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Cycle Decompositions

Let G be a graph and H be a subgraph of G . If all edges of G can be
decomposed into edge disjoint copies of H, then this decomposition is
called an H-decomposition of G.

If all edges of G can be decomposed into edge disjoint copies of
k-factors, then this decomposition is called a k-factorization and G is
called k-factorable.

A parallel class (or resolution class) of a decomposition of G is a
subset of vertex disjoint graphs whose union partitions the vertex set
of G .

Cycle decomposition of a graph G is an H-decomposition in which all
H’s are cycles.

A resolvable cycle decomposition is a cycle decomposition which
forms a 2-factorization, in other words, it is a cycle decomposition
which can be partitioned into parallel classes.
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Cycle Decompositions

Example

A {C7,C6,C5,C3}−decomposition of K7.

K7 C7 C6 C5 C3
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Cycle Decompositions

Obvious necessary conditions:

Lemma

Let G be a graph of order n, let m1,m2, . . . ,mk be a sequence of integers,
and suppose that there is a decomposition {G1,G2, . . . ,Gk} of G where Gi

is an mi -cycle for i = 1, 2, . . . , k. Then

(i) 3 ≤ mi ≤ n for i = 1, 2, . . . , k.

(ii) the number of edges in G is m1 +m2 + · · ·+mk , and

(iii) Each vertex of G has even degree.

In 1981, Alspach conjectured that these are also sufficient for complete
graphs and his conjecture is proven by Bryant and Horsley in 2010.
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2-Factorizations

Definition

A {F k1
1 ,F k2

2 , . . . ,F kl
l }−factorization of a graph G is a decomposition which

consists precisely of ki factors isomorphic to Fi .

When each Fi factor consists of only ni cycles for i ∈ [1, t], then we will call the Fi

factor as a Cni -factor and call this factorization as a
{
C r1
n1 ,C

r2
n2 , . . . ,C

rt
nt

}
-

factorization.

A k-regular spanning subgraph of G is called a k-factor of G .

Example
There is a C5−factorization of K5.
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The Oberwolfach Problem

It is motivated by seating arrangements at the meeting; is it possible to seat v
participants of the conference in such a way that each person sits next to each
other person exactly once over ⌊ v−1

2
⌋ days, where there are ai round tables with

mi seats for i = 1, 2, . . . , s.

It asks for a 2-factorization of the complete graph Kv (for even v , a 2-factorization
of Kv − F where F is a 1-factor) in which each 2-factor is isomorphic to
[ma1

1 ,ma2
2 , . . . ,mas

s ].

In this case, the corresponding Oberwolfach problem is denoted by
OP(ma1

1 ,ma2
2 , . . . ,mas

s ).

(CODESCO’24) 09/07/2024 7 / 29



The Oberwolfach Problem

It is motivated by seating arrangements at the meeting; is it possible to seat v
participants of the conference in such a way that each person sits next to each
other person exactly once over ⌊ v−1

2
⌋ days, where there are ai round tables with

mi seats for i = 1, 2, . . . , s.

It asks for a 2-factorization of the complete graph Kv (for even v , a 2-factorization
of Kv − F where F is a 1-factor) in which each 2-factor is isomorphic to
[ma1

1 ,ma2
2 , . . . ,mas

s ].

In this case, the corresponding Oberwolfach problem is denoted by
OP(ma1

1 ,ma2
2 , . . . ,mas

s ).

(CODESCO’24) 09/07/2024 7 / 29



The Oberwolfach Problem

It is motivated by seating arrangements at the meeting; is it possible to seat v
participants of the conference in such a way that each person sits next to each
other person exactly once over ⌊ v−1

2
⌋ days, where there are ai round tables with

mi seats for i = 1, 2, . . . , s.

It asks for a 2-factorization of the complete graph Kv (for even v , a 2-factorization
of Kv − F where F is a 1-factor) in which each 2-factor is isomorphic to
[ma1

1 ,ma2
2 , . . . ,mas

s ].

In this case, the corresponding Oberwolfach problem is denoted by
OP(ma1

1 ,ma2
2 , . . . ,mas

s ).

(CODESCO’24) 09/07/2024 7 / 29



The Oberwolfach Problem

It is motivated by seating arrangements at the meeting; is it possible to seat v
participants of the conference in such a way that each person sits next to each
other person exactly once over ⌊ v−1

2
⌋ days, where there are ai round tables with

mi seats for i = 1, 2, . . . , s.

It asks for a 2-factorization of the complete graph Kv (for even v , a 2-factorization
of Kv − F where F is a 1-factor) in which each 2-factor is isomorphic to
[ma1

1 ,ma2
2 , . . . ,mas

s ].

In this case, the corresponding Oberwolfach problem is denoted by
OP(ma1

1 ,ma2
2 , . . . ,mas

s ).

(CODESCO’24) 09/07/2024 7 / 29



The Oberwolfach Problem

Example

A solution to OP(3, 4).

1

2

34

5

6

0

1

2

34

5

6

0

1

2

34

5

6

0
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Some Known Results

It is known that the solutions to the cases OP(32), OP(34) do not exist. The
Oberwolfach Problem for a single cycle size OP(mk) for all m ≥ 3 has been solved.

(odd cycles by Alspach et al.–1989)
(even cycles by Hoffman and Schellenberg–1991)

OP(m1,m2, . . . ,mt) has a solution for all m1 +m2 + · · ·+mt ≤ 40 except for OP(32),
OP(34), OP(3, 4), OP(32, 5).

(Adams and Bryant–2006)
(Deza et al.–2010)

OP(m1,m2, . . . ,mt) has a solution for all m1,m2, . . . ,mt all even.

(Bryant and Danziger–2011)
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The Hamilton-Waterloo Problem

One extension of the problem is the Hamilton-Waterloo problem, where the
conference takes places in two venues (Hamilton and Waterloo) and one of them
has r round tables, each seating mi people for i = 1, 2, . . . , r and the second one
has s round tables, each seating ni people for i = 1, 2, . . . , s (necessarily∑r

i=1 mi =
∑r

i=1 ni = v).

In other words, each 2-factor in the factorization is isomorphic to either
[m1,m2, . . . ,mr ] or to [n1, n2, . . . , ns ].

If we let m = m1 = m2 = · · · = mr and n = n1 = n2 = · · · = ns , then each
2-factor is composed of either m-cycles, Cm, or n-cycles, Cn . Then the
Hamilton-Waterloo problem is same as uniformly resolvable
{Cm,Cn}-decompositions of Kv (or Kv − F for even v).
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The Hamilton-Waterloo Problem

Notations (m, n)− URD(v ; r , s) or (m, n)− HWP(v ; r , s) or HWP(v ;C r
n ,C

s
m) are used

to denote such a decomposition on v points with r factors of m-cycles and s factors of
n-cycles.

Necessary Conditions:

Lemma
(Adams, Billington, Bryant, El-Zanati - 2002) Let v ,m, n, r , s be non-negative integers
with m, n ≥ 3. If there exists a (m, n)−HWP(v ; r , s), then

(i) if r > 0, m divides v, and if s > 0, n divides v;

(ii) if v is odd, then r + s = (v − 1)/2; and

(iii) if v is even, then r + s = (v − 2)/2.
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Example

Example

A solution to HWP(12;C 2
3 ,C

3
4 ).

1, 6, 8 1, 2, 3 1, 9, 5, 12 1, 5, 7, 11 1, 4, 7, 10
2, 7, 11 4, 5, 6 2, 10, 8, 4 2, 6, 10, 9 2, 5, 8, 11
3, 5, 10 7, 8, 9 3, 11, 6, 7 3, 8, 12, 4 3, 6, 9, 12
4, 9, 11 10, 11, 12
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Previous Results

In 2002, Adams et al.solved the Hamilton-Waterloo problem for the cases
(m, n) ∈ {(4, 6), (4, 8), (4, 16), (8, 16), (3, 5), (3, 15), (5, 15)} and settled the
problem for all v ≤ 16. Danziger et al. solved the problem for the case
(m, n) = (3, 4) with a few exceptions.

Horak et al., Dinitz and Ling worked on the case m = 3 and n = v , that is,
triangle factors and Hamilton cycles. Bryant et al. settled the Hamilton-Waterloo
problem for bipartite 2-factors.

In 2008, the case of 4-cycles and m-cycles for even m is solved by Fu and Huang
and they also settled all cases where m = 2t and t is even. Then, in 2013,
Keranen and Özkan solved the case of 4-cycles and a single factor of m-cycles
where m is odd

Odabaşı and Özkan solved all the cases for (4,m) in 2016 and (4, 4m) in 2017.

Burgess, Danziger and Traetta worked on the odd order cycles and different parity
cycles leaving some possible exceptions (2017, 2018)
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Main Results

Theorem (Burgess, Danziger,Traetta; 2018)

Let m and v be odd integers with such that m ≥ v ≥ 3, and α, β > 0 be integers. Then
(α, β) ∈ HWP(Kmv ;m,mv) if and only if α+ β = mv−1

2
, except possibly when at least

one of the following holds:
1. β = 1,
2. α < m−1

2
,

3. α− m−1
2

∈ {1, 3} and m > v;
4. (m, v) = (5, 3) and α− m−1

2
≡ 1, 3 (mod m).

In our main result we get rid off possible exceptions in the above theorem when m ≥ 7,
so provide a complete solution to the HWP when each 2-factor is either Hamiltonian
cycle or consist of m-cycles only, where m is odd and m ≥ 7.

Theorem

Let m, v be odd integers such that m ≥ 7 and v ≥ 3. Then, (α, β) ∈ HWP(Kmv ;m,
mv) if and only if α+ β = mv−1

2
with α, β ≥ 0.
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Definitions, Notations

For a positive integer v and a set S ⊆ {1, 2, . . . , ⌊ v
2
⌋}, a circulant C(v ;S) is a

graph with vertex set Zv , and edge set E = {{x , y} : δ(x , y) ∈ S} where
δ(x , y) = ±|x − y | mod v . S is called a connection set.

Given a graph G , dG denotes a graph with d components, each of which is
isomorphic to G .

If G and H are two graphs such that V (G) = V (H) but they are edge-disjoint,
then G ⊕ H denotes the graph with the same vertex set and
E(G ⊕ H) = E(G) ∪ E(H).
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Definitions and Notations

The cartesian product of G and H is the graph G × H with the vertex set
V (G ×H) = V (G)×V (H) such that two vertices (x1, y1) and (x2, y2) are adjacent
if and only if either x1 = x2 and {y1, y2} ∈ E(H) or y1 = y2 and {x1, x2} ∈ E(G).

The lexicographic (wreath) product of graphs G and H is the graph G ≀ H with
V (G ≀ H) = V (G)× V (H) such that {(x1, y1), (x2, y2)} ∈ E(G ≀ H) if and only if
either x1 = x2 and {y1, y2} ∈ E(H) or {x1, x2} ∈ E(G).

G [v ] denotes G ≀ K̄v .

We say that the edge {(x1, y1), (x2, y2)} has difference y2 − y1.

A given set of differences S , S ⊆ Zv , G [Sv ] denotes a spanning subgraph of G [v ]
induced by the set of edges with differences in S .
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First Result

Theorem (Burgess et al. 2018)

Let m, v ≥ 3 be odd integers. Then, (α, β) ∈ HWP(Cm[v ];m,mv) if and only if
α+ β = v with α, β ≥ 0, except possibly when β = 1.

Our first result removes possible exception in the above theorem.

Theorem

Let m, v ≥ 3 be odd integers. Then (v − 1, 1) ∈ HWP(Cm[v ];m,mv) except when
v = 3 or v = m + 2 = 5.

Thus, combining the above theorems together, we get a complete solution.

Corollary

Let m, v ≥ 3 be odd integers. Then, (α, β) ∈ HWP(Cm[v ];m,mv) if and only if
α+ β = v with α, β ≥ 0, except when β = 1 and either v = 3 or v = m + 2 = 5.
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More Notation

The vertex set of Kn, where n = mv , is the set Zv × {1, 2, . . . ,m}. All labels are
taken modulo v . All indices are read modulo m where 0 replaced with m.

Suppose that l ≤ p are two integers of the same parity.

Let the xl ∼i xp denote the path < xl , (x + i)l+1, xl+2, (x + i)l+3, xl+4, . . . , xp > of
length p − l if p > l and the single vertex xl otherwise.

li
α∼ pi =< li , (l +1)i−1, (l +2)i , (l +3)i−1, (l +4)i , . . . , pi > is path of length p− l .

li
β∼ pi =< li , (l +2)i+1, (l +2)i , (l +4)i+1, (l +4)i , . . . , pi > is path of length p− l .

li
γ∼ (l + 2j)i−j is the path

< li , (l + 2)i−1, (l + 4)i−2, (l + 6)i−3, (l + 8)i−4, . . . , (l + 2j)i−j > of length j .

li
δ∼ l − 2j i+j is the converse of the previous one, i.e.,

< li , (l − 2)i+1, (l − 4)i+2, (l − 6)i+3, (l − 8)i+4, . . . , (l − 2j)i+j >.
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Preliminary Results

Lemma

For each odd v ≥ 9 and each odd m ≥ 3, there exists a 2-factorization of the graph
Cm[±{0, 1, 2}v ] which contains four Cm-factors and one Hamiltonian cycle.
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Proof

Let v = 2k + 1. Then k ≥ 4. We construct a required 2-factorization
{T1,T2,T3,T4,H} of Cm[±{0, 1, 2}v ]. Let Cm-factors be:

T1 : {(01, 02, 23 ∼1 2m), (11, 12, 33 ∼1 3m), (21, 22, 03 ∼1 0m), (31, 32, 13 ∼1 1m),
(41, 62, 53 ∼1 5m), (51, 52, 43 ∼1 4m), (61, 42, 63 ∼1 6m)} ∪⋃k−3
i=1 {((5 + 2i)1, (5 + 2i)2, (6 + 2i)3 ∼1 (6 + 2i)m), ((6 + 2i)1, (6 + 2i)2, (5 + 2i)3 ∼1

(5 + 2i)m)},
T2 : {(01, (2k)2, 03 ∼2 0m), (11, 22, 13 ∼2 1m), (21, 12, 23 ∼2 2m), (31, 42, 43 ∼2 4m),

(41, 52, 63 ∼2 6m), (51, 32, 33 ∼2 3m), (61, 72, 53 ∼2 5m)} ∪⋃k−3
i=1 {((5 + 2i)1, (7 + 2i)2, (5 + 2i)3 ∼2 (5 + 2i)m), ((6 + 2i)1, (4 + 2i)2, (6 + 2i)3 ∼2

(6 + 2i)m)},
T3 :
{(01, 12, (2k)3 ∼−1 (2k)m), (11, 32, 23 ∼−1 2m), (21, 02, 13 ∼−1 1m), (31, 52, 33 ∼−1 3m),

(41, 22, 43 ∼−1 4m), (51, 42, 53 ∼−1 5m), (61, 62, 73 ∼−1 7m)} ∪⋃k−3
i=1 {((5 + 2i)1, (6 + 2i)2, (4 + 2i)3 ∼−1

(4 + 2i)m), ((6 + 2i)1, (5 + 2i2, (7 + 2i)3 ∼−1 (7 + 2i)m)},
T4 : {(11, 02, 03 ∼−2 0m), (21, 32, 43 ∼−2 4m), (31, 22, 23 ∼−2 2m), (41, 42, 33 ∼−2 3m),

(51, 62, 63 ∼−2 6m)} ∪⋃k−2
i=1 {((4 + 2i)1, (6 + 2i)2, (6 + 2i)3 ∼−2

(6 + 2i)m), ((5 + 2i)1, (3 + 2i)2, (3 + 2i)3 ∼−2 (3 + 2i)m)}.
Moreover, let H = (P1 ∪ P2) if k = 4 and
H = (P1 ∪ R2

k−4 ∪ R2
k−5 ∪ · · · ∪ R2

1 ∪ P2 ∪ R1
1 ∪ R1

2 ∪ · · · ∪ R1
k−4)

Otherwise, let H be a Hamiltonian cycle that can be obtained by gluing up the following
2k − 6 paths P1, P2, R

1
i , R

2
i , for each i = 1, 2, . . . , k − 4:

P1 : < (2k)1, 02, (2k)3 ∼0 (2k)m, 11, (2k)2, 13 ∼0 1m, 01, 22, 33 ∼0 3m, 21, 42, 23 ∼0 2m,
41, 32, 53 ∼0 5m, 31, 12, 03 ∼0 0m, (2k − 1)1 >,
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Preliminary Results

Theorem (Alspach et al. 1989, Burgess et al. 2017)

If v ≥ m ≥ 3 are odd integers then Cm[±{0, 1, 2}v ] has a 2-factorization
into five Cv -factors.

Lemma

If v ≥ 5 is an odd integer then C3[±{0, 1, 2}v ] has a 2-factorization into
one Hamiltonian cycle and four Cv -factors.
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Proof

Let v = 2k + 1. Then k ≥ 2. We construct a 2-factorization {T1,T2,T3,T4,H} of
C3[±{0, 1, 2}v ]. Let Cv -factors be:

T1 : {(01, 02, 23
β∼ (2k)3), (03, 11, 12

β∼ (2k − 1)2), (13, 21, 22
α∼ (2k)2)},

T2 : {(02, 13, 11
β∼ (2k − 1)1), (03, 01, 22

β∼ (2k)2), (12, 23, 21
α∼ (2k)1)},

T3 : {(01, 12, 13
β∼ (2k − 1)3), (02, 03, 21

β∼ (2k)1), (11, 22, 23
α∼ (2k)3)},

T4 : {((2k)3, 02, 21, 12, 31
α∼ (2k − 1)1), ((2k)1, 03, 22, 13, 32

α∼ (2k − 1)2),
((2k)2, 01, 23, 11, 33

α∼ (2k − 1)3)}.
Moreover, H = (01

δ∼ 3k , 2k+2
γ∼ 12, 03

δ∼ 3k+2, 2k+1
γ∼ 11, 02

δ∼ 3k+1, 2k
γ∼ 13) is an

Hamiltonian cycle.
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Signed Langford Sequences

Definition
A signed Langford sequence of order t and defect d is a sequence
±Lt

d = (l−2t , l−2t+1, . . . , l−1, ∗, l1, l2, . . . , l2t) of length 4t + 1 that satisfies the following
conditions:
(1) for every k ∈ ±{d , d + 1, . . . , t + d − 1} there are exactly two elements li , lj ∈ ±Lt

d

such that li = lj = k, and
(2) if li = lj = k, then i < 0 < j and i + j + k = 0.

The existence of signed Langford sequences has been completely settled by Jordon and
Mitchell [31].

Theorem (Jordon, Mitchell; 2022)

For every positive integer d and every integer t ≥ 2d − 1, there exists a signed Langford
sequence of order t and defect d.

Order 5 and defect 2,

(5, 6, 4,−2,−4, 3,−3, 2,−6,−5, ∗, 2, 3, 6, 4, 5,−5,−3,−6,−2,−4)
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Preliminary Results

Signed Langford sequences are useful tools to construct 2-factorizations of
graphs Cm[±Sv ], Cm[±S2v ] and Cm[±S4v ].

Lemma

Let m, v, d and r be integers such that both m and v are odd, m ≥ 3,
0 < d ≤ v+3

6 , 0 ≤ r ≤ v − 2d + 1 and moreover r ̸= 1 when either d ≥ 2
or v = 3 or v = m + 2 = 5. Let S = {d , d + 1, . . . , v−1

2 }. Then there
exists a 2-factorization of the graph Cm[±Sv ] into r Hamiltonian cycles
and (v − 2d − r + 1) Cm-factors.
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Preliminary Results

Theorem (Aubert, Schneider; 1981)

If v ,m ≥ 3 are odd integers then Kv × Cm is decomposable into v+1
2

Hamiltonian cycles.

Let J be a set of positive integers. An (n, J)-resolvable cycle design, denoted
(n, J)-RCD, is a 2-factorization of Kn (when n id odd) or Kn \ I (when n is even) such
that the length of any cycle in the 2-factorization belongs to J. The existence of
(n, {3, 5})-resolvable cycle designs has been completely settled.

Theorem (Alspach et al.; 1989)

For each n ≥ 3 there exists an (n, {3, 5})-RCD if and only if n ̸∈ {4, 6, 7, 11, 12}.

It is known that every connected circulant of valency four is decomposable into two
Hamiltonian cycles.

Theorem (Bermond et al.; 1989)

Every 4-regular connected Cayley graph on a finite Abelian group can be decomposed
into two Hamiltonian cycles.
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Back to Main Results

Theorem

Let m, v ≥ 3 be odd integers. Then (v − 1, 1) ∈ HWP(Cm[v ];m,mv)
except when v = 3 or v = m + 2 = 5.

Proof
Case I: v ≤ 13. Direct constructions of required 2-factorizations are given.
Case II: v ≥ 15.
Factorize Cm[v ] into two factors: Cm[±{0, 1, 2}v ] and Cm[±{3, 4, . . . ,
v−1
2 }v ].

By Lemma 15, there exists a 2-factorization of Cm[±{0, 1, 2}v ] which
contains four Cm-factors and one Hamiltonian cycle.
By Lemma 20, Cm[±{3, 4, . . . , v−1

2 }v ] is factorable into v − 5 Cm factors.
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Back to Main Results

Theorem

Let m, v be odd integers such that m ≥ 7 and v ≥ 3. Then, (α, β) ∈ HWP(Kmv ;m,
mv) if and only if α+ β = mv−1

2
with α, β ≥ 0.

Proof
Let n = mv .
Case I: β ≥ v+5

2
. Factorize Kn into m+1

2
factors: Kv × Cm, Cm[±{1, 2, . . . , v−1

2
}v ], and

m−3
2

copies of Cm[v ].
Case II: β ≤ v+3

2
and β ̸= 1 when v = 3. The complete graph Km is clearly

decomposable into two circulants: C(m; 1, 2) and C(m; 3, 4, . . . , m−1
2

).
If v ̸∈ {7, 11}, consider a 2-factorization F = {F1,F2, . . .F v−1

2
} of Kv such that each

2-factor consists of C3- and C5-cycles only, which exist by Theorem 22.
Case III: β = 1 and v = 3. We decompose Kn in exactly the same way as in Case II.
K3[±{0, 1, 2}m] is factorable, by Lemma 17, into one Hamiltonian cycle and four
Cm-factors. All copies of Cm[3] are factorized into Cm-factors.
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Thank You!
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