbb{Z}_{3} \times \mathrm{Q}_{12}$
9.	$D_{6} \times D_{6}$
10.	$\mathbb{Z}_{6} \times D_{6}$
11.	$\mathbb{Z}_{3} \times A_{4}$
12.	$\mathbb{Z}_{3} \rtimes \mathbb{Q}_{12}$
13.	$\mathbb{Z}_{3}^{2} \rtimes \mathbb{Z}_{4}$
14.	$\mathbb{Z}_{2} \times \mathbb{Z}_{3} \rtimes D_{6}$

- $G=\mathbb{Z}_{6} \times \mathbb{Z}_{6}$
$A=\{(1,1),(1,3),(1,5)\}$;
$B=\{\{0,2),(0,3),(1,4),(2,0),(2,5),(3,4),(4,1),(4,4),(5,4)\} ;$
$C=G \backslash(A \cup B)$.
- $G=\mathbb{Z}_{3} \times \mathbb{Z}_{12}$
$A=\{(1,1),(1,5),(1,9)\} ;$
$B=\{\{0,2),(0,3),(0,4),(1,2),(1,8),(1,11),(2,0),(2,2),(2,7)\} ;$
$C=G \backslash(A \cup B)$.
- $G=\mathbb{Z}_{3} \times \mathrm{Q}_{12}$
$A=\{(0, x y),(1, x y),(2, x y)\} ;$
$B=\left\{\{1,1),\left(0, x^{3}\right),\left(0, x^{2}\right),(2, y),\left(1, x^{5}\right),\left(2, x^{4} y\right),\left(2, x^{4}\right),\left(2, x^{2} y\right),(2, x)\right\} ;$
$C=G \backslash(A \cup B)$.
- $G=D_{6} \times D_{6}$
$A=\left\{(y, x y),(x y, x y),\left(x^{2} y, x y\right)\right\} ;$
$B=\left\{\left(1, x^{2} y\right),(x, y),\left(x^{2}, 1\right),\left(x^{2}, x\right),\left(x^{2}, x^{2}\right),\left(x^{2}, x y\right),(y, 1),\left(x y, x^{2}\right),\left(x^{2} y, x\right)\right\} ;$
$C=G \backslash(A \cup B)$.
- $G=\mathbb{Z}_{6} \times D_{6}$
$A=\{(1, x y),(3, x y),(5, x y)\} ;$
$B=\left\{\{0, x),\left(1, x^{2}\right),(2,1),(3,1),\left(4, x^{2}\right),(4, y),(4, x y),\left(4, x^{2} y\right),(5, x)\right\} ;$
$C=G \backslash(A \cup B)$.
- (40, [1, 3, 9, 27], 20)

	Group G
1.	$C_{5} \rtimes_{2} C_{8}$
2.	C_{40}
3.	$C_{5} \rtimes C_{8}$
4.	Dic_{10}
5.	$C_{4} \times D_{10}$
6.	D_{20}
7.	$C_{2} \times \mathrm{Dic}_{5}$

	Group G
8.	$C_{5} \rtimes D_{4}$
9.	$C_{20} \times C_{2}$
10.	$C_{5} \times D_{4}$
11.	$C_{5} \times Q_{8}$
12.	$C_{2} \times F_{5}$
13.	$C_{2}^{2} \times D_{5}$
14.	$C_{10} \times C_{2}^{2}$

Example

- D is a $\left(\mathbb{Z}_{40}, 13,4\right)$-DS

$$
\begin{gathered}
D=\{1,2,3,5,6,9,14,15,18,20,25,27,35\} \\
D_{1}=\{1\}, \quad D_{2}=\{2,5,14\}, \quad D_{3}=\{3,6,9,15,18,20,25,27,35\}
\end{gathered}
$$

- $\mathbb{Z}_{40} \backslash D$ is a $(40,27,8)$-DS
$\{0,4,7,8,10,11,12,13,16,17,19,21,22,23,24,26,28,29,30,31,32,33,34,36,37,38,39\}$
- $\left\{D_{1}, D_{2}, D_{3}, \mathbb{Z}_{40} \backslash D\right\}$ is a (40, [1, 3, 9, 27], 20)-HPDF

The parameter set of (40, [1, 3, 9, 27], 20)-HPDF can be written as

$$
\left(\frac{3^{4}-1}{2},\left[3^{0}, 3^{1}, 3^{2}, 3^{3}\right], \frac{3^{4}-1}{4}\right) .
$$

Inspired by this, we have noticed that

$$
\left(\frac{q^{2 n}-1}{q-1},\left[q^{0}, q^{1}, q^{2}, q^{3}, \ldots, q^{2 n-1}\right], \frac{q^{2 n}-1}{q+1}\right)
$$

is an admissible parameter set of a PDF for every positive integer q (not necessarily a prime power!).

Question

Given positive integers q and n, does there exist a PDF whose K is

$$
\left[q^{0}, q^{1}, q^{2}, q^{3}, \ldots, q^{2 n-1}\right] ?
$$

Theorem (Buratti, 2018)

If there exists a $\left(G,\left[k_{1}, \ldots, k_{t}\right], \lambda\right)$-HPDF and all the components of $2 n+1$ are greater than $2 \cdot \max \left\{k_{1}, \ldots, k_{t}\right\}$, then there exists a
$\left(2 \lambda(2 n+1),\left[\left(2 k_{1}\right)^{n}, \ldots,\left(2 k_{t}\right)^{n}, 2 \lambda\right], 2 \lambda\right)-P D F$ in $G \times \mathbb{F}_{2 n+1}$.

Corollary

- $\left(24,\left[17,{ }^{2} 2,{ }^{3} 1\right], 12\right)$

If all the components of $2 n+1$ are greater than 34 , then there exists a $\left(48 n+24,\left[34^{n}, 4^{2 n}, 2^{3 n}, 24\right], 24\right)-P D F$ in $G \times \mathbb{F}_{2 n+1}$ for each of the three groups G considered earlier.
The first possible value of $n=18$ gives $\left(984,\left[34^{18}, 4^{36}, 2^{54}, 24\right], 24\right)-P D F$ in $G \times \mathbb{F}_{37}$.

- (36, [24, 9, 3], 18)

If all the components of $2 n+1$ are greater than 48 , then there exists a $\left(72 n+36,\left[6^{n}, 18^{n}, 48^{n}, 36\right], 36\right)-P D F$ in $G \times \mathbb{F}_{2 n+1}$ for each of the nine groups G considered earlier.
The first possible value of $n=24$ gives (1764, $\left.\left.\left[6^{24}, 18^{24}, 48^{24}, 36\right], 36\right], 36\right)$-PDF in $G \times \mathbb{F}_{49}$.

- (40, $[27,9,3,1], 20)$

If all the components of $2 n+1$ are greater than 54 , then there exists a $\left(80 n+40,\left[2^{n}, 6^{n}, 18^{n}, 54^{n}, 40\right], 40\right)-P D F$ in $\mathbb{Z}_{40} \times \mathbb{F}_{2 n+1}$.
The first value of $n=29$ gives (2360, $\left.\left[2^{29}, 6^{29}, 18^{29}, 54^{29}, 40\right], 40\right)$-PDF in $\mathbb{Z}_{40} \times \mathbb{F}_{59}$.

Theorem (Ding, Yin, 2005)

$$
\begin{gathered}
\left(v,\left[\lambda_{0}, \lambda_{1}, \ldots \lambda_{q-1}\right] ; \lambda\right)-P D F \\
\Downarrow \\
\text { optimal }\left(v, v, v-\lambda,\left[\lambda_{0}, \lambda_{1}, \ldots, \lambda_{q-1}\right]\right)_{q}-C C C
\end{gathered}
$$

Corollary

- $\left(48 n+24,\left[34^{n}, 4^{2 n}, 2^{3 n}, 24\right], 24\right)-P D F$

If the maximal prime power divisors of $2 n+1$ are all greater than 34 , then there exists an optimal $\left(48 n+24,48 n+24,48 n,\left[34^{n}, 4^{2 n}, 2^{3 n}, 24\right]\right)_{6 n+1}$-CCC.

- $\left(72 n+36,\left[6^{n}, 18^{n}, 48^{n}, 36\right], 36\right)-P D F$

If the maximal prime power divisors of $2 n+1$ are all greater than 48 , then there exists an optimal $\left(72 n+36,72 n+36,72 n,\left[6^{n}, 18^{n}, 48^{n}, 36\right]\right)_{3 n+1}-$ CCC.

- $\left(80 n+40,\left[2^{n}, 6^{n}, 18^{n}, 54^{n}, 40\right], 40\right)-P D F$

If the maximal prime power divisors of $2 n+1$ are all greater than 54 , then there exists an optimal $\left(80 n+40,80 n+40,80 n,\left[2^{n}, 6^{n}, 18^{n}, 54^{n}, 40\right]\right)_{4 n+1}-$ CCC.

Thank you for your attention!

