COMPLETE SOLUTIONS TO THE UNIFORM HAMILTON-WATERLOO PROBLEM

Sibel Özkan

Gebze Technical University
Joint work With Mariusz Meszka
Combinatorial Designs and Codes - CODESCO'24
University of Sevilla

July 09, 2024

Outline

(1) Outline
(2) Cycle Decompositions
(3) 2-Factorizations
(4) Preliminary Results
(5) Main Results

Cycle Decompositions

- Let G be a graph and H be a subgraph of G. If all edges of G can be decomposed into edge disjoint copies of H, then this decomposition is called an H -decomposition of G.
- If all edges of G can be decomposed into edge disjoint copies of k-factors, then this decomposition is called a k-factorization and G is called k-factorable.
- A parallel class (or resolution class) of a decomposition of G is a subset of vertex disjoint graphs whose union partitions the vertex set of G.
- Cycle decomposition of a graph G is an H-decomposition in which all H's are cycles.
- A resolvable cycle decomposition is a cycle decomposition which forms a 2-factorization, in other words, it is a cycle decomposition which can be partitioned into parallel classes.

Cycle Decompositions

Example

A $\left\{C_{7}, C_{6}, C_{5}, C_{3}\right\}$-decomposition of K_{7}.

Cycle Decompositions

Example

A $\left\{C_{7}, C_{6}, C_{5}, C_{3}\right\}$-decomposition of K_{7}.

Cycle Decompositions

Example

A $\left\{C_{7}, C_{6}, C_{5}, C_{3}\right\}$-decomposition of K_{7}.

Cycle Decompositions

Example

A $\left\{C_{7}, C_{6}, C_{5}, C_{3}\right\}$-decomposition of K_{7}.

Cycle Decompositions

Example

A $\left\{C_{7}, C_{6}, C_{5}, C_{3}\right\}$-decomposition of K_{7}.

Cycle Decompositions

Example

A $\left\{C_{7}, C_{6}, C_{5}, C_{3}\right\}$-decomposition of K_{7}.

K_{7}

C_{7}

C_{6}

C_{5}

C_{3}

Cycle Decompositions

Obvious necessary conditions:

Lemma

Let G be a graph of order n, let $m_{1}, m_{2}, \ldots, m_{k}$ be a sequence of integers, and suppose that there is a decomposition $\left\{G_{1}, G_{2}, \ldots, G_{k}\right\}$ of G where G_{i} is an m_{i}-cycle for $i=1,2, \ldots, k$. Then
(i) $3 \leq m_{i} \leq n$ for $i=1,2, \ldots, k$.
(ii) the number of edges in G is $m_{1}+m_{2}+\cdots+m_{k}$, and
(iii) Each vertex of G has even degree.

Cycle Decompositions

Obvious necessary conditions:

Lemma

Let G be a graph of order n, let $m_{1}, m_{2}, \ldots, m_{k}$ be a sequence of integers, and suppose that there is a decomposition $\left\{G_{1}, G_{2}, \ldots, G_{k}\right\}$ of G where G_{i} is an m_{i}-cycle for $i=1,2, \ldots, k$. Then
(i) $3 \leq m_{i} \leq n$ for $i=1,2, \ldots, k$.
(ii) the number of edges in G is $m_{1}+m_{2}+\cdots+m_{k}$, and
(iii) Each vertex of G has even degree.

In 1981, Alspach conjectured that these are also sufficient for complete graphs and his conjecture is proven by Bryant and Horsley in 2010.

2-Factorizations

Definition

- A $\left\{F_{1}^{k_{1}}, F_{2}^{k_{2}}, \ldots, F_{1}^{k_{1}}\right\}$-factorization of a graph G is a decomposition which consists precisely of k_{i} factors isomorphic to F_{i}.

2-Factorizations

Definition

- A $\left\{F_{1}^{k_{1}}, F_{2}^{k_{2}}, \ldots, F_{1}^{k_{1}}\right\}$-factorization of a graph G is a decomposition which consists precisely of k_{i} factors isomorphic to F_{i}.
- When each F_{i} factor consists of only n_{i} cycles for $i \in[1, t]$, then we will call the F_{i} factor as a $C_{n_{i}}$-factor and call this factorization as a $\left\{C_{n_{1}}^{r_{1}}, C_{n_{2}}^{r_{2}}, \ldots, C_{n_{t}}^{r_{t}}\right\}$ factorization.

2-Factorizations

Definition

- A $\left\{F_{1}^{k_{1}}, F_{2}^{k_{2}}, \ldots, F_{1}^{k_{1}}\right\}$-factorization of a graph G is a decomposition which consists precisely of k_{i} factors isomorphic to F_{i}.
- When each F_{i} factor consists of only n_{i} cycles for $i \in[1, t]$, then we will call the F_{i} factor as a $C_{n_{i}}$-factor and call this factorization as a $\left\{C_{n_{1}}^{r_{1}}, C_{n_{2}}^{r_{2}}, \ldots, C_{n_{t}}^{r_{t}}\right\}$ factorization.
- A k-regular spanning subgraph of G is called a k-factor of G.

2-Factorizations

Definition

- A $\left\{F_{1}^{k_{1}}, F_{2}^{k_{2}}, \ldots, F_{1}^{k_{1}}\right\}$-factorization of a graph G is a decomposition which consists precisely of k_{i} factors isomorphic to F_{i}.
- When each F_{i} factor consists of only n_{i} cycles for $i \in[1, t]$, then we will call the F_{i} factor as a $C_{n_{i}}$-factor and call this factorization as a $\left\{C_{n_{1}}^{r_{1}}, C_{n_{2}}^{r_{2}}, \ldots, C_{n_{t}}^{r_{t}}\right\}$ factorization.
- A k-regular spanning subgraph of G is called a k-factor of G.

Example

There is a C_{5}-factorization of K_{5}.

2-Factorizations

Definition

- A $\left\{F_{1}^{k_{1}}, F_{2}^{k_{2}}, \ldots, F_{1}^{k_{1}}\right\}$-factorization of a graph G is a decomposition which consists precisely of k_{i} factors isomorphic to F_{i}.
- When each F_{i} factor consists of only n_{i} cycles for $i \in[1, t]$, then we will call the F_{i} factor as a $C_{n_{i}}$-factor and call this factorization as a $\left\{C_{n_{1}}^{r_{1}}, C_{n_{2}}^{r_{2}}, \ldots, C_{n_{t}}^{r_{t}}\right\}$ factorization.
- A k-regular spanning subgraph of G is called a k-factor of G.

Example

There is a C_{5}-factorization of K_{5}.

2-Factorizations

Definition

- A $\left\{F_{1}^{k_{1}}, F_{2}^{k_{2}}, \ldots, F_{1}^{k_{1}}\right\}$-factorization of a graph G is a decomposition which consists precisely of k_{i} factors isomorphic to F_{i}.
- When each F_{i} factor consists of only n_{i} cycles for $i \in[1, t]$, then we will call the F_{i} factor as a $C_{n_{i}}$-factor and call this factorization as a $\left\{C_{n_{1}}^{r_{1}}, C_{n_{2}}^{r_{2}}, \ldots, C_{n_{t}}^{r_{t}}\right\}$ factorization.
- A k-regular spanning subgraph of G is called a k-factor of G.

Example

There is a C_{5}-factorization of K_{5}.

The Oberwolfach Problem

- It is motivated by seating arrangements at the meeting; is it possible to seat v participants of the conference in such a way that each person sits next to each other person exactly once over $\left\lfloor\frac{v-1}{2}\right\rfloor$ days, where there are a_{i} round tables with m_{i} seats for $i=1,2, \ldots, s$.

The Oberwolfach Problem

- It is motivated by seating arrangements at the meeting; is it possible to seat v participants of the conference in such a way that each person sits next to each other person exactly once over $\left\lfloor\frac{v-1}{2}\right\rfloor$ days, where there are a_{i} round tables with m_{i} seats for $i=1,2, \ldots, s$.

The Oberwolfach Problem

- It is motivated by seating arrangements at the meeting; is it possible to seat v participants of the conference in such a way that each person sits next to each other person exactly once over $\left\lfloor\frac{v-1}{2}\right\rfloor$ days, where there are a_{i} round tables with m_{i} seats for $i=1,2, \ldots, s$.

- It asks for a 2-factorization of the complete graph K_{v} (for even v, a 2-factorization of $K_{v}-F$ where F is a 1-factor) in which each 2-factor is isomorphic to $\left[m_{1}^{a_{1}}, m_{2}^{a_{2}}, \ldots, m_{s}^{a_{s}}\right]$.

The Oberwolfach Problem

- It is motivated by seating arrangements at the meeting; is it possible to seat v participants of the conference in such a way that each person sits next to each other person exactly once over $\left\lfloor\frac{v-1}{2}\right\rfloor$ days, where there are a_{i} round tables with m_{i} seats for $i=1,2, \ldots, s$.

- It asks for a 2-factorization of the complete graph K_{v} (for even v, a 2-factorization of $K_{v}-F$ where F is a 1-factor) in which each 2-factor is isomorphic to $\left[m_{1}^{a_{1}}, m_{2}^{a_{2}}, \ldots, m_{s}^{a_{s}}\right]$.
- In this case, the corresponding Oberwolfach problem is denoted by $\mathrm{OP}\left(m_{1}^{a_{1}}, m_{2}^{a_{2}}, \ldots, m_{s}^{a_{s}}\right)$.

The Oberwolfach Problem

Example

A solution to $\operatorname{OP}(3,4)$.

Some Known Results

It is known that the solutions to the cases $\mathrm{OP}\left(3^{2}\right), \mathrm{OP}\left(3^{4}\right)$ do not exist. The Oberwolfach Problem for a single cycle size $\mathrm{OP}\left(m^{k}\right)$ for all $m \geq 3$ has been solved.
(odd cycles by Alspach et al.-1989)
(even cycles by Hoffman and Schellenberg-1991)

Some Known Results

It is known that the solutions to the cases $\mathrm{OP}\left(3^{2}\right), \mathrm{OP}\left(3^{4}\right)$ do not exist. The Oberwolfach Problem for a single cycle size $\mathrm{OP}\left(m^{k}\right)$ for all $m \geq 3$ has been solved.
(odd cycles by Alspach et al.-1989)
(even cycles by Hoffman and Schellenberg-1991)
$\mathrm{OP}\left(m_{1}, m_{2}, \ldots, m_{t}\right)$ has a solution for all $m_{1}+m_{2}+\cdots+m_{t} \leq 40$ except for $\mathrm{OP}\left(3^{2}\right)$, $\mathrm{OP}\left(3^{4}\right), \mathrm{OP}(3,4), \mathrm{OP}\left(3^{2}, 5\right)$.
(Adams and Bryant-2006)
(Deza et al.-2010)

Some Known Results

It is known that the solutions to the cases $\mathrm{OP}\left(3^{2}\right), \mathrm{OP}\left(3^{4}\right)$ do not exist. The Oberwolfach Problem for a single cycle size $\mathrm{OP}\left(m^{k}\right)$ for all $m \geq 3$ has been solved.
(odd cycles by Alspach et al.-1989)
(even cycles by Hoffman and Schellenberg-1991)
$\mathrm{OP}\left(m_{1}, m_{2}, \ldots, m_{t}\right)$ has a solution for all $m_{1}+m_{2}+\cdots+m_{t} \leq 40$ except for $\mathrm{OP}\left(3^{2}\right)$, $\mathrm{OP}\left(3^{4}\right), \mathrm{OP}(3,4), \mathrm{OP}\left(3^{2}, 5\right)$.
(Adams and Bryant-2006)
(Deza et al.-2010)
$\mathrm{OP}\left(m_{1}, m_{2}, \ldots, m_{t}\right)$ has a solution for all $m_{1}, m_{2}, \ldots, m_{t}$ all even.
(Bryant and Danziger-2011)

The Hamilton-Waterloo Problem

- One extension of the problem is the Hamilton-Waterloo problem, where the conference takes places in two venues (Hamilton and Waterloo) and one of them has r round tables, each seating m_{i} people for $i=1,2, \ldots, r$ and the second one has s round tables, each seating n_{i} people for $i=1,2, \ldots, s$ (necessarily $\left.\sum_{i=1}^{r} m_{i}=\sum_{i=1}^{r} n_{i}=v\right)$.

The Hamilton-Waterloo Problem

- One extension of the problem is the Hamilton-Waterloo problem, where the conference takes places in two venues (Hamilton and Waterloo) and one of them has r round tables, each seating m_{i} people for $i=1,2, \ldots, r$ and the second one has s round tables, each seating n_{i} people for $i=1,2, \ldots, s$ (necessarily $\left.\sum_{i=1}^{r} m_{i}=\sum_{i=1}^{r} n_{i}=v\right)$.
- In other words, each 2-factor in the factorization is isomorphic to either $\left[m_{1}, m_{2}, \ldots, m_{r}\right]$ or to $\left[n_{1}, n_{2}, \ldots, n_{s}\right]$.

The Hamilton-Waterloo Problem

- One extension of the problem is the Hamilton-Waterloo problem, where the conference takes places in two venues (Hamilton and Waterloo) and one of them has r round tables, each seating m_{i} people for $i=1,2, \ldots, r$ and the second one has s round tables, each seating n_{i} people for $i=1,2, \ldots, s$ (necessarily $\left.\sum_{i=1}^{r} m_{i}=\sum_{i=1}^{r} n_{i}=v\right)$.
- In other words, each 2-factor in the factorization is isomorphic to either $\left[m_{1}, m_{2}, \ldots, m_{r}\right]$ or to $\left[n_{1}, n_{2}, \ldots, n_{s}\right]$.
- If we let $m=m_{1}=m_{2}=\cdots=m_{r}$ and $n=n_{1}=n_{2}=\cdots=n_{s}$, then each 2 -factor is composed of either m-cycles, C_{m}, or n-cycles, C_{n}. Then the Hamilton-Waterloo problem is same as uniformly resolvable $\left\{C_{m}, C_{n}\right\}$-decompositions of K_{v} (or $K_{v}-F$ for even v).

The Hamilton-Waterloo Problem

Notations $(m, n)-U R D(v ; r, s)$ or $(m, n)-H W P(v ; r, s)$ or $\operatorname{HWP}\left(v ; C_{n}^{r}, C_{m}^{s}\right)$ are used to denote such a decomposition on v points with r factors of m-cycles and s factors of n-cycles.

The Hamilton-Waterloo Problem

Notations $(m, n)-U R D(v ; r, s)$ or $(m, n)-H W P(v ; r, s)$ or $\operatorname{HWP}\left(v ; C_{n}^{r}, C_{m}^{s}\right)$ are used to denote such a decomposition on v points with r factors of m-cycles and s factors of n-cycles. Necessary Conditions:

Lemma

(Adams, Billington, Bryant, El-Zanati - 2002) Let v, m, n, r, s be non-negative integers with $m, n \geq 3$. If there exists a $(m, n)-\operatorname{HWP}(v ; r, s)$, then
(i) if $r>0, m$ divides v, and if $s>0, n$ divides v;
(ii) if v is odd, then $r+s=(v-1) / 2$; and
(iii) if v is even, then $r+s=(v-2) / 2$.

Example

Example

A solution to $\operatorname{HWP}\left(12 ; C_{3}^{2}, C_{4}^{3}\right)$.

$1,6,8$	$1,2,3$	$1,9,5,12$	$1,5,7,11$	$1,4,7,10$
$2,7,11$	$4,5,6$	$2,10,8,4$	$2,6,10,9$	$2,5,8,11$
$3,5,10$	$7,8,9$	$3,11,6,7$	$3,8,12,4$	$3,6,9,12$
$4,9,11$	$10,11,12$			

Example

Example

A solution to $\operatorname{HWP}\left(12 ; C_{3}^{2}, C_{4}^{3}\right)$.

$1,6,8$	$1,2,3$	$1,9,5,12$	$1,5,7,11$	$1,4,7,10$
$2,7,11$	$4,5,6$	$2,10,8,4$	$2,6,10,9$	$2,5,8,11$
$3,5,10$	$7,8,9$	$3,11,6,7$	$3,8,12,4$	$3,6,9,12$
$4,9,11$	$10,11,12$			

Example

Example

A solution to $\operatorname{HWP}\left(12 ; C_{3}^{2}, C_{4}^{3}\right)$.

$1,6,8$	$1,2,3$	$1,9,5,12$	$1,5,7,11$	$1,4,7,10$
$2,7,11$	$4,5,6$	$2,10,8,4$	$2,6,10,9$	$2,5,8,11$
$3,5,10$	$7,8,9$	$3,11,6,7$	$3,8,12,4$	$3,6,9,12$
$4,9,11$	$10,11,12$			

Example

Example

A solution to $\operatorname{HWP}\left(12 ; C_{3}^{2}, C_{4}^{3}\right)$.

$1,6,8$	$1,2,3$	$1,9,5,12$	$1,5,7,11$	$1,4,7,10$
$2,7,11$	$4,5,6$	$2,10,8,4$	$2,6,10,9$	$2,5,8,11$
$3,5,10$	$7,8,9$	$3,11,6,7$	$3,8,12,4$	$3,6,9,12$
$4,9,11$	$10,11,12$			

Previous Results

- In 2002, Adams et al.solved the Hamilton-Waterloo problem for the cases $(m, n) \in\{(4,6),(4,8),(4,16),(8,16),(3,5),(3,15),(5,15)\}$ and settled the problem for all $v \leq 16$. Danziger et al. solved the problem for the case $(m, n)=(3,4)$ with a few exceptions.

Previous Results

- In 2002, Adams et al.solved the Hamilton-Waterloo problem for the cases $(m, n) \in\{(4,6),(4,8),(4,16),(8,16),(3,5),(3,15),(5,15)\}$ and settled the problem for all $v \leq 16$. Danziger et al. solved the problem for the case $(m, n)=(3,4)$ with a few exceptions.
- Horak et al., Dinitz and Ling worked on the case $m=3$ and $n=v$, that is, triangle factors and Hamilton cycles. Bryant et al. settled the Hamilton-Waterloo problem for bipartite 2-factors.

Previous Results

- In 2002, Adams et al.solved the Hamilton-Waterloo problem for the cases $(m, n) \in\{(4,6),(4,8),(4,16),(8,16),(3,5),(3,15),(5,15)\}$ and settled the problem for all $v \leq 16$. Danziger et al. solved the problem for the case $(m, n)=(3,4)$ with a few exceptions.
- Horak et al., Dinitz and Ling worked on the case $m=3$ and $n=v$, that is, triangle factors and Hamilton cycles. Bryant et al. settled the Hamilton-Waterloo problem for bipartite 2-factors.
- In 2008, the case of 4-cycles and m-cycles for even m is solved by Fu and Huang and they also settled all cases where $m=2 t$ and t is even. Then, in 2013, Keranen and Özkan solved the case of 4 -cycles and a single factor of m-cycles where m is odd

Previous Results

- In 2002, Adams et al.solved the Hamilton-Waterloo problem for the cases $(m, n) \in\{(4,6),(4,8),(4,16),(8,16),(3,5),(3,15),(5,15)\}$ and settled the problem for all $v \leq 16$. Danziger et al. solved the problem for the case $(m, n)=(3,4)$ with a few exceptions.
- Horak et al., Dinitz and Ling worked on the case $m=3$ and $n=v$, that is, triangle factors and Hamilton cycles. Bryant et al. settled the Hamilton-Waterloo problem for bipartite 2-factors.
- In 2008, the case of 4-cycles and m-cycles for even m is solved by Fu and Huang and they also settled all cases where $m=2 t$ and t is even. Then, in 2013, Keranen and Özkan solved the case of 4-cycles and a single factor of m-cycles where m is odd
- Odabașı and Özkan solved all the cases for $(4, m)$ in 2016 and $(4,4 m)$ in 2017.

Previous Results

- In 2002, Adams et al.solved the Hamilton-Waterloo problem for the cases $(m, n) \in\{(4,6),(4,8),(4,16),(8,16),(3,5),(3,15),(5,15)\}$ and settled the problem for all $v \leq 16$. Danziger et al. solved the problem for the case $(m, n)=(3,4)$ with a few exceptions.
- Horak et al., Dinitz and Ling worked on the case $m=3$ and $n=v$, that is, triangle factors and Hamilton cycles. Bryant et al. settled the Hamilton-Waterloo problem for bipartite 2-factors.
- In 2008, the case of 4-cycles and m-cycles for even m is solved by Fu and Huang and they also settled all cases where $m=2 t$ and t is even. Then, in 2013, Keranen and Özkan solved the case of 4 -cycles and a single factor of m-cycles where m is odd
- Odabașı and Özkan solved all the cases for $(4, m)$ in 2016 and $(4,4 m)$ in 2017.
- Burgess, Danziger and Traetta worked on the odd order cycles and different parity cycles leaving some possible exceptions $(2017,2018)$

Main Results

Theorem (Burgess, Danziger, Traetta; 2018)

Let m and v be odd integers with such that $m \geq v \geq 3$, and $\alpha, \beta>0$ be integers. Then $(\alpha, \beta) \in \operatorname{HWP}\left(K_{m v} ; m, m v\right)$ if and only if $\alpha+\beta=\frac{m v-1}{2}$, except possibly when at least one of the following holds:

1. $\beta=1$,
2. $\alpha<\frac{m-1}{2}$,
3. $\alpha-\frac{m-1}{2} \in\{1,3\}$ and $m>v$;
4. $(m, v)^{2}=(5,3)$ and $\alpha-\frac{m-1}{2} \equiv 1,3(\bmod m)$.

Main Results

Theorem (Burgess, Danziger, Traetta; 2018)

Let m and v be odd integers with such that $m \geq v \geq 3$, and $\alpha, \beta>0$ be integers. Then $(\alpha, \beta) \in \operatorname{HWP}\left(K_{m v} ; m, m v\right)$ if and only if $\alpha+\beta=\frac{m v-1}{2}$, except possibly when at least one of the following holds:

1. $\beta=1$,
2. $\alpha<\frac{m-1}{2}$,
3. $\alpha-\frac{m-1}{2} \in\{1,3\}$ and $m>v$;
4. $(m, v)^{2}=(5,3)$ and $\alpha-\frac{m-1}{2} \equiv 1,3(\bmod m)$.

In our main result we get rid off possible exceptions in the above theorem when $m \geq 7$, so provide a complete solution to the HWP when each 2-factor is either Hamiltonian cycle or consist of m-cycles only, where m is odd and $m \geq 7$.

Theorem

Let m, v be odd integers such that $m \geq 7$ and $v \geq 3$. Then, $(\alpha, \beta) \in \operatorname{HWP}\left(K_{m v} ; m\right.$, $m v$) if and only if $\alpha+\beta=\frac{m v-1}{2}$ with $\alpha, \beta \geq 0$.

Another result, concerning 2-factorizations of complete graphs when one cycle length is a proper divisor of the other, proven by Burgess, Danziger and Traetta in 2018.

Theorem (Burgess, Danziger, Traetta; 2018)

Let m and v be odd integers such that $m, v \geq 3$, and $s, \alpha, \beta>0$ be integers. Then $(\alpha, \beta) \in \operatorname{HWP}\left(K_{s m v} ; m, m v\right)$ if and only if $\alpha+\beta=\left\lfloor\frac{s m v-1}{2}\right\rfloor$, except possibly when at least one of the following holds:

1. $\beta=1$,
2. $(m, s)=(3,6)$,
3. $s \in\{1,2,4\}$, and either $v>m$ or one of the following subcases holds:

3a. $\alpha<\left\lfloor\frac{m s-1}{2}\right\rfloor$,
3b. $\alpha-\left\lfloor\frac{m s-1}{2}\right\rfloor \in\{1,3\}$ and $m>v$,
3c. $(m, v)=(5,3)$ and $\alpha-\left\lfloor\frac{m s-1}{2}\right\rfloor \equiv 1,3(\bmod m)$,
$3 d .(v, s)=(3,2)$.

Another result, concerning 2-factorizations of complete graphs when one cycle length is a proper divisor of the other, proven by Burgess, Danziger and Traetta in 2018.

Theorem (Burgess, Danziger, Traetta; 2018)

Let m and v be odd integers such that $m, v \geq 3$, and $s, \alpha, \beta>0$ be integers. Then $(\alpha, \beta) \in \operatorname{HWP}\left(K_{\text {smv }} ; m, m v\right)$ if and only if $\alpha+\beta=\left\lfloor\frac{\text { smv-1 }}{2}\right\rfloor$, except possibly when at least one of the following holds:

1. $\beta=1$,
2. $(m, s)=(3,6)$,
3. $s \in\{1,2,4\}$, and either $v>m$ or one of the following subcases holds:

3a. $\alpha<\left\lfloor\frac{m s-1}{2}\right\rfloor$,
3b. $\alpha-\left\lfloor\frac{m s-1}{2}\right\rfloor \in\{1,3\}$ and $m>v$,
3c. $(m, v)=(5,3)$ and $\alpha-\left\lfloor\frac{m s-1}{2}\right\rfloor \equiv 1,3(\bmod m)$,
$3 d .(v, s)=(3,2)$.
Our result removes the most of possible exceptions in the above theorem when $m \geq 7$.

Theorem

Let $s \geq 1$ be an integer and m, v be odd integers such that $m \geq 7$ and $v \geq 3$. Then, $(\alpha, \beta) \in \operatorname{HWP}\left(K_{\text {smv }} ; m, m v\right)$ if and only if $\alpha+\beta=\left\lfloor\frac{\text { smv-1 }}{2}\right\rfloor$ with $\alpha, \beta \geq 0$.

Definitions, Notations

- For a positive integer v and a set $S \subseteq\left\{1,2, \ldots,\left\lfloor\frac{v}{2}\right\rfloor\right\}$, a circulant $C(v ; S)$ is a graph with vertex set \mathbb{Z}_{v}, and edge set $E=\{\{x, y\}: \delta(x, y) \in S\}$ where $\delta(x, y)= \pm|x-y| \bmod v . S$ is called a connection set.

Definitions, Notations

- For a positive integer v and a set $S \subseteq\left\{1,2, \ldots,\left\lfloor\frac{v}{2}\right\rfloor\right\}$, a circulant $C(v ; S)$ is a graph with vertex set \mathbb{Z}_{v}, and edge set $E=\{\{x, y\}: \delta(x, y) \in S\}$ where $\delta(x, y)= \pm|x-y| \bmod v . S$ is called a connection set.
- Given a graph $G, d G$ denotes a graph with d components, each of which is isomorphic to G.

Definitions, Notations

- For a positive integer v and a set $S \subseteq\left\{1,2, \ldots,\left\lfloor\frac{v}{2}\right\rfloor\right\}$, a circulant $C(v ; S)$ is a graph with vertex set \mathbb{Z}_{v}, and edge set $E=\{\{x, y\}: \delta(x, y) \in S\}$ where $\delta(x, y)= \pm|x-y| \bmod v . S$ is called a connection set.
- Given a graph $G, d G$ denotes a graph with d components, each of which is isomorphic to G.
- If G and H are two graphs such that $V(G)=V(H)$ but they are edge-disjoint, then $G \oplus H$ denotes the graph with the same vertex set and $E(G \oplus H)=E(G) \cup E(H)$.

Definitions and Notations

- The cartesian product of G and H is the graph $G \times H$ with the vertex set $V(G \times H)=V(G) \times V(H)$ such that two vertices $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ are adjacent if and only if either $x_{1}=x_{2}$ and $\left\{y_{1}, y_{2}\right\} \in E(H)$ or $y_{1}=y_{2}$ and $\left\{x_{1}, x_{2}\right\} \in E(G)$.

Definitions and Notations

- The cartesian product of G and H is the graph $G \times H$ with the vertex set $V(G \times H)=V(G) \times V(H)$ such that two vertices $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ are adjacent if and only if either $x_{1}=x_{2}$ and $\left\{y_{1}, y_{2}\right\} \in E(H)$ or $y_{1}=y_{2}$ and $\left\{x_{1}, x_{2}\right\} \in E(G)$.
- The lexicographic (wreath) product of graphs G and H is the graph $G\{H$ with $V(G\} H)=V(G) \times V(H)$ such that $\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right\} \in E(G \imath H)$ if and only if either $x_{1}=x_{2}$ and $\left\{y_{1}, y_{2}\right\} \in E(H)$ or $\left\{x_{1}, x_{2}\right\} \in E(G)$.

Definitions and Notations

- The cartesian product of G and H is the graph $G \times H$ with the vertex set $V(G \times H)=V(G) \times V(H)$ such that two vertices $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ are adjacent if and only if either $x_{1}=x_{2}$ and $\left\{y_{1}, y_{2}\right\} \in E(H)$ or $y_{1}=y_{2}$ and $\left\{x_{1}, x_{2}\right\} \in E(G)$.
- The lexicographic (wreath) product of graphs G and H is the graph $G 2 H$ with $V(G \imath H)=V(G) \times V(H)$ such that $\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right\} \in E(G \imath H)$ if and only if either $x_{1}=x_{2}$ and $\left\{y_{1}, y_{2}\right\} \in E(H)$ or $\left\{x_{1}, x_{2}\right\} \in E(G)$.
- $G[v]$ denotes $G \imath \bar{K}_{v}$.

Definitions and Notations

- The cartesian product of G and H is the graph $G \times H$ with the vertex set $V(G \times H)=V(G) \times V(H)$ such that two vertices $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ are adjacent if and only if either $x_{1}=x_{2}$ and $\left\{y_{1}, y_{2}\right\} \in E(H)$ or $y_{1}=y_{2}$ and $\left\{x_{1}, x_{2}\right\} \in E(G)$.
- The lexicographic (wreath) product of graphs G and H is the graph $G 2 H$ with $V(G \imath H)=V(G) \times V(H)$ such that $\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right\} \in E(G \imath H)$ if and only if either $x_{1}=x_{2}$ and $\left\{y_{1}, y_{2}\right\} \in E(H)$ or $\left\{x_{1}, x_{2}\right\} \in E(G)$.
- $G[v]$ denotes $G \imath \bar{K}_{v}$.
- We say that the edge $\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right\}$ has difference $y_{2}-y_{1}$.

Definitions and Notations

- The cartesian product of G and H is the graph $G \times H$ with the vertex set $V(G \times H)=V(G) \times V(H)$ such that two vertices $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ are adjacent if and only if either $x_{1}=x_{2}$ and $\left\{y_{1}, y_{2}\right\} \in E(H)$ or $y_{1}=y_{2}$ and $\left\{x_{1}, x_{2}\right\} \in E(G)$.
- The lexicographic (wreath) product of graphs G and H is the graph $G 2 H$ with $V(G\} H)=V(G) \times V(H)$ such that $\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right\} \in E(G \imath H)$ if and only if either $x_{1}=x_{2}$ and $\left\{y_{1}, y_{2}\right\} \in E(H)$ or $\left\{x_{1}, x_{2}\right\} \in E(G)$.
- $G[v]$ denotes $G \backslash \bar{K}_{v}$.
- We say that the edge $\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right\}$ has difference $y_{2}-y_{1}$.
- A given set of differences $S, S \subseteq \mathbb{Z}_{v}, G\left[S_{v}\right]$ denotes a spanning subgraph of $G[v]$ induced by the set of edges with differences in S.

First Result

Theorem (Burgess et al. 2018)

Let $m, v \geq 3$ be odd integers. Then, $(\alpha, \beta) \in \operatorname{HWP}\left(C_{m}[v] ; m, m v\right)$ if and only if $\alpha+\beta=v$ with $\alpha, \beta \geq 0$, except possibly when $\beta=1$.

First Result

Theorem (Burgess et al. 2018)

Let $m, v \geq 3$ be odd integers. Then, $(\alpha, \beta) \in \operatorname{HWP}\left(C_{m}[v] ; m, m v\right)$ if and only if $\alpha+\beta=v$ with $\alpha, \beta \geq 0$, except possibly when $\beta=1$.

Our first result removes possible exception in the above theorem.

Theorem

Let $m, v \geq 3$ be odd integers. Then $(v-1,1) \in \operatorname{HWP}\left(C_{m}[v] ; m, m v\right)$ except when $v=3$ or $v=m+2=5$.

First Result

Theorem (Burgess et al. 2018)

Let $m, v \geq 3$ be odd integers. Then, $(\alpha, \beta) \in \operatorname{HWP}\left(C_{m}[v] ; m, m v\right)$ if and only if $\alpha+\beta=v$ with $\alpha, \beta \geq 0$, except possibly when $\beta=1$.

Our first result removes possible exception in the above theorem.

Theorem

Let $m, v \geq 3$ be odd integers. Then $(v-1,1) \in \operatorname{HWP}\left(C_{m}[v] ; m, m v\right)$ except when $v=3$ or $v=m+2=5$.

Thus, combining the above theorems together, we get a complete solution.

Corollary

Let $m, v \geq 3$ be odd integers. Then, $(\alpha, \beta) \in \operatorname{HWP}\left(C_{m}[v] ; m, m v\right)$ if and only if $\alpha+\beta=v$ with $\alpha, \beta \geq 0$, except when $\beta=1$ and either $v=3$ or $v=m+2=5$.

More Notation

- The vertex set of K_{n}, where $n=m v$, is the set $\mathbb{Z}_{v} \times\{1,2, \ldots, m\}$. All labels are taken modulo v. All indices are read modulo m where 0 replaced with m.

More Notation

- The vertex set of K_{n}, where $n=m v$, is the set $\mathbb{Z}_{v} \times\{1,2, \ldots, m\}$. All labels are taken modulo v. All indices are read modulo m where 0 replaced with m.
- Suppose that $I \leq p$ are two integers of the same parity.

More Notation

- The vertex set of K_{n}, where $n=m v$, is the set $\mathbb{Z}_{v} \times\{1,2, \ldots, m\}$. All labels are taken modulo v. All indices are read modulo m where 0 replaced with m.
- Suppose that $I \leq p$ are two integers of the same parity.
- Let the $x_{l} \sim^{i} x_{p}$ denote the path $<x_{l},(x+i)_{l+1}, x_{l+2},(x+i)_{l+3}, x_{l+4}, \ldots, x_{p}>$ of length $p-I$ if $p>I$ and the single vertex x_{l} otherwise.

More Notation

- The vertex set of K_{n}, where $n=m v$, is the set $\mathbb{Z}_{v} \times\{1,2, \ldots, m\}$. All labels are taken modulo v. All indices are read modulo m where 0 replaced with m.
- Suppose that $I \leq p$ are two integers of the same parity.
- Let the $x_{l} \sim^{i} x_{p}$ denote the path $<x_{l},(x+i)_{l+1}, x_{l+2},(x+i)_{l+3}, x_{l+4}, \ldots, x_{p}>$ of length $p-l$ if $p>l$ and the single vertex x_{l} otherwise.
- $I_{i} \stackrel{\alpha}{\sim} p_{i}=<I_{i},(I+1)_{i-1},(I+2)_{i},(I+3)_{i-1},(I+4)_{i}, \ldots, p_{i}>$ is path of length $p-I$.

More Notation

- The vertex set of K_{n}, where $n=m v$, is the set $\mathbb{Z}_{v} \times\{1,2, \ldots, m\}$. All labels are taken modulo v. All indices are read modulo m where 0 replaced with m.
- Suppose that $I \leq p$ are two integers of the same parity.
- Let the $x_{I} \sim^{i} x_{p}$ denote the path $<x_{I},(x+i)_{I+1}, x_{I+2},(x+i)_{I+3}, x_{I+4}, \ldots, x_{p}>$ of length $p-l$ if $p>l$ and the single vertex x_{l} otherwise.
- $I_{i} \stackrel{\alpha}{\sim} p_{i}=<I_{i},(I+1)_{i-1},(I+2)_{i},(I+3)_{i-1},(I+4)_{i}, \ldots, p_{i}>$ is path of length $p-I$.
- $I_{i} \stackrel{\beta}{\sim} p_{i}=<I_{i},(I+2)_{i+1},(I+2)_{i},(I+4)_{i+1},(I+4)_{i}, \ldots, p_{i}>$ is path of length $p-I$.

More Notation

- The vertex set of K_{n}, where $n=m v$, is the set $\mathbb{Z}_{v} \times\{1,2, \ldots, m\}$. All labels are taken modulo v. All indices are read modulo m where 0 replaced with m.
- Suppose that $I \leq p$ are two integers of the same parity.
- Let the $x_{I} \sim^{i} x_{p}$ denote the path $<x_{I},(x+i)_{I+1}, x_{I+2},(x+i)_{I+3}, x_{I+4}, \ldots, x_{p}>$ of length $p-l$ if $p>l$ and the single vertex x l otherwise.
- $I_{i} \stackrel{\alpha}{\sim} p_{i}=<I_{i},(I+1)_{i-1},(I+2)_{i},(I+3)_{i-1},(I+4)_{i}, \ldots, p_{i}>$ is path of length $p-I$.
- $I_{i} \stackrel{\beta}{\sim} p_{i}=<I_{i},(I+2)_{i+1},(I+2)_{i},(I+4)_{i+1},(I+4)_{i}, \ldots, p_{i}>$ is path of length $p-I$.
- $I_{i} \stackrel{\gamma}{\sim}(I+2 j)_{i-j}$ is the path
$<I_{i},(I+2)_{i-1},(I+4)_{i-2},(I+6)_{i-3},(I+8)_{i-4}, \ldots,(I+2 j)_{i-j}>$ of length j.

More Notation

- The vertex set of K_{n}, where $n=m v$, is the set $\mathbb{Z}_{v} \times\{1,2, \ldots, m\}$. All labels are taken modulo v. All indices are read modulo m where 0 replaced with m.
- Suppose that $I \leq p$ are two integers of the same parity.
- Let the $x_{I} \sim^{i} x_{p}$ denote the path $<x_{l},(x+i)_{I+1}, x_{I+2},(x+i)_{I+3}, x_{I+4}, \ldots, x_{p}>$ of length $p-I$ if $p>I$ and the single verte $x x_{l}$ otherwise.
- $I_{i} \stackrel{\alpha}{\sim} p_{i}=<I_{i},(I+1)_{i-1},(I+2)_{i},(I+3)_{i-1},(I+4)_{i}, \ldots, p_{i}>$ is path of length $p-I$.
- $I_{i} \stackrel{\beta}{\sim} p_{i}=<I_{i},(I+2)_{i+1},(I+2)_{i},(I+4)_{i+1},(I+4)_{i}, \ldots, p_{i}>$ is path of length $p-I$.
- $I_{i} \stackrel{\gamma}{\sim}(I+2 j)_{i-j}$ is the path
$<I_{i},(I+2)_{i-1},(I+4)_{i-2},(I+6)_{i-3},(I+8)_{i-4}, \ldots,(I+2 j)_{i-j}>$ of length j.
- $I_{i} \stackrel{\delta}{\sim} I-2 j_{i+j}$ is the converse of the previous one, i.e., $<I_{i},(I-2)_{i+1},(I-4)_{i+2},(I-6)_{i+3},(I-8)_{i+4}, \ldots,(I-2 j)_{i+j}>$.

Preliminary Results

Lemma

For each odd $v \geq 9$ and each odd $m \geq 3$, there exists a 2-factorization of the graph $C_{m}\left[\pm\{0,1,2\}_{v}\right]$ which contains four C_{m}-factors and one Hamiltonian cycle.

Proof

Let $v=2 k+1$. Then $k \geq 4$. We construct a required 2 -factorization $\left\{T_{1}, T_{2}, T_{3}, T_{4}, H\right\}$ of $C_{m}\left[\pm\{0,1,2\}_{v}\right]$. Let C_{m}-factors be:

Proof

Let $v=2 k+1$. Then $k \geq 4$. We construct a required 2 -factorization $\left\{T_{1}, T_{2}, T_{3}, T_{4}, H\right\}$ of $C_{m}\left[\pm\{0,1,2\}_{v}\right]$. Let C_{m}-factors be:
$T_{1}:\left\{\left(0_{1}, 0_{2}, 2_{3} \sim^{1} 2_{m}\right),\left(1_{1}, 1_{2}, 3_{3} \sim^{1} 3_{m}\right),\left(2_{1}, 2_{2}, 0_{3} \sim^{1} 0_{m}\right),\left(3_{1}, 3_{2}, 1_{3} \sim^{1} 1_{m}\right)\right.$,
$\left.\left(4_{1}, 6_{2}, 5_{3} \sim^{1} 5_{m}\right),\left(5_{1}, 5_{2}, 4_{3} \sim^{1} 4_{m}\right),\left(6_{1}, 4_{2}, 6_{3} \sim^{1} 6_{m}\right)\right\} \cup$
$\bigcup_{i=1}^{k-3}\left\{\left((5+2 i)_{1},(5+2 i)_{2},(6+2 i)_{3} \sim^{1}(6+2 i)_{m}\right),\left((6+2 i)_{1},(6+2 i)_{2},(5+2 i)_{3} \sim^{1}\right.\right.$ $\left.\left.(5+2 i)_{m}\right)\right\}$,

Proof

Let $v=2 k+1$. Then $k \geq 4$. We construct a required 2 -factorization $\left\{T_{1}, T_{2}, T_{3}, T_{4}, H\right\}$ of $C_{m}[\pm\{0,1,2\} v]$. Let C_{m}-factors be:
$T_{1}:\left\{\left(0_{1}, 0_{2}, 2_{3} \sim^{1} 2_{m}\right),\left(1_{1}, 1_{2}, 3_{3} \sim^{1} 3_{m}\right),\left(2_{1}, 2_{2}, 0_{3} \sim^{1} 0_{m}\right),\left(3_{1}, 3_{2}, 1_{3} \sim^{1} 1_{m}\right)\right.$,
$\left.\left(4_{1}, 6_{2}, 5_{3} \sim^{1} 5_{m}\right),\left(5_{1}, 5_{2}, 4_{3} \sim^{1} 4_{m}\right),\left(6_{1}, 4_{2}, 6_{3} \sim^{1} 6_{m}\right)\right\} \cup$
$\bigcup_{i=1}^{k-3}\left\{\left((5+2 i)_{1},(5+2 i)_{2},(6+2 i)_{3} \sim^{1}(6+2 i)_{m}\right),\left((6+2 i)_{1},(6+2 i)_{2},(5+2 i)_{3} \sim^{1}\right.\right.$ $\left.\left.(5+2 i)_{m}\right)\right\}$,
$T_{2}:\left\{\left(0_{1},(2 k)_{2}, 0_{3} \sim^{2} 0_{m}\right),\left(1_{1}, 2_{2}, 1_{3} \sim^{2} 1_{m}\right),\left(2_{1}, 1_{2}, 2_{3} \sim^{2} 2_{m}\right),\left(3_{1}, 4_{2}, 4_{3} \sim^{2} 4_{m}\right)\right.$,
$\left.\left(4_{1}, 5_{2}, 6_{3} \sim^{2} 6_{m}\right),\left(5_{1}, 3_{2}, 3_{3} \sim^{2} 3_{m}\right),\left(6_{1}, 7_{2}, 5_{3} \sim^{2} 5_{m}\right)\right\} \cup$
$\bigcup_{i=1}^{k-3}\left\{\left((5+2 i)_{1},(7+2 i)_{2},(5+2 i)_{3} \sim^{2}(5+2 i)_{m}\right),\left((6+2 i)_{1},(4+2 i)_{2},(6+2 i)_{3} \sim^{2}\right.\right.$ $\left.\left.(6+2 i)_{m}\right)\right\}$,

Proof

Let $v=2 k+1$. Then $k \geq 4$. We construct a required 2 -factorization $\left\{T_{1}, T_{2}, T_{3}, T_{4}, H\right\}$ of $C_{m}\left[\pm\{0,1,2\}_{v}\right]$. Let C_{m}-factors be:
$T_{1}:\left\{\left(0_{1}, 0_{2}, 2_{3} \sim^{1} 2_{m}\right),\left(1_{1}, 1_{2}, 3_{3} \sim^{1} 3_{m}\right),\left(2_{1}, 2_{2}, 0_{3} \sim^{1} 0_{m}\right),\left(3_{1}, 3_{2}, 1_{3} \sim^{1} 1_{m}\right)\right.$,

$$
\left.\left(4_{1}, 6_{2}, 5_{3} \sim^{1} 5_{m}\right),\left(5_{1}, 5_{2}, 4_{3} \sim^{1} 4_{m}\right),\left(6_{1}, 4_{2}, 6_{3} \sim^{1} 6_{m}\right)\right\}
$$

$\bigcup_{i=1}^{k-3}\left\{\left((5+2 i)_{1},(5+2 i)_{2},(6+2 i)_{3} \sim^{1}(6+2 i)_{m}\right),\left((6+2 i)_{1},(6+2 i)_{2},(5+2 i)_{3} \sim^{1}\right.\right.$ $\left.\left.(5+2 i)_{m}\right)\right\}$,
$T_{2}:\left\{\left(0_{1},(2 k)_{2}, 0_{3} \sim^{2} 0_{m}\right),\left(1_{1}, 2_{2}, 1_{3} \sim^{2} 1_{m}\right),\left(2_{1}, 1_{2}, 2_{3} \sim^{2} 2_{m}\right),\left(3_{1}, 4_{2}, 4_{3} \sim^{2} 4_{m}\right)\right.$,
$\left.\left(4_{1}, 5_{2}, 6_{3} \sim^{2} 6_{m}\right),\left(5_{1}, 3_{2}, 3_{3} \sim^{2} 3_{m}\right),\left(6_{1}, 7_{2}, 5_{3} \sim^{2} 5_{m}\right)\right\} \cup$
$\bigcup_{i=1}^{k-3}\left\{\left((5+2 i)_{1},(7+2 i)_{2},(5+2 i)_{3} \sim^{2}(5+2 i)_{m}\right),\left((6+2 i)_{1},(4+2 i)_{2},(6+2 i)_{3} \sim^{2}\right.\right.$ $\left.\left.(6+2 i)_{m}\right)\right\}$,
T_{3} :
$\left\{\left(0_{1}, 1_{2},(2 k)_{3} \sim^{-1}(2 k)_{m}\right),\left(1_{1}, 3_{2}, 2_{3} \sim^{-1} 2_{m}\right),\left(2_{1}, 0_{2}, 1_{3} \sim^{-1} 1_{m}\right),\left(3_{1}, 5_{2}, 3_{3} \sim^{-1} 3_{m}\right)\right.$,
$\left.\left(4_{1}, 2_{2}, 4_{3} \sim^{-1} 4_{m}\right),\left(5_{1}, 4_{2}, 5_{3} \sim^{-1} 5_{m}\right),\left(6_{1}, 6_{2}, 7_{3} \sim^{-1} 7_{m}\right)\right\} \cup$
$\bigcup_{i=1}^{k-3}\left\{\left((5+2 i)_{1},(6+2 i)_{2},(4+2 i)_{3} \sim^{-1}\right.\right.$
$\left.(4+2 i)_{m}\right),\left((6+2 i)_{1},\left(5+2 i_{2},(7+2 i)_{3} \sim^{-1}(7+2 i)_{m}\right)\right\}$,
$T_{4}:\left\{\left(1_{1}, 0_{2}, 0_{3} \sim^{-2} 0_{m}\right),\left(2_{1}, 3_{2}, 4_{3} \sim^{-2} 4_{m}\right),\left(3_{1}, 2_{2}, 2_{3} \sim^{-2} 2_{m}\right),\left(4_{1}, 4_{2}, 3_{3} \sim^{-2} 3_{m}\right)\right.$,
$\left.\left(5_{1}, 6_{2}, 6_{3} \sim^{-2} 6_{m}\right)\right\} \cup$
$\bigcup_{i=1}^{k-2}\left\{\left((4+2 i)_{1},(6+2 i)_{2},(6+2 i)_{3} \sim^{-2}\right.\right.$
$\left.\left.(6+2 i)_{m}\right),\left((5+2 i)_{1},(3+2 i)_{2},(3+2 i)_{3} \sim^{-2}(3+2 i)_{m}\right)\right\}$.

Proof

Let $v=2 k+1$. Then $k \geq 4$. We construct a required 2 -factorization $\left\{T_{1}, T_{2}, T_{3}, T_{4}, H\right\}$ of $C_{m}\left[\pm\{0,1,2\}_{v}\right]$. Let C_{m}-factors be:
$T_{1}:\left\{\left(0_{1}, 0_{2}, 2_{3} \sim^{1} 2_{m}\right),\left(1_{1}, 1_{2}, 3_{3} \sim^{1} 3_{m}\right),\left(2_{1}, 2_{2}, 0_{3} \sim^{1} 0_{m}\right),\left(3_{1}, 3_{2}, 1_{3} \sim^{1} 1_{m}\right)\right.$,
$\left.\left(4_{1}, 6_{2}, 5_{3} \sim^{1} 5_{m}\right),\left(5_{1}, 5_{2}, 4_{3} \sim^{1} 4_{m}\right),\left(6_{1}, 4_{2}, 6_{3} \sim^{1} 6_{m}\right)\right\} \cup$
$\bigcup_{i=1}^{k-3}\left\{\left((5+2 i)_{1},(5+2 i)_{2},(6+2 i)_{3} \sim^{1}(6+2 i)_{m}\right),\left((6+2 i)_{1},(6+2 i)_{2},(5+2 i)_{3} \sim^{1}\right.\right.$ $\left.\left.(5+2 i)_{m}\right)\right\}$,
$T_{2}:\left\{\left(0_{1},(2 k)_{2}, 0_{3} \sim^{2} 0_{m}\right),\left(1_{1}, 2_{2}, 1_{3} \sim^{2} 1_{m}\right),\left(2_{1}, 1_{2}, 2_{3} \sim^{2} 2_{m}\right),\left(3_{1}, 4_{2}, 4_{3} \sim^{2} 4_{m}\right)\right.$,
$\left.\left(4_{1}, 5_{2}, 6_{3} \sim^{2} 6_{m}\right),\left(5_{1}, 3_{2}, 3_{3} \sim^{2} 3_{m}\right),\left(6_{1}, 7_{2}, 5_{3} \sim^{2} 5_{m}\right)\right\} \cup$
$\bigcup_{i=1}^{k-3}\left\{\left((5+2 i)_{1},(7+2 i)_{2},(5+2 i)_{3} \sim^{2}(5+2 i)_{m}\right),\left((6+2 i)_{1},(4+2 i)_{2},(6+2 i)_{3} \sim^{2}\right.\right.$ $\left.\left.(6+2 i)_{m}\right)\right\}$,
T_{3} :
$\left\{\left(0_{1}, 1_{2},(2 k)_{3} \sim^{-1}(2 k)_{m}\right),\left(1_{1}, 3_{2}, 2_{3} \sim^{-1} 2_{m}\right),\left(2_{1}, 0_{2}, 1_{3} \sim^{-1} 1_{m}\right),\left(3_{1}, 5_{2}, 3_{3} \sim^{-1} 3_{m}\right)\right.$,
$\left.\left(4_{1}, 2_{2}, 4_{3} \sim^{-1} 4_{m}\right),\left(5_{1}, 4_{2}, 5_{3} \sim^{-1} 5_{m}\right),\left(6_{1}, 6_{2}, 7_{3} \sim^{-1} 7_{m}\right)\right\} \cup$
$\bigcup_{i=1}^{k-3}\left\{\left((5+2 i)_{1},(6+2 i)_{2},(4+2 i)_{3} \sim^{-1}\right.\right.$
$\left.(4+2 i)_{m}\right),\left((6+2 i)_{1},\left(5+2 i_{2},(7+2 i)_{3} \sim^{-1}(7+2 i)_{m}\right)\right\}$,
$T_{4}:\left\{\left(1_{1}, 0_{2}, 0_{3} \sim^{-2} 0_{m}\right),\left(2_{1}, 3_{2}, 4_{3} \sim^{-2} 4_{m}\right),\left(3_{1}, 2_{2}, 2_{3} \sim^{-2} 2_{m}\right),\left(4_{1}, 4_{2}, 3_{3} \sim^{-2} 3_{m}\right)\right.$, $\left.\left(5_{1}, 6_{2}, 6_{3} \sim^{-2} 6_{m}\right)\right\} \cup$
$\bigcup_{i=1}^{k-2}\left\{\left((4+2 i)_{1},(6+2 i)_{2},(6+2 i)_{3} \sim^{-2}\right.\right.$
$\left.\left.(6+2 i)_{m}\right),\left((5+2 i)_{1},(3+2 i)_{2},(3+2 i)_{3} \sim^{-2}(3+2 i)_{m}\right)\right\}$.
Moreover, let $H=\left(P_{1} \cup P_{2}\right)$ if $k=4$ and
$H=\left(P_{1} \cup R_{k-4}^{2} \cup R_{k-5}^{2} \cup \cdots \cup R_{1}^{2} \cup P_{2} \cup R_{1}^{1} \cup R_{2}^{1} \cup \cdots \cup R_{k-4}^{1}\right)$

Proof

Let $v=2 k+1$. Then $k \geq 4$. We construct a required 2 -factorization $\left\{T_{1}, T_{2}, T_{3}, T_{4}, H\right\}$ of $C_{m}\left[\pm\{0,1,2\}_{v}\right]$. Let C_{m}-factors be:
$T_{1}:\left\{\left(0_{1}, 0_{2}, 2_{3} \sim^{1} 2_{m}\right),\left(1_{1}, 1_{2}, 3_{3} \sim^{1} 3_{m}\right),\left(2_{1}, 2_{2}, 0_{3} \sim^{1} 0_{m}\right),\left(3_{1}, 3_{2}, 1_{3} \sim^{1} 1_{m}\right)\right.$,
$\left.\left(4_{1}, 6_{2}, 5_{3} \sim^{1} 5_{m}\right),\left(5_{1}, 5_{2}, 4_{3} \sim^{1} 4_{m}\right),\left(6_{1}, 4_{2}, 6_{3} \sim^{1} 6_{m}\right)\right\} \cup$
$\bigcup_{i=1}^{k-3}\left\{\left((5+2 i)_{1},(5+2 i)_{2},(6+2 i)_{3} \sim^{1}(6+2 i)_{m}\right),\left((6+2 i)_{1},(6+2 i)_{2},(5+2 i)_{3} \sim^{1}\right.\right.$ $\left.\left.(5+2 i)_{m}\right)\right\}$,
$T_{2}:\left\{\left(0_{1},(2 k)_{2}, 0_{3} \sim^{2} 0_{m}\right),\left(1_{1}, 2_{2}, 1_{3} \sim^{2} 1_{m}\right),\left(2_{1}, 1_{2}, 2_{3} \sim^{2} 2_{m}\right),\left(3_{1}, 4_{2}, 4_{3} \sim^{2} 4_{m}\right)\right.$,
$\left.\left(4_{1}, 5_{2}, 6_{3} \sim^{2} 6_{m}\right),\left(5_{1}, 3_{2}, 3_{3} \sim^{2} 3_{m}\right),\left(6_{1}, 7_{2}, 5_{3} \sim^{2} 5_{m}\right)\right\} \cup$
$\bigcup_{i=1}^{k-3}\left\{\left((5+2 i)_{1},(7+2 i)_{2},(5+2 i)_{3} \sim^{2}(5+2 i)_{m}\right),\left((6+2 i)_{1},(4+2 i)_{2},(6+2 i)_{3} \sim^{2}\right.\right.$ $\left.\left.(6+2 i)_{m}\right)\right\}$,
T_{3} :
$\left\{\left(0_{1}, 1_{2},(2 k)_{3} \sim^{-1}(2 k)_{m}\right),\left(1_{1}, 3_{2}, 2_{3} \sim^{-1} 2_{m}\right),\left(2_{1}, 0_{2}, 1_{3} \sim^{-1} 1_{m}\right),\left(3_{1}, 5_{2}, 3_{3} \sim^{-1} 3_{m}\right)\right.$,
$\left.\left(4_{1}, 2_{2}, 4_{3} \sim^{-1} 4_{m}\right),\left(5_{1}, 4_{2}, 5_{3} \sim^{-1} 5_{m}\right),\left(6_{1}, 6_{2}, 7_{3} \sim^{-1} 7_{m}\right)\right\} \cup$
$\bigcup_{i=1}^{k-3}\left\{\left((5+2 i)_{1},(6+2 i)_{2},(4+2 i)_{3} \sim^{-1}\right.\right.$
$\left.(4+2 i)_{m}\right),\left((6+2 i)_{1},\left(5+2 i_{2},(7+2 i)_{3} \sim^{-1}(7+2 i)_{m}\right)\right\}$,
$T_{4}:\left\{\left(1_{1}, 0_{2}, 0_{3} \sim^{-2} 0_{m}\right),\left(2_{1}, 3_{2}, 4_{3} \sim^{-2} 4_{m}\right),\left(3_{1}, 2_{2}, 2_{3} \sim^{-2} 2_{m}\right),\left(4_{1}, 4_{2}, 3_{3} \sim^{-2} 3_{m}\right)\right.$, $\left.\left(5_{1}, 6_{2}, 6_{3} \sim^{-2} 6_{m}\right)\right\} \cup$
$\bigcup_{i=1}^{k-2}\left\{\left((4+2 i)_{1},(6+2 i)_{2},(6+2 i)_{3} \sim^{-2}\right.\right.$
$\left.\left.(6+2 i)_{m}\right),\left((5+2 i)_{1},(3+2 i)_{2},(3+2 i)_{3} \sim^{-2}(3+2 i)_{m}\right)\right\}$.
Moreover, let $H=\left(P_{1} \cup P_{2}\right)$ if $k=4$ and
$H=\left(P_{1} \cup R_{k-4}^{2} \cup R_{k-5}^{2} \cup \cdots \cup R_{1}^{2} \cup P_{2} \cup R_{1}^{1} \cup R_{2}^{1} \cup \cdots \cup R_{k-4}^{1}\right)$

Preliminary Results

Theorem (Alspach et al. 1989, Burgess et al. 2017)
If $v \geq m \geq 3$ are odd integers then $C_{m}\left[\pm\{0,1,2\}_{v}\right]$ has a 2-factorization into five C_{V}-factors.

Preliminary Results

Theorem (Alspach et al. 1989, Burgess et al. 2017)

If $v \geq m \geq 3$ are odd integers then $C_{m}\left[\pm\{0,1,2\}_{v}\right]$ has a 2-factorization into five C_{V}-factors.

Lemma

If $v \geq 5$ is an odd integer then $C_{3}\left[\pm\{0,1,2\}_{v}\right]$ has a 2-factorization into one Hamiltonian cycle and four C_{v}-factors.

Proof

Let $v=2 k+1$. Then $k \geq 2$. We construct a 2 -factorization $\left\{T_{1}, T_{2}, T_{3}, T_{4}, H\right\}$ of $C_{3}\left[\pm\{0,1,2\}_{\vee}\right]$. Let C_{ν}-factors be:

Proof

Let $v=2 k+1$. Then $k \geq 2$. We construct a 2 -factorization $\left\{T_{1}, T_{2}, T_{3}, T_{4}, H\right\}$ of $C_{3}\left[\pm\{0,1,2\}_{v}\right]$. Let C_{v}-factors be:

$$
T_{1}:\left\{\left(0_{1}, 0_{2}, 2_{3} \stackrel{\beta}{\sim}(2 k)_{3}\right),\left(0_{3}, 1_{1}, 1_{2} \stackrel{\beta}{\sim}(2 k-1)_{2}\right),\left(1_{3}, 2_{1}, 2_{2} \stackrel{\alpha}{\sim}(2 k)_{2}\right)\right\},
$$

Proof

Let $v=2 k+1$. Then $k \geq 2$. We construct a 2-factorization $\left\{T_{1}, T_{2}, T_{3}, T_{4}, H\right\}$ of $C_{3}\left[\pm\{0,1,2\}_{v}\right]$. Let C_{v}-factors be:

$$
\begin{aligned}
& T_{1}:\left\{\left(0_{1}, 0_{2}, 2_{3} \stackrel{\beta}{\sim}(2 k)_{3}\right),\left(0_{3}, 1_{1}, 1_{2} \stackrel{\beta}{\sim}(2 k-1)_{2}\right),\left(1_{3}, 2_{1}, 2_{2} \stackrel{\alpha}{\sim}(2 k)_{2}\right)\right\}, \\
& T_{2}:\left\{\left(0_{2}, 1_{3}, 1_{1} \stackrel{\beta}{\sim}(2 k-1)_{1}\right),\left(0_{3}, 0_{1}, 2_{2} \stackrel{\beta}{\sim}(2 k)_{2}\right),\left(1_{2}, 2_{3}, 2_{1} \stackrel{\alpha}{\sim}(2 k)_{1}\right)\right\},
\end{aligned}
$$

Proof

Let $v=2 k+1$. Then $k \geq 2$. We construct a 2-factorization $\left\{T_{1}, T_{2}, T_{3}, T_{4}, H\right\}$ of $C_{3}\left[\pm\{0,1,2\}_{v}\right]$. Let C_{v}-factors be:

$$
\begin{aligned}
& T_{1}:\left\{\left(0_{1}, 0_{2}, 2_{3} \stackrel{\beta}{\sim}(2 k)_{3}\right),\left(0_{3}, 1_{1}, 1_{2} \stackrel{\beta}{\sim}(2 k-1)_{2}\right),\left(1_{3}, 2_{1}, 2_{2} \stackrel{\alpha}{\sim}(2 k)_{2}\right)\right\}, \\
& T_{2}:\left\{\left(0_{2}, 1_{3}, 1_{1} \stackrel{\beta}{\sim}(2 k-1)_{1}\right),\left(0_{3}, 0_{1}, 2_{2} \underset{\sim}{\sim}(2 k)_{2}\right),\left(1_{2}, 2_{3}, 2_{1} \stackrel{\sim}{\sim}(2 k)_{1}\right)\right\}, \\
& T_{3}:\left\{\left(0_{1}, 1_{2}, 1_{3} \stackrel{\sim}{\sim}(2 k-1)_{3}\right),\left(0_{2}, 0_{3}, 2_{1} \stackrel{\beta}{\sim}(2 k)_{1}\right),\left(1_{1}, 2_{2}, 2_{3} \stackrel{\sim}{\sim}(2 k)_{3}\right)\right\},
\end{aligned}
$$

Proof

Let $v=2 k+1$. Then $k \geq 2$. We construct a 2 -factorization $\left\{T_{1}, T_{2}, T_{3}, T_{4}, H\right\}$ of $C_{3}\left[\pm\{0,1,2\}_{\vee}\right]$. Let C_{v}-factors be:

$$
\begin{aligned}
& T_{1}:\left\{\left(0_{1}, 0_{2}, 2_{3} \stackrel{\beta}{\sim}(2 k)_{3}\right),\left(0_{3}, 1_{1}, 1_{2} \stackrel{\beta}{\sim}(2 k-1)_{2}\right),\left(1_{3}, 2_{1}, 2_{2} \stackrel{\alpha}{\sim}(2 k)_{2}\right)\right\} \text {, } \\
& T_{2}:\left\{\left(0_{2}, 1_{3}, 1_{1} \stackrel{\beta}{\sim}(2 k-1)_{1}\right),\left(0_{3}, 0_{1}, 2_{2} \stackrel{\beta}{\sim}(2 k)_{2}\right),\left(1_{2}, 2_{3}, 2_{1} \stackrel{\alpha}{\sim}(2 k)_{1}\right)\right\} \text {, } \\
& T_{3}:\left\{\left(0_{1}, 1_{2}, 1_{3} \stackrel{\beta}{\sim}(2 k-1)_{3}\right),\left(0_{2}, 0_{3}, 2_{1} \stackrel{\beta}{\sim}(2 k)_{1}\right),\left(1_{1}, 2_{2}, 2_{3} \stackrel{\alpha}{\sim}(2 k)_{3}\right)\right\} \text {, } \\
& T_{4}:\left\{\left((2 k)_{3}, 0_{2}, 2_{1}, 1_{2}, 3_{1} \stackrel{\alpha}{\sim}(2 k-1)_{1}\right),\left((2 k)_{1}, 0_{3}, 2_{2}, 1_{3}, 3_{2} \stackrel{\alpha}{\sim}(2 k-1)_{2}\right)\right. \text {, } \\
& \left.\left((2 k)_{2}, 0_{1}, 2_{3}, 1_{1}, 3_{3} \stackrel{\alpha}{\sim}(2 k-1)_{3}\right)\right\} .
\end{aligned}
$$

Proof

Let $v=2 k+1$. Then $k \geq 2$. We construct a 2-factorization $\left\{T_{1}, T_{2}, T_{3}, T_{4}, H\right\}$ of $C_{3}\left[\pm\{0,1,2\}_{v}\right]$. Let C_{v}-factors be:

$$
\begin{aligned}
T_{1}: & \left\{\left(0_{1}, 0_{2}, 2_{3} \stackrel{\beta}{\sim}(2 k)_{3}\right),\left(0_{3}, 1_{1}, 1_{2} \stackrel{\beta}{\sim}(2 k-1)_{2}\right),\left(1_{3}, 2_{1}, 2_{2} \stackrel{\alpha}{\sim}(2 k)_{2}\right)\right\}, \\
T_{2}: & \left\{\left(0_{2}, 1_{3}, 1_{1} \stackrel{\beta}{\sim}(2 k-1)_{1}\right),\left(0_{3}, 0_{1}, 2_{2} \stackrel{\beta}{\sim}(2 k)_{2}\right),\left(1_{2}, 2_{3}, 2_{1} \stackrel{\alpha}{\sim}(2 k)_{1}\right)\right\}, \\
T_{3}: & \left\{\left(0_{1}, 1_{2}, 1_{3} \stackrel{\beta}{\sim}(2 k-1)_{3}\right),\left(0_{2}, 0_{3}, 2_{1} \stackrel{\beta}{\sim}(2 k)_{1}\right),\left(1_{1}, 2_{2}, 2_{3} \underset{\sim}{\sim}(2 k)_{3}\right)\right\}, \\
T_{4}: & \left\{\left((2 k)_{3}, 0_{2}, 2_{1}, 1_{2}, 3_{1} \underset{\sim}{\sim}(2 k-1)_{1}\right),\left((2 k)_{1}, 0_{3}, 2_{2}, 1_{3}, 3_{2} \underset{\sim}{\sim}(2 k-1)_{2}\right),\right. \\
& \left.\left((2 k)_{2}, 0_{1}, 2_{3}, 1_{1}, 3_{3} \stackrel{\alpha}{\sim}(2 k-1)_{3}\right)\right\} .
\end{aligned}
$$

Moreover, $H=\left(0_{1} \stackrel{\delta}{\sim} 3_{k}, 2_{k+2} \stackrel{\gamma}{\sim} 1_{2}, 0_{3} \stackrel{\delta}{\sim} 3_{k+2}, 2_{k+1} \stackrel{\gamma}{\sim} 1_{1}, 0_{2} \stackrel{\delta}{\sim} 3_{k+1}, 2_{k} \stackrel{\gamma}{\sim} 1_{3}\right)$ is an Hamiltonian cycle.

Signed Langford Sequences

Definition

A signed Langford sequence of order t and defect d is a sequence
$\pm \mathcal{L}_{d}^{t}=\left(I_{-2 t}, I_{-2 t+1}, \ldots, I_{-1}, *, I_{1}, I_{2}, \ldots, I_{2 t}\right)$ of length $4 t+1$ that satisfies the following conditions:
(1) for every $k \in \pm\{d, d+1, \ldots, t+d-1\}$ there are exactly two elements $I_{i}, l_{j} \in \pm \mathcal{L}_{d}^{t}$ such that $I_{i}=l_{j}=k$, and
(2) if $I_{i}=I_{j}=k$, then $i<0<j$ and $i+j+k=0$.

Signed Langford Sequences

Definition

A signed Langford sequence of order t and defect d is a sequence
$\pm \mathcal{L}_{d}^{t}=\left(I_{-2 t}, I_{-2 t+1}, \ldots, I_{-1}, *, I_{1}, I_{2}, \ldots, I_{2 t}\right)$ of length $4 t+1$ that satisfies the following conditions:
(1) for every $k \in \pm\{d, d+1, \ldots, t+d-1\}$ there are exactly two elements $l_{i}, l_{j} \in \pm \mathcal{L}_{d}^{t}$ such that $I_{i}=l_{j}=k$, and
(2) if $I_{i}=l_{j}=k$, then $i<0<j$ and $i+j+k=0$.

The existence of signed Langford sequences has been completely settled by Jordon and Mitchell [31].

Theorem (Jordon, Mitchell; 2022)

For every positive integer d and every integer $t \geq 2 d-1$, there exists a signed Langford sequence of order t and defect d.

Signed Langford Sequences

Definition

A signed Langford sequence of order t and defect d is a sequence $\pm \mathcal{L}_{d}^{t}=\left(I_{-2 t}, I_{-2 t+1}, \ldots, I_{-1}, *, I_{1}, I_{2}, \ldots, I_{2 t}\right)$ of length $4 t+1$ that satisfies the following conditions:
(1) for every $k \in \pm\{d, d+1, \ldots, t+d-1\}$ there are exactly two elements $l_{i}, l_{j} \in \pm \mathcal{L}_{d}^{t}$ such that $l_{i}=l_{j}=k$, and
(2) if $I_{i}=l_{j}=k$, then $i<0<j$ and $i+j+k=0$.

The existence of signed Langford sequences has been completely settled by Jordon and Mitchell [31].

Theorem (Jordon, Mitchell; 2022)

For every positive integer d and every integer $t \geq 2 d-1$, there exists a signed Langford sequence of order t and defect d.

Order 5 and defect 2,

$$
(5,6,4,-2,-4,3,-3,2,-6,-5, *, 2,3,6,4,5,-5,-3,-6,-2,-4)
$$

Preliminary Results

Signed Langford sequences are useful tools to construct 2-factorizations of graphs $C_{m}\left[\pm S_{v}\right], C_{m}\left[\pm S_{2 v}\right]$ and $C_{m}\left[\pm S_{4 v}\right]$.

Preliminary Results

Signed Langford sequences are useful tools to construct 2-factorizations of graphs $C_{m}\left[\pm S_{v}\right], C_{m}\left[\pm S_{2 v}\right]$ and $C_{m}\left[\pm S_{4 v}\right]$.

Lemma

Let m, v, d and r be integers such that both m and v are odd, $m \geq 3$, $0<d \leq \frac{v+3}{6}, 0 \leq r \leq v-2 d+1$ and moreover $r \neq 1$ when either $d \geq 2$ or $v=3$ or $v=m+2=5$. Let $S=\left\{d, d+1, \ldots, \frac{v-1}{2}\right\}$. Then there exists a 2-factorization of the graph $C_{m}\left[\pm S_{v}\right]$ into r Hamiltonian cycles and $(v-2 d-r+1) C_{m}$-factors.

Preliminary Results

Theorem (Aubert, Schneider; 1981)
If $v, m \geq 3$ are odd integers then $K_{v} \times C_{m}$ is decomposable into $\frac{v+1}{2}$ Hamiltonian cycles.

Preliminary Results

Theorem (Aubert, Schneider; 1981)
 If $v, m \geq 3$ are odd integers then $K_{v} \times C_{m}$ is decomposable into $\frac{v+1}{2}$ Hamiltonian cycles.

Let J be a set of positive integers. An (n, J)-resolvable cycle design, denoted (n, J)-RCD, is a 2-factorization of K_{n} (when n id odd) or $K_{n} \backslash I$ (when n is even) such that the length of any cycle in the 2 -factorization belongs to J. The existence of ($n,\{3,5\}$)-resolvable cycle designs has been completely settled.

Theorem (Alspach et al.; 1989)

For each $n \geq 3$ there exists an $(n,\{3,5\})-\operatorname{RCD}$ if and only if $n \notin\{4,6,7,11,12\}$.

Preliminary Results

Theorem (Aubert, Schneider; 1981)

If $v, m \geq 3$ are odd integers then $K_{v} \times C_{m}$ is decomposable into $\frac{v+1}{2}$ Hamiltonian cycles.
Let J be a set of positive integers. An (n, J)-resolvable cycle design, denoted (n, J)-RCD, is a 2-factorization of K_{n} (when n id odd) or $K_{n} \backslash I$ (when n is even) such that the length of any cycle in the 2 -factorization belongs to J. The existence of ($n,\{3,5\}$)-resolvable cycle designs has been completely settled.

Theorem (Alspach et al.; 1989)

For each $n \geq 3$ there exists an $(n,\{3,5\})-\operatorname{RCD}$ if and only if $n \notin\{4,6,7,11,12\}$.
It is known that every connected circulant of valency four is decomposable into two Hamiltonian cycles.

Theorem (Bermond et al.; 1989)

Every 4-regular connected Cayley graph on a finite Abelian group can be decomposed into two Hamiltonian cycles.

Back to Main Results

Theorem

Let $m, v \geq 3$ be odd integers. Then $(v-1,1) \in \operatorname{HWP}\left(C_{m}[v] ; m, m v\right)$ except when $v=3$ or $v=m+2=5$.

Back to Main Results

Theorem

Let $m, v \geq 3$ be odd integers. Then $(v-1,1) \in \operatorname{HWP}\left(C_{m}[v] ; m, m v\right)$ except when $v=3$ or $v=m+2=5$.

Proof
Case I: $v \leq 13$. Direct constructions of required 2-factorizations are given.

Back to Main Results

Theorem

Let $m, v \geq 3$ be odd integers. Then $(v-1,1) \in \operatorname{HWP}\left(C_{m}[v] ; m, m v\right)$ except when $v=3$ or $v=m+2=5$.

Proof
Case I: $v \leq 13$. Direct constructions of required 2-factorizations are given. Case II: $v \geq 15$.

Back to Main Results

Theorem

Let $m, v \geq 3$ be odd integers. Then $(v-1,1) \in \operatorname{HWP}\left(C_{m}[v] ; m, m v\right)$ except when $v=3$ or $v=m+2=5$.

Proof
Case I: $v \leq 13$. Direct constructions of required 2-factorizations are given. Case II: $v \geq 15$.
Factorize $C_{m}[v]$ into two factors: $C_{m}\left[\pm\{0,1,2\}_{v}\right]$ and $C_{m}[\pm\{3,4, \ldots$, $\left.\left.\frac{v-1}{2}\right\}_{v}\right]$.

Back to Main Results

Theorem

Let $m, v \geq 3$ be odd integers. Then $(v-1,1) \in \operatorname{HWP}\left(C_{m}[v] ; m, m v\right)$ except when $v=3$ or $v=m+2=5$.

Proof
Case I: $v \leq 13$. Direct constructions of required 2-factorizations are given. Case II: $v \geq 15$.
Factorize $C_{m}[v]$ into two factors: $C_{m}\left[\pm\{0,1,2\}_{v}\right]$ and $C_{m}[\pm\{3,4, \ldots$, $\left.\left.\frac{v-1}{2}\right\}_{v}\right]$.
By Lemma 15, there exists a 2-factorization of $C_{m}\left[\pm\{0,1,2\}_{v}\right]$ which contains four C_{m}-factors and one Hamiltonian cycle.

Back to Main Results

Theorem

Let $m, v \geq 3$ be odd integers. Then $(v-1,1) \in \operatorname{HWP}\left(C_{m}[v] ; m, m v\right)$ except when $v=3$ or $v=m+2=5$.

Proof
Case I: $v \leq 13$. Direct constructions of required 2-factorizations are given. Case II: $v \geq 15$.
Factorize $C_{m}[v]$ into two factors: $C_{m}\left[\pm\{0,1,2\}_{v}\right]$ and $C_{m}[\pm\{3,4, \ldots$, $\left.\left.\frac{v-1}{2}\right\}_{v}\right]$.
By Lemma 15, there exists a 2-factorization of $C_{m}\left[\pm\{0,1,2\}_{v}\right]$ which contains four C_{m}-factors and one Hamiltonian cycle.
By Lemma 20, $C_{m}\left[\pm\left\{3,4, \ldots, \frac{v-1}{2}\right\}_{v}\right]$ is factorable into $v-5 C_{m}$ factors.

Back to Main Results

Theorem

Let m, v be odd integers such that $m \geq 7$ and $v \geq 3$. Then, $(\alpha, \beta) \in \operatorname{HWP}\left(K_{m v} ; m\right.$, $m v$) if and only if $\alpha+\beta=\frac{m v-1}{2}$ with $\alpha, \beta \geq 0$.

Back to Main Results

Theorem

Let m, v be odd integers such that $m \geq 7$ and $v \geq 3$. Then, $(\alpha, \beta) \in \operatorname{HWP}\left(K_{m v} ; m\right.$, $m v$) if and only if $\alpha+\beta=\frac{m v-1}{2}$ with $\alpha, \beta \geq 0$.

Proof

Back to Main Results

Theorem

Let m, v be odd integers such that $m \geq 7$ and $v \geq 3$. Then, $(\alpha, \beta) \in \operatorname{HWP}\left(K_{m v} ; m\right.$, $m v$) if and only if $\alpha+\beta=\frac{m v-1}{2}$ with $\alpha, \beta \geq 0$.

Proof
Let $n=m v$.

Back to Main Results

Theorem

Let m, v be odd integers such that $m \geq 7$ and $v \geq 3$. Then, $(\alpha, \beta) \in \operatorname{HWP}\left(K_{m v} ; m\right.$, $m v$) if and only if $\alpha+\beta=\frac{m v-1}{2}$ with $\alpha, \beta \geq 0$.

Proof
Let $n=m v$.
Case I: $\beta \geq \frac{v+5}{2}$.

Back to Main Results

Theorem

Let m, v be odd integers such that $m \geq 7$ and $v \geq 3$. Then, $(\alpha, \beta) \in \operatorname{HWP}\left(K_{m v} ; m\right.$, $m v$) if and only if $\alpha+\beta=\frac{m v-1}{2}$ with $\alpha, \beta \geq 0$.

Proof
Let $n=m v$.
Case I: $\beta \geq \frac{v+5}{2}$. Factorize K_{n} into $\frac{m+1}{2}$ factors: $K_{v} \times C_{m}, C_{m}\left[\pm\left\{1,2, \ldots, \frac{v-1}{2}\right\}_{v}\right]$, and $\frac{m-3}{2}$ copies of $C_{m}[v]$.

Back to Main Results

Theorem

Let m, v be odd integers such that $m \geq 7$ and $v \geq 3$. Then, $(\alpha, \beta) \in \operatorname{HWP}\left(K_{m v} ; m\right.$, $m v$) if and only if $\alpha+\beta=\frac{m v-1}{2}$ with $\alpha, \beta \geq 0$.

Proof
Let $n=m v$.
Case I: $\beta \geq \frac{v+5}{2}$. Factorize K_{n} into $\frac{m+1}{2}$ factors: $K_{v} \times C_{m}, C_{m}\left[\pm\left\{1,2, \ldots, \frac{v-1}{2}\right\}_{v}\right]$, and $\frac{m-3}{2}$ copies of $C_{m}[v]$.
Case II: $\beta \leq \frac{v+3}{2}$ and $\beta \neq 1$ when $v=3$. The complete graph K_{m} is clearly decomposable into two circulants: $C(m ; 1,2)$ and $C\left(m ; 3,4, \ldots, \frac{m-1}{2}\right)$.

Back to Main Results

Theorem

Let m, v be odd integers such that $m \geq 7$ and $v \geq 3$. Then, $(\alpha, \beta) \in \operatorname{HWP}\left(K_{m v} ; m\right.$, $m v$) if and only if $\alpha+\beta=\frac{m v-1}{2}$ with $\alpha, \beta \geq 0$.

Proof
Let $n=m v$.
Case I: $\beta \geq \frac{v+5}{2}$. Factorize K_{n} into $\frac{m+1}{2}$ factors: $K_{v} \times C_{m}, C_{m}\left[\pm\left\{1,2, \ldots, \frac{v-1}{2}\right\}_{v}\right]$, and $\frac{m-3}{2}$ copies of $C_{m}[v]$.
Case II: $\beta \leq \frac{v+3}{2}$ and $\beta \neq 1$ when $v=3$. The complete graph K_{m} is clearly decomposable into two circulants: $C(m ; 1,2)$ and $C\left(m ; 3,4, \ldots, \frac{m-1}{2}\right)$. If $v \notin\{7,11\}$, consider a 2-factorization $\mathcal{F}=\left\{F_{1}, F_{2}, \ldots F_{\frac{v-1}{2}}\right\}$ of K_{v} such that each 2-factor consists of C_{3} - and C_{5}-cycles only, which exist by Theorem 22.

Back to Main Results

Theorem

Let m, v be odd integers such that $m \geq 7$ and $v \geq 3$. Then, $(\alpha, \beta) \in \operatorname{HWP}\left(K_{m v} ; m\right.$, $m v$) if and only if $\alpha+\beta=\frac{m v-1}{2}$ with $\alpha, \beta \geq 0$.

Proof
Let $n=m v$.
Case I: $\beta \geq \frac{v+5}{2}$. Factorize K_{n} into $\frac{m+1}{2}$ factors: $K_{v} \times C_{m}, C_{m}\left[\pm\left\{1,2, \ldots, \frac{v-1}{2}\right\}_{v}\right]$, and $\frac{m-3}{2}$ copies of $C_{m}[v]$.
Case II: $\beta \leq \frac{v+3}{2}$ and $\beta \neq 1$ when $v=3$. The complete graph K_{m} is clearly decomposable into two circulants: $C(m ; 1,2)$ and $C\left(m ; 3,4, \ldots, \frac{m-1}{2}\right)$. If $v \notin\{7,11\}$, consider a 2-factorization $\mathcal{F}=\left\{F_{1}, F_{2}, \ldots F_{\frac{v-1}{2}}\right\}$ of K_{v} such that each 2-factor consists of C_{3} - and C_{5}-cycles only, which exist by Theorem 22.
Case III: $\beta=1$ and $v=3$. We decompose K_{n} in exactly the same way as in Case II. $K_{3}\left[\pm\{0,1,2\}_{m}\right]$ is factorable, by Lemma 17, into one Hamiltonian cycle and four C_{m}-factors. All copies of C_{m} [3] are factorized into C_{m}-factors.

Thank You!

s.ozkan@gtu.edu.tr

B. Alspach, H. Gavlas, M. Sajna, and H. Verrall, Cycle decompositions IV: complete directed graphs and fixed length directed cycles, J. Comb. Theory Ser. A. 103(1) (2003), 165-208.
圆 B. Alspach, R. Haggkvist, Some observations on the Oberwolfach problem, J. Graph Theory, 9 (1985), 177-187.
(i) B. Alspach, P. J. Schellenberg, D. R. Stinson and D. Wagner, The Oberwolfach problem and factors of uniform odd length cycles, J. Combin. Theory Ser. A, 52 (1989), 20-43.
(in P. Adams, E. J. Billington, D. E. Bryant, and S. I. El-Zanati, On the Hamilton-Waterloo problem, Graphs Combin. 18 (2002), 31-51.

嗇 P. Adams and D. Bryant, Two-factorisations of complete graphs of orders fifteen and seventeen, Australasian J. of Combinatorics, 35 (2006), 113-118.
(R. Bryant, P. Danziger, On bipartite 2-factorizations of $K_{n}-I$ and the Oberwolfach problem, J. Graph Theory 68(1) (2011), 22-37.

D．Bryant，P．Danziger，and M．Dean，On the Hamilton－Waterloo Problem for Bipartite 2－Factors，J．Comb．Des．21（2）（2013），60－80．

圊 J．C．Bermond，A．Germa，and D．Sotteau，Resolvable decomposition of K_{n}^{*} ，J．Comb．Theory Ser．A．26（2）（1979），179－185．

國 F．E．Bennett，X．Zhang，Resolvable Mendelsohn designs with block size 4，Aequationes Math．40（1）（1990），248－260．
（ A．Burgess，N．Francetic，and M．Sajna，On the directed Oberwolfach Problem with equal cycle lengths：the odd case，Australas．J．Comb． 71（2）（2018），272－292．

A．Burgess，M．Sajna，On the directed Oberwolfach Problem with equal cycle lengths，Electron．J．Comb．21（1）（2014），1－15．

國 A．Burgess，P．Danziger，and T．Traetta，On the Hamilton－Waterloo problem with odd orders，J．Comb．Des．25（6）（2017），258－287．

A．Burgess，P．Danziger，and T．Traetta，On the Hamilton－Waterloo problem with odd cycle lengths，J．Comb．Des．26（2）（2018），51－83．
S. Bonvicini, M. Buratti, Octahedral, dicyclic and special linear solutions of some Hamilton-Waterloo problems, Ars Math. Contemp. 14(1) (2017), 1-14.
圊 P. Danziger, G. Quattrocchi, and B. Stevens, The Hamilton-Waterloo problem for cycle sizes 3 and 4, J. Comb. Des., 17(4) (2009), 342-352.
R. K. Guy, Unsolved combinatorial problems, In: Proceedings of the Conference on Combinatorial Mathematics and Its Applications , Oxford, 1967 (D. J. A. Welsh, Ed.), Academic Press, New York, 1971.
(R) A. Deza, F. Franek, W. Hua, M. Meszka, A. Rosa, Solutions to the Oberwolfach problem for orders 18 to 40, Journal of Combinatorial Mathematics and Combinatorial Computing, 74 (2010), 95102.
R R. Haggkvist, A lemma on cycle decompositions, North-Holland Mathematics Studies 115 (1985), 227-232.
图 D.G. Hoffman, P. J. Schellenberg, The existence of C_{k}-factorizations of $K_{2 n}-F$, Discrete Math. 97 (1991), 243-250.
W. Imrich, S. Klavzar Product graphs: Structure and Recognition, John Wiley and Sons Incorporated, New York, 2000.
R M. Keranen, S. Özkan, The Hamilton-Waterloo problem with 4-cycles and a single factor of n-cycles, Graphs Combin. 29 (2013), 1827-1837.
固 J. Liu, The equipartite Oberwolfach problem with uniform tables, J. Comb. Theory Ser. A. 101 (2003), 20-34.
E. E. Shabani, M. Sajna, On the Directed Oberwolfach Problem with variable cycle lengths, 2020, arXiv preprint arXiv:2009.08731.
斗 U. Odabașı, S. Özkan, The Hamilton-Waterloo problem with C_{4} and C_{m} factors, Discrete Math. 339(1) (2016), 263-269.
B. Alspach, P.J. Schellenberg, D.R. Stinson, D. Wagner, The Oberwolfach problem and factors of uniform odd length cycles, J. Combin. Theory Ser. A 52 (1989) 20-43.
(J. Aubert, B. Schneider, Decomposition de $K_{m}+K_{n}$ en cycles Hamiltoniens, Discrete Math. 37 (1981) 18-27.
S.C. Bermond, O. Favaron, M. Mahéo, Hamiltonian decomposition of Cayley graphs of degree 4, J. Combin. Theory Ser. B 46 (1989) 142-153.
围 A.C. Burgess, P. Danziger, T. Traetta, On the Hamilton-Waterloo problem with odd orders, J. Combin. Des. 25 (2017) 258-287.
固 A.C. Burgess, P. Danziger, T. Traetta, On the Hamilton-Waterloo problem with odd cycle lengths, J. Combin. Des. 26 (2018) 51-83.
C.J. Colbourn, J.H. Dinitz (eds.), Handbook of Combinatorial Designs, 2nd ed., CRC Press, 2007.
R H. Jordon, L. Mitchell, Signed Langford sequences, Discrete Math. 345 (2022) 112719.

