COMPLETE SOLUTIONS TO THE UNIFORM HAMILTON-WATERLOO PROBLEM

Sibel Özkan

Gebze Technical University Joint work With Mariusz Meszka

Combinatorial Designs and Codes - CODESCO'24 University of Sevilla

July 09, 2024

2 Cycle Decompositions

3 2-Factorizations

Preliminary Results

Main Results 5

∃ →

Image: A matrix and a matrix

Cycle Decompositions

- Let G be a graph and H be a subgraph of G. If all edges of G can be decomposed into edge disjoint copies of H, then this decomposition is called an *H*-decomposition of G.
- If all edges of *G* can be decomposed into edge disjoint copies of *k*-factors, then this decomposition is called a *k*-factorization and *G* is called *k*-factorable.
- A *parallel class* (or resolution class) of a decomposition of *G* is a subset of vertex disjoint graphs whose union partitions the vertex set of *G*.
- *Cycle decomposition* of a graph *G* is an *H*-decomposition in which all *H*'s are cycles.
- A *resolvable cycle decomposition* is a cycle decomposition which forms a 2-factorization, in other words, it is a cycle decomposition which can be partitioned into parallel classes.

A { C_7 , C_6 , C_5 , C_3 }-decomposition of K_7 .

A { C_7 , C_6 , C_5 , C_3 }-decomposition of K_7 .

Image: A mathematical states and a mathem

A $\{C_7, C_6, C_5, C_3\}$ -decomposition of K_7 .

э

< 🗗 🕨 <

A $\{C_7, C_6, C_5, C_3\}$ -decomposition of K_7 .

э

< 🗗 🕨 <

A $\{C_7, C_6, C_5, C_3\}$ -decomposition of K_7 .

< 🗗 🕨 <

æ

A { C_7, C_6, C_5, C_3 }-decomposition of K_7 .

∃ >

< 4 ₽ × <

æ

Obvious necessary conditions:

Lemma

Let G be a graph of order n, let $m_1, m_2, ..., m_k$ be a sequence of integers, and suppose that there is a decomposition $\{G_1, G_2, ..., G_k\}$ of G where G_i is an m_i -cycle for i = 1, 2, ..., k. Then

(i)
$$3 \le m_i \le n$$
 for $i = 1, 2, ..., k$.

(ii) the number of edges in G is $m_1 + m_2 + \cdots + m_k$, and

(iii) Each vertex of G has even degree.

Obvious necessary conditions:

Lemma

Let G be a graph of order n, let $m_1, m_2, ..., m_k$ be a sequence of integers, and suppose that there is a decomposition $\{G_1, G_2, ..., G_k\}$ of G where G_i is an m_i -cycle for i = 1, 2, ..., k. Then

(i)
$$3 \le m_i \le n$$
 for $i = 1, 2, ..., k$.

(ii) the number of edges in G is
$$m_1 + m_2 + \cdots + m_k$$
, and

(iii) Each vertex of G has even degree.

In 1981, Alspach conjectured that these are also sufficient for complete graphs and his conjecture is proven by Bryant and Horsley in 2010.

2-Factorizations

Definition

A {F₁^{k1}, F₂^{k2},..., F_i^{ki}}-factorization of a graph G is a decomposition which consists precisely of k_i factors isomorphic to F_i.

< (17) > < (17) > <

2-Factorizations

Definition

- A {F₁^{k1}, F₂^{k2},..., F_i^{kj}}-factorization of a graph G is a decomposition which consists precisely of k_i factors isomorphic to F_i.
- When each F_i factor consists of only n_i cycles for $i \in [1, t]$, then we will call the F_i factor as a C_{n_i} -factor and call this factorization as a $\{C_{n_1}^{r_1}, C_{n_2}^{r_2}, \ldots, C_{n_t}^{r_t}\}$ -factorization.

Definition

- A {F₁^{k1}, F₂^{k2},..., F_i^{kj}}-factorization of a graph G is a decomposition which consists precisely of k_i factors isomorphic to F_i.
- When each F_i factor consists of only n_i cycles for $i \in [1, t]$, then we will call the F_i factor as a C_{n_i} -factor and call this factorization as a $\{C_{n_1}^{r_1}, C_{n_2}^{r_2}, \ldots, C_{n_t}^{r_t}\}$ -factorization.
- A k-regular spanning subgraph of G is called a k-factor of G.

Definition

- A {F₁^{k1}, F₂^{k2},..., F_i^k}-factorization of a graph G is a decomposition which consists precisely of k_i factors isomorphic to F_i.
- When each F_i factor consists of only n_i cycles for $i \in [1, t]$, then we will call the F_i factor as a C_{n_i} -factor and call this factorization as a $\{C_{n_1}^{r_1}, C_{n_2}^{r_2}, \ldots, C_{n_t}^{r_t}\}$ -factorization.
- A *k*-regular spanning subgraph of *G* is called a *k*-factor of *G*.

Example

There is a C_5 -factorization of K_5 .

Definition

- A {F₁^{k1}, F₂^{k2},..., F_i^{kj}}-factorization of a graph G is a decomposition which consists precisely of k_i factors isomorphic to F_i.
- When each F_i factor consists of only n_i cycles for $i \in [1, t]$, then we will call the F_i factor as a C_{n_i} -factor and call this factorization as a $\{C_{n_1}^{r_1}, C_{n_2}^{r_2}, \ldots, C_{n_t}^{r_t}\}$ -factorization.
- A k-regular spanning subgraph of G is called a k-factor of G.

Example

There is a C_5 -factorization of K_5 .

2-Factorizations

Definition

- A {F₁^{k₁}, F₂^{k₂},..., F_i}-factorization of a graph G is a decomposition which consists precisely of k_i factors isomorphic to F_i.
- When each F_i factor consists of only n_i cycles for $i \in [1, t]$, then we will call the F_i factor as a C_{n_i} -factor and call this factorization as a $\{C_{n_1}^{r_1}, C_{n_2}^{r_2}, \ldots, C_{n_t}^{r_t}\}$ -factorization.
- A k-regular spanning subgraph of G is called a k-factor of G.

Example

There is a C_5 -factorization of K_5 .

• It is motivated by seating arrangements at the meeting; is it possible to seat v participants of the conference in such a way that each person sits next to each other person exactly once over $\lfloor \frac{v-1}{2} \rfloor$ days, where there are a_i round tables with m_i seats for i = 1, 2, ..., s.

• It asks for a 2-factorization of the complete graph K_v (for even v, a 2-factorization of $K_v - F$ where F is a 1-factor) in which each 2-factor is isomorphic to $[m_1^{a_1}, m_2^{a_2}, \ldots, m_s^{a_s}]$.

• It is motivated by seating arrangements at the meeting; is it possible to seat v participants of the conference in such a way that each person sits next to each other person exactly once over $\lfloor \frac{v-1}{2} \rfloor$ days, where there are a_i round tables with m_i seats for i = 1, 2, ..., s.

- It asks for a 2-factorization of the complete graph K_v (for even v, a 2-factorization of $K_v F$ where F is a 1-factor) in which each 2-factor is isomorphic to $[m_1^{a_1}, m_2^{a_2}, \ldots, m_s^{a_s}]$.
- In this case, the corresponding Oberwolfach problem is denoted by $OP(m_1^{a_1}, m_2^{a_2}, \dots, m_s^{a_s})$.

09/07/2024

Example

A solution to OP(3, 4).

< 47 ▶

Some Known Results

It is known that the solutions to the cases $OP(3^2)$, $OP(3^4)$ do not exist. The Oberwolfach Problem for a single cycle size $OP(m^k)$ for all $m \ge 3$ has been solved.

(odd cycles by Alspach et al.–1989) (even cycles by Hoffman and Schellenberg–1991)

Some Known Results

It is known that the solutions to the cases $OP(3^2)$, $OP(3^4)$ do not exist. The Oberwolfach Problem for a single cycle size $OP(m^k)$ for all $m \ge 3$ has been solved.

```
(odd cycles by Alspach et al.–1989)
(even cycles by Hoffman and Schellenberg–1991)
```

 $OP(m_1, m_2, ..., m_t)$ has a solution for all $m_1 + m_2 + \cdots + m_t \le 40$ except for $OP(3^2)$, $OP(3^4)$, OP(3, 4), $OP(3^2, 5)$.

(Adams and Bryant–2006) (Deza et al.–2010)

Some Known Results

It is known that the solutions to the cases $OP(3^2)$, $OP(3^4)$ do not exist. The Oberwolfach Problem for a single cycle size $OP(m^k)$ for all $m \ge 3$ has been solved.

```
(odd cycles by Alspach et al.–1989)
(even cycles by Hoffman and Schellenberg–1991)
```

 $OP(m_1, m_2, ..., m_t)$ has a solution for all $m_1 + m_2 + \cdots + m_t \le 40$ except for $OP(3^2)$, $OP(3^4)$, OP(3, 4), $OP(3^2, 5)$.

(Adams and Bryant–2006) (Deza et al.–2010)

 $OP(m_1, m_2, \ldots, m_t)$ has a solution for all m_1, m_2, \ldots, m_t all even.

(Bryant and Danziger-2011)

• One extension of the problem is the Hamilton-Waterloo problem, where the conference takes places in two venues (Hamilton and Waterloo) and one of them has *r* round tables, each seating m_i people for i = 1, 2, ..., r and the second one has *s* round tables, each seating n_i people for i = 1, 2, ..., s (necessarily $\sum_{i=1}^{r} m_i = \sum_{i=1}^{r} n_i = v$).

- One extension of the problem is the Hamilton-Waterloo problem, where the conference takes places in two venues (Hamilton and Waterloo) and one of them has *r* round tables, each seating m_i people for i = 1, 2, ..., r and the second one has *s* round tables, each seating n_i people for i = 1, 2, ..., s (necessarily $\sum_{i=1}^{r} m_i = \sum_{i=1}^{r} n_i = v$).
- In other words, each 2-factor in the factorization is isomorphic to either $[m_1, m_2, \ldots, m_r]$ or to $[n_1, n_2, \ldots, n_s]$.

- One extension of the problem is the Hamilton-Waterloo problem, where the conference takes places in two venues (Hamilton and Waterloo) and one of them has *r* round tables, each seating m_i people for i = 1, 2, ..., r and the second one has *s* round tables, each seating n_i people for i = 1, 2, ..., s (necessarily $\sum_{i=1}^{r} m_i = \sum_{i=1}^{r} n_i = v$).
- In other words, each 2-factor in the factorization is isomorphic to either [m₁, m₂,..., m_r] or to [n₁, n₂,..., n_s].
- If we let $m = m_1 = m_2 = \cdots = m_r$ and $n = n_1 = n_2 = \cdots = n_s$, then each 2-factor is composed of either *m*-cycles, C_m , or *n*-cycles, C_n . Then the Hamilton-Waterloo problem is same as uniformly resolvable $\{C_m, C_n\}$ -decompositions of K_v (or $K_v F$ for even v).

09/07/2024

Notations (m, n) - URD(v; r, s) or (m, n) - HWP(v; r, s) or $HWP(v; C_n^r, C_m^s)$ are used to denote such a decomposition on v points with r factors of m-cycles and s factors of n-cycles.

Notations (m, n) - URD(v; r, s) or (m, n) - HWP(v; r, s) or $HWP(v; C_n^r, C_m^s)$ are used to denote such a decomposition on v points with r factors of m-cycles and s factors of n-cycles. Necessary Conditions:

Lemma

(Adams, Billington, Bryant, El-Zanati - 2002) Let v, m, n, r, s be non-negative integers with $m, n \ge 3$. If there exists a (m, n) - HWP(v; r, s), then

- (i) if r > 0, m divides v, and if s > 0, n divides v;
- (ii) if v is odd, then r + s = (v 1)/2; and
- (iii) if v is even, then r + s = (v 2)/2.

A solution to HWP(12; C_3^2, C_4^3).

1, 6, 8	1, 2, 3	1, 9, 5, 12	1, 5, 7, 11	1, 4, 7, 10
2, 7, 11	4, 5, 6	2, 10, 8, 4	2, 6, 10, 9	2, 5, 8, 11
3, 5, 10	7, 8, 9	3, 11, 6, 7	3, 8, 12, 4	3, 6, 9, 12
4, 9, 11	10, 11, 12			

イロト イヨト イヨト イヨト

A solution to HWP(12; C_3^2, C_4^3).

1, 6, 8	1, 2, 3	1, 9, 5, 12	1, 5, 7, 11	1, 4, 7, 10
2, 7, 11	4, 5, 6	2, 10, 8, 4	2, 6, 10, 9	2, 5, 8, 11
3, 5, 10	7, 8, 9	3, 11, 6, 7	3, 8, 12, 4	3, 6, 9, 12
4, 9, 11	10, 11, 12			

イロト イヨト イヨト イヨト

A solution to HWP(12; C_3^2, C_4^3).

1, 6, 8	1, 2, 3	1, 9, 5, 12	1, 5, 7, 11	1, 4, 7, 10
2, 7, 11	4, 5, 6	2, 10, 8, 4	2, 6, 10, 9	2, 5, 8, 11
3, 5, 10	7, 8, 9	3, 11, 6, 7	3, 8, 12, 4	3, 6, 9, 12
4, 9, 11	10, 11, 12			

イロト イヨト イヨト イヨト

A solution to HWP(12; C_3^2, C_4^3).

Image: A matrix and a matrix

Previous Results

• In 2002, Adams et al.solved the Hamilton-Waterloo problem for the cases $(m, n) \in \{(4, 6), (4, 8), (4, 16), (8, 16), (3, 5), (3, 15), (5, 15)\}$ and settled the problem for all $v \leq 16$. Danziger et al. solved the problem for the case (m, n) = (3, 4) with a few exceptions.

< 4⁻ → <

- In 2002, Adams et al.solved the Hamilton-Waterloo problem for the cases $(m, n) \in \{(4, 6), (4, 8), (4, 16), (8, 16), (3, 5), (3, 15), (5, 15)\}$ and settled the problem for all $v \leq 16$. Danziger et al. solved the problem for the case (m, n) = (3, 4) with a few exceptions.
- Horak et al., Dinitz and Ling worked on the case m = 3 and n = v, that is, triangle factors and Hamilton cycles. Bryant et al. settled the Hamilton-Waterloo problem for bipartite 2-factors.
- In 2002, Adams et al.solved the Hamilton-Waterloo problem for the cases $(m, n) \in \{(4, 6), (4, 8), (4, 16), (8, 16), (3, 5), (3, 15), (5, 15)\}$ and settled the problem for all $v \leq 16$. Danziger et al. solved the problem for the case (m, n) = (3, 4) with a few exceptions.
- Horak et al., Dinitz and Ling worked on the case m = 3 and n = v, that is, triangle factors and Hamilton cycles. Bryant et al. settled the Hamilton-Waterloo problem for bipartite 2-factors.
- In 2008, the case of 4-cycles and *m*-cycles for even *m* is solved by Fu and Huang and they also settled all cases where m = 2t and *t* is even. Then, in 2013, Keranen and Özkan solved the case of 4-cycles and a single factor of *m*-cycles where *m* is odd

- In 2002, Adams et al.solved the Hamilton-Waterloo problem for the cases $(m, n) \in \{(4, 6), (4, 8), (4, 16), (8, 16), (3, 5), (3, 15), (5, 15)\}$ and settled the problem for all $v \leq 16$. Danziger et al. solved the problem for the case (m, n) = (3, 4) with a few exceptions.
- Horak et al., Dinitz and Ling worked on the case m = 3 and n = v, that is, triangle factors and Hamilton cycles. Bryant et al. settled the Hamilton-Waterloo problem for bipartite 2-factors.
- In 2008, the case of 4-cycles and *m*-cycles for even *m* is solved by Fu and Huang and they also settled all cases where m = 2t and *t* is even. Then, in 2013, Keranen and Özkan solved the case of 4-cycles and a single factor of *m*-cycles where *m* is odd
- Odabaşı and Özkan solved all the cases for (4, m) in 2016 and (4, 4m) in 2017.

- In 2002, Adams et al.solved the Hamilton-Waterloo problem for the cases $(m, n) \in \{(4, 6), (4, 8), (4, 16), (8, 16), (3, 5), (3, 15), (5, 15)\}$ and settled the problem for all $v \leq 16$. Danziger et al. solved the problem for the case (m, n) = (3, 4) with a few exceptions.
- Horak et al., Dinitz and Ling worked on the case m = 3 and n = v, that is, triangle factors and Hamilton cycles. Bryant et al. settled the Hamilton-Waterloo problem for bipartite 2-factors.
- In 2008, the case of 4-cycles and *m*-cycles for even *m* is solved by Fu and Huang and they also settled all cases where m = 2t and *t* is even. Then, in 2013, Keranen and Özkan solved the case of 4-cycles and a single factor of *m*-cycles where *m* is odd
- Odabaşı and Özkan solved all the cases for (4, m) in 2016 and (4, 4m) in 2017.
- Burgess, Danziger and Traetta worked on the odd order cycles and different parity cycles leaving some possible exceptions (2017, 2018)

イロト イヨト イヨト

09/07/2024

Theorem (Burgess, Danziger, Traetta; 2018)

Let m and v be odd integers with such that $m \ge v \ge 3$, and $\alpha, \beta > 0$ be integers. Then $(\alpha, \beta) \in \text{HWP}(K_{mv}; m, mv)$ if and only if $\alpha + \beta = \frac{mv-1}{2}$, except possibly when at least one of the following holds:

1. $\beta = 1$, 2. $\alpha < \frac{m-1}{2}$, 3. $\alpha - \frac{m-1}{2} \in \{1,3\}$ and m > v; 4. (m, v) = (5,3) and $\alpha - \frac{m-1}{2} \equiv 1,3 \pmod{m}$.

Theorem (Burgess, Danziger, Traetta; 2018)

Let *m* and *v* be odd integers with such that $m \ge v \ge 3$, and $\alpha, \beta > 0$ be integers. Then $(\alpha, \beta) \in \text{HWP}(K_{mv}; m, mv)$ if and only if $\alpha + \beta = \frac{mv-1}{2}$, except possibly when at least one of the following holds:

1. $\beta = 1$, 2. $\alpha < \frac{m-1}{2}$, 3. $\alpha - \frac{m-1}{2} \in \{1,3\}$ and m > v; 4. (m, v) = (5,3) and $\alpha - \frac{m-1}{2} \equiv 1,3 \pmod{m}$.

In our main result we get rid off possible exceptions in the above theorem when $m \ge 7$, so provide a complete solution to the HWP when each 2-factor is either Hamiltonian cycle or consist of *m*-cycles only, where *m* is odd and $m \ge 7$.

Theorem

Let m, v be odd integers such that $m \ge 7$ and $v \ge 3$. Then, $(\alpha, \beta) \in HWP(K_{mv}; m, mv)$ if and only if $\alpha + \beta = \frac{mv-1}{2}$ with $\alpha, \beta \ge 0$.

2

・ロト ・ 四ト ・ ヨト ・ ヨト …

09/07/2024

Another result, concerning 2-factorizations of complete graphs when one cycle length is a proper divisor of the other, proven by Burgess, Danziger and Traetta in 2018.

Theorem (Burgess, Danziger, Traetta; 2018)

Let m and v be odd integers such that $m, v \ge 3$, and $s, \alpha, \beta > 0$ be integers. Then $(\alpha, \beta) \in HWP(K_{smv}; m, mv)$ if and only if $\alpha + \beta = \lfloor \frac{smv-1}{2} \rfloor$, except possibly when at least one of the following holds:

- 1. $\beta = 1$,
- 2. (m, s) = (3, 6),
- 3. $s \in \{1, 2, 4\}$, and either v > m or one of the following subcases holds:
 - 3a. $\alpha < \lfloor \frac{ms-1}{2} \rfloor$, 3b. $\alpha - \lfloor \frac{ms-1}{2} \rfloor \in \{1,3\}$ and m > v, 3c. (m,v) = (5,3) and $\alpha - \lfloor \frac{ms-1}{2} \rfloor \equiv 1,3 \pmod{m}$,
 - 3d. (v, s) = (3, 2).

イロト イヨト イヨト ・

Another result, concerning 2-factorizations of complete graphs when one cycle length is a proper divisor of the other, proven by Burgess, Danziger and Traetta in 2018.

Theorem (Burgess, Danziger, Traetta; 2018)

Let m and v be odd integers such that $m, v \ge 3$, and $s, \alpha, \beta > 0$ be integers. Then $(\alpha, \beta) \in HWP(K_{smv}; m, mv)$ if and only if $\alpha + \beta = \lfloor \frac{smv-1}{2} \rfloor$, except possibly when at least one of the following holds:

- 1. $\beta = 1$,
- 2. (m, s) = (3, 6),
- 3. $s \in \{1, 2, 4\}$, and either v > m or one of the following subcases holds:
 - 3a. $\alpha < \lfloor \frac{ms-1}{2} \rfloor$, 3b. $\alpha - \lfloor \frac{ms-1}{2} \rfloor \in \{1,3\}$ and m > v, 3c. (m, v) = (5,3) and $\alpha - \lfloor \frac{ms-1}{2} \rfloor \equiv 1,3 \pmod{m}$, 3d. (v, s) = (3, 2).

Our result removes the most of possible exceptions in the above theorem when $m \ge 7$.

Theorem

Let $s \ge 1$ be an integer and m, v be odd integers such that $m \ge 7$ and $v \ge 3$. Then, $(\alpha, \beta) \in \text{HWP}(K_{smv}; m, mv)$ if and only if $\alpha + \beta = \lfloor \frac{smv-1}{2} \rfloor$ with $\alpha, \beta \ge 0$.

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへで

For a positive integer v and a set S ⊆ {1,2,..., [^v/₂]}, a circulant C(v; S) is a graph with vertex set Z_v, and edge set E = {{x, y} : δ(x, y) ∈ S} where δ(x, y) = ±|x - y| mod v. S is called a connection set.

- For a positive integer v and a set S ⊆ {1,2,..., [^v/₂]}, a circulant C(v; S) is a graph with vertex set Z_v, and edge set E = {{x,y} : δ(x,y) ∈ S} where δ(x,y) = ±|x y| mod v. S is called a connection set.
- Given a graph *G*, *dG* denotes a graph with *d* components, each of which is isomorphic to *G*.

- For a positive integer v and a set S ⊆ {1,2,..., [^v/₂]}, a circulant C(v; S) is a graph with vertex set Z_v, and edge set E = {{x, y} : δ(x, y) ∈ S} where δ(x, y) = ±|x y| mod v. S is called a connection set.
- Given a graph G, dG denotes a graph with d components, each of which is isomorphic to G.
- If G and H are two graphs such that V(G) = V(H) but they are edge-disjoint, then G ⊕ H denotes the graph with the same vertex set and E(G ⊕ H) = E(G) ∪ E(H).

- 4 冊 ト 4 三 ト 4 三 ト

• The cartesian product of G and H is the graph $G \times H$ with the vertex set $V(G \times H) = V(G) \times V(H)$ such that two vertices (x_1, y_1) and (x_2, y_2) are adjacent if and only if either $x_1 = x_2$ and $\{y_1, y_2\} \in E(H)$ or $y_1 = y_2$ and $\{x_1, x_2\} \in E(G)$.

- The cartesian product of G and H is the graph $G \times H$ with the vertex set $V(G \times H) = V(G) \times V(H)$ such that two vertices (x_1, y_1) and (x_2, y_2) are adjacent if and only if either $x_1 = x_2$ and $\{y_1, y_2\} \in E(H)$ or $y_1 = y_2$ and $\{x_1, x_2\} \in E(G)$.
- The *lexicographic* (*wreath*) product of graphs G and H is the graph $G \wr H$ with $V(G \wr H) = V(G) \times V(H)$ such that $\{(x_1, y_1), (x_2, y_2)\} \in E(G \wr H)$ if and only if either $x_1 = x_2$ and $\{y_1, y_2\} \in E(H)$ or $\{x_1, x_2\} \in E(G)$.

- The cartesian product of G and H is the graph $G \times H$ with the vertex set $V(G \times H) = V(G) \times V(H)$ such that two vertices (x_1, y_1) and (x_2, y_2) are adjacent if and only if either $x_1 = x_2$ and $\{y_1, y_2\} \in E(H)$ or $y_1 = y_2$ and $\{x_1, x_2\} \in E(G)$.
- The *lexicographic* (*wreath*) product of graphs G and H is the graph $G \wr H$ with $V(G \wr H) = V(G) \times V(H)$ such that $\{(x_1, y_1), (x_2, y_2)\} \in E(G \wr H)$ if and only if either $x_1 = x_2$ and $\{y_1, y_2\} \in E(H)$ or $\{x_1, x_2\} \in E(G)$.
- G[v] denotes $G \wr \overline{K}_v$.

- The cartesian product of G and H is the graph $G \times H$ with the vertex set $V(G \times H) = V(G) \times V(H)$ such that two vertices (x_1, y_1) and (x_2, y_2) are adjacent if and only if either $x_1 = x_2$ and $\{y_1, y_2\} \in E(H)$ or $y_1 = y_2$ and $\{x_1, x_2\} \in E(G)$.
- The *lexicographic* (*wreath*) product of graphs G and H is the graph $G \wr H$ with $V(G \wr H) = V(G) \times V(H)$ such that $\{(x_1, y_1), (x_2, y_2)\} \in E(G \wr H)$ if and only if either $x_1 = x_2$ and $\{y_1, y_2\} \in E(H)$ or $\{x_1, x_2\} \in E(G)$.
- G[v] denotes $G \wr \overline{K}_v$.
- We say that the edge $\{(x_1, y_1), (x_2, y_2)\}$ has difference $y_2 y_1$.

- The cartesian product of G and H is the graph $G \times H$ with the vertex set $V(G \times H) = V(G) \times V(H)$ such that two vertices (x_1, y_1) and (x_2, y_2) are adjacent if and only if either $x_1 = x_2$ and $\{y_1, y_2\} \in E(H)$ or $y_1 = y_2$ and $\{x_1, x_2\} \in E(G)$.
- The lexicographic (wreath) product of graphs G and H is the graph $G \wr H$ with $V(G \wr H) = V(G) \times V(H)$ such that $\{(x_1, y_1), (x_2, y_2)\} \in E(G \wr H)$ if and only if either $x_1 = x_2$ and $\{y_1, y_2\} \in E(H)$ or $\{x_1, x_2\} \in E(G)$.
- G[v] denotes $G \wr \overline{K}_v$.
- We say that the edge $\{(x_1, y_1), (x_2, y_2)\}$ has difference $y_2 y_1$.
- A given set of differences $S, S \subseteq \mathbb{Z}_{v}, G[S_{v}]$ denotes a spanning subgraph of G[v]induced by the set of edges with differences in S.

(日)

Theorem (Burgess et al. 2018)

Let $m, v \ge 3$ be odd integers. Then, $(\alpha, \beta) \in HWP(C_m[v]; m, mv)$ if and only if $\alpha + \beta = v$ with $\alpha, \beta \ge 0$, except possibly when $\beta = 1$.

(日) (四) (日) (日) (日)

Theorem (Burgess et al. 2018)

Let $m, v \ge 3$ be odd integers. Then, $(\alpha, \beta) \in HWP(C_m[v]; m, mv)$ if and only if $\alpha + \beta = v$ with $\alpha, \beta > 0$, except possibly when $\beta = 1$.

Our first result removes possible exception in the above theorem.

Theorem

Let m, v > 3 be odd integers. Then $(v - 1, 1) \in HWP(C_m[v]; m, mv)$ except when v = 3 or v = m + 2 = 5.

(日)

Theorem (Burgess et al. 2018)

Let $m, v \ge 3$ be odd integers. Then, $(\alpha, \beta) \in HWP(C_m[v]; m, mv)$ if and only if $\alpha + \beta = v$ with $\alpha, \beta \ge 0$, except possibly when $\beta = 1$.

Our first result removes possible exception in the above theorem.

Theorem

Let $m, v \ge 3$ be odd integers. Then $(v - 1, 1) \in HWP(C_m[v]; m, mv)$ except when v = 3 or v = m + 2 = 5.

Thus, combining the above theorems together, we get a complete solution.

Corollary

Let $m, v \ge 3$ be odd integers. Then, $(\alpha, \beta) \in HWP(C_m[v]; m, mv)$ if and only if $\alpha + \beta = v$ with $\alpha, \beta \ge 0$, except when $\beta = 1$ and either v = 3 or v = m + 2 = 5.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• The vertex set of K_n , where n = mv, is the set $\mathbb{Z}_v \times \{1, 2, \dots, m\}$. All labels are taken modulo v. All indices are read modulo m where 0 replaced with m.

Image: A matrix and a matrix

- The vertex set of K_n , where n = mv, is the set $\mathbb{Z}_v \times \{1, 2, \dots, m\}$. All labels are taken modulo v. All indices are read modulo m where 0 replaced with m.
- Suppose that $l \leq p$ are two integers of the same parity.

< A > <

- The vertex set of K_n , where n = mv, is the set $\mathbb{Z}_v \times \{1, 2, \dots, m\}$. All labels are taken modulo v. All indices are read modulo m where 0 replaced with m.
- Suppose that $l \leq p$ are two integers of the same parity.
- Let the x_l ∼ⁱ x_p denote the path < x_l, (x + i)_{l+1}, x_{l+2}, (x + i)_{l+3}, x_{l+4},..., x_p > of length p − l if p > l and the single vertex x_l otherwise.

- The vertex set of K_n , where n = mv, is the set $\mathbb{Z}_v \times \{1, 2, \dots, m\}$. All labels are taken modulo v. All indices are read modulo m where 0 replaced with m.
- Suppose that $l \leq p$ are two integers of the same parity.
- Let the x_l ∼ⁱ x_p denote the path < x_l, (x + i)_{l+1}, x_{l+2}, (x + i)_{l+3}, x_{l+4},..., x_p > of length p − l if p > l and the single vertex x_l otherwise.
- $l_i \stackrel{\alpha}{\sim} p_i = < l_i, (l+1)_{i-1}, (l+2)_i, (l+3)_{i-1}, (l+4)_i, \dots, p_i > \text{is path of length } p-l.$

Image: A the provide the second s

- The vertex set of K_n , where n = mv, is the set $\mathbb{Z}_v \times \{1, 2, \dots, m\}$. All labels are taken modulo v. All indices are read modulo m where 0 replaced with m.
- Suppose that $l \leq p$ are two integers of the same parity.
- Let the x_l ∼ⁱ x_p denote the path < x_l, (x + i)_{l+1}, x_{l+2}, (x + i)_{l+3}, x_{l+4},..., x_p > of length p − l if p > l and the single vertex x_l otherwise.
- $l_i \stackrel{\alpha}{\sim} p_i = \langle l_i, (l+1)_{i-1}, (l+2)_i, (l+3)_{i-1}, (l+4)_i, \dots, p_i \rangle$ is path of length p-l.
- $l_i \stackrel{\beta}{\sim} p_i = \langle l_i, (l+2)_{i+1}, (l+2)_i, (l+4)_{i+1}, (l+4)_i, \dots, p_i \rangle$ is path of length p-l.

イロト イヨト イヨト -

- The vertex set of K_n , where n = mv, is the set $\mathbb{Z}_v \times \{1, 2, \dots, m\}$. All labels are taken modulo v. All indices are read modulo m where 0 replaced with m.
- Suppose that *I* ≤ *p* are two integers of the same parity.
- Let the x_l ∼ⁱ x_p denote the path < x_l, (x + i)_{l+1}, x_{l+2}, (x + i)_{l+3}, x_{l+4},..., x_p > of length p − l if p > l and the single vertex x_l otherwise.
- $l_i \stackrel{\alpha}{\sim} p_i = \langle l_i, (l+1)_{i-1}, (l+2)_i, (l+3)_{i-1}, (l+4)_i, \dots, p_i \rangle$ is path of length p-l.
- $l_i \stackrel{\beta}{\sim} p_i = < l_i, (l+2)_{i+1}, (l+2)_i, (l+4)_{i+1}, (l+4)_i, \dots, p_i > \text{ is path of length } p-l.$
- $l_i \stackrel{\gamma}{\sim} (l+2j)_{i-j}$ is the path $< l_i, (l+2)_{i-1}, (l+4)_{i-2}, (l+6)_{i-3}, (l+8)_{i-4}, \dots, (l+2j)_{i-j} > \text{of length } j.$

< ロ > < 同 > < 回 > < 回 > < 回 > <

- The vertex set of K_n , where n = mv, is the set $\mathbb{Z}_v \times \{1, 2, \dots, m\}$. All labels are taken modulo v. All indices are read modulo m where 0 replaced with m.
- Suppose that *I* ≤ *p* are two integers of the same parity.
- Let the x_l ∼ⁱ x_p denote the path < x_l, (x + i)_{l+1}, x_{l+2}, (x + i)_{l+3}, x_{l+4},..., x_p > of length p − l if p > l and the single vertex x_l otherwise.
- $l_i \stackrel{\alpha}{\sim} p_i = < l_i, (l+1)_{i-1}, (l+2)_i, (l+3)_{i-1}, (l+4)_i, \dots, p_i > \text{is path of length } p-l.$
- $l_i \stackrel{\beta}{\sim} p_i = < l_i, (l+2)_{i+1}, (l+2)_i, (l+4)_{i+1}, (l+4)_i, \dots, p_i > \text{is path of length } p-l.$
- $l_i \stackrel{\gamma}{\sim} (l+2j)_{i-j}$ is the path $< l_i, (l+2)_{i-1}, (l+4)_{i-2}, (l+6)_{i-3}, (l+8)_{i-4}, \dots, (l+2j)_{i-j} > \text{of length } j.$
- $l_i \stackrel{\delta}{\sim} l 2j_{i+j}$ is the converse of the previous one, i.e., $< l_i, (l-2)_{i+1}, (l-4)_{i+2}, (l-6)_{i+3}, (l-8)_{i+4}, \dots, (l-2j)_{i+j} > .$

イロト イヨト イヨト -

Lemma

For each odd $v \ge 9$ and each odd $m \ge 3$, there exists a 2-factorization of the graph $C_m[\pm\{0,1,2\}_v]$ which contains four C_m -factors and one Hamiltonian cycle.

Let v = 2k + 1. Then $k \ge 4$. We construct a required 2-factorization $\{T_1, T_2, T_3, T_4, H\}$ of $C_m[\pm\{0, 1, 2\}_v]$. Let C_m -factors be:

æ

イロト イポト イヨト イヨト

Let v = 2k + 1. Then $k \ge 4$. We construct a required 2-factorization { T_1, T_2, T_3, T_4, H } of $C_m[\pm\{0, 1, 2\}_v]$. Let C_m -factors be: $T_1 : \{(0_1, 0_2, 2_3 \sim^1 2_m), (1_1, 1_2, 3_3 \sim^1 3_m), (2_1, 2_2, 0_3 \sim^1 0_m), (3_1, 3_2, 1_3 \sim^1 1_m), (4_1, 6_2, 5_3 \sim^1 5_m), (5_1, 5_2, 4_3 \sim^1 4_m), (6_1, 4_2, 6_3 \sim^1 6_m)\} \cup \bigcup_{i=1}^{k-3} \{((5+2i)_1, (5+2i)_2, (6+2i)_3 \sim^1 (6+2i)_m), ((6+2i)_1, (6+2i)_2, (5+2i)_3 \sim^1 (5+2i)_m)\},$

- 4 同 ト 4 ヨ ト - 4 ヨ ト -

Let
$$v = 2k + 1$$
. Then $k \ge 4$. We construct a required 2-factorization
{ T_1, T_2, T_3, T_4, H } of $C_m[\pm\{0, 1, 2\}_v]$. Let C_m -factors be:
 $T_1 : \{(0_1, 0_2, 2_3 \sim^1 2_m), (1_1, 1_2, 3_3 \sim^1 3_m), (2_1, 2_2, 0_3 \sim^1 0_m), (3_1, 3_2, 1_3 \sim^1 1_m), (4_1, 6_2, 5_3 \sim^1 5_m), (5_1, 5_2, 4_3 \sim^1 4_m), (6_1, 4_2, 6_3 \sim^1 6_m)\} \cup \bigcup_{i=1}^{k-3} \{((5+2i)_1, (5+2i)_2, (6+2i)_3 \sim^1 (6+2i)_m), ((6+2i)_1, (6+2i)_2, (5+2i)_3 \sim^1 (5+2i)_m)\}, T_2 : \{(0_1, (2k)_2, 0_3 \sim^2 0_m), (1_1, 2_2, 1_3 \sim^2 1_m), (2_1, 1_2, 2_3 \sim^2 2_m), (3_1, 4_2, 4_3 \sim^2 4_m), (4_1, 5_2, 6_3 \sim^2 6_m), (5_1, 3_2, 3_3 \sim^2 3_m), (6_1, 7_2, 5_3 \sim^2 5_m)\} \cup \bigcup_{i=1}^{k-3} \{((5+2i)_1, (7+2i)_2, (5+2i)_3 \sim^2 (5+2i)_m), ((6+2i)_1, (4+2i)_2, (6+2i)_3 \sim^2 (6+2i)_m)\}, (6+2i)_m\}, T_2 : T_1 = T_1 = T_2 = T_1 = T_2 = T_1 = T_2 = T_$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - の々で

Let v = 2k + 1. Then k > 4. We construct a required 2-factorization $\{T_1, T_2, T_3, T_4, H\}$ of $C_m[\pm \{0, 1, 2\}_v]$. Let C_m -factors be: $T_1: \{(0_1, 0_2, 2_3 \sim^1 2_m), (1_1, 1_2, 3_3 \sim^1 3_m), (2_1, 2_2, 0_3 \sim^1 0_m), (3_1, 3_2, 1_3 \sim^1 1_m), (3_1, 3_2, 1_$ $(4_1, 6_2, 5_3 \sim^1 5_m), (5_1, 5_2, 4_3 \sim^1 4_m), (6_1, 4_2, 6_3 \sim^1 6_m) \} \cup$ $|\int_{i=1}^{k-3} \{((5+2i)_1, (5+2i)_2, (6+2i)_3 \sim^1 (6+2i)_m), ((6+2i)_1, (6+2i)_2, (5+2i)_3 \sim^1 (6+2i)_2, (6+2i)_3 \sim^1 (6$ $(5+2i)_m$, $T_2: \{(0_1, (2k)_2, 0_3 \sim^2 0_m), (1_1, 2_2, 1_3 \sim^2 1_m), (2_1, 1_2, 2_3 \sim^2 2_m), (3_1, 4_2, 4_3 \sim^2 4_m), (2_1, 1_2, 2_3 \sim^2 2_m), (3_1, 4_2, 4_3 \sim^2 4_m), (3_1, 4_2,$ $(4_1, 5_2, 6_3 \sim^2 6_m), (5_1, 3_2, 3_3 \sim^2 3_m), (6_1, 7_2, 5_3 \sim^2 5_m) \} \cup$ $\bigcup_{k=1}^{k=1} \{((5+2i)_1, (7+2i)_2, (5+2i)_3 \sim^2 (5+2i)_m), ((6+2i)_1, (4+2i)_2, (6+2i)_3 \sim^2 (5+2i)_m), ((6+2i)_1, (6+2i)_2, (6+2i)_3 \sim^2 (5+2i)_3 \sim^2$ $(6+2i)_m$, T_3 : $\{(0_1, 1_2, (2k)_3 \sim^{-1} (2k)_m), (1_1, 3_2, 2_3 \sim^{-1} 2_m), (2_1, 0_2, 1_3 \sim^{-1} 1_m), (3_1, 5_2, 3_3 \sim^{-1} 3_m), (3_1, 5_2, 3_m), (3_1$ $(4_1, 2_2, 4_3 \sim^{-1} 4_m), (5_1, 4_2, 5_3 \sim^{-1} 5_m), (6_1, 6_2, 7_3 \sim^{-1} 7_m) \} \cup$ $\bigcup_{i=1}^{k-3} \{((5+2i)_1, (6+2i)_2, (4+2i)_3 \sim^{-1} \}$ $(4+2i)_m$, $((6+2i)_1, (5+2i_2, (7+2i)_3 \sim (7+2i)_m))$, $T_4: \{(1_1, 0_2, 0_3 \sim^{-2} 0_m), (2_1, 3_2, 4_3 \sim^{-2} 4_m), (3_1, 2_2, 2_3 \sim^{-2} 2_m), (4_1, 4_2, 3_3 \sim^{-2} 3_m).$ $(5_1, 6_2, 6_3 \sim^{-2} 6_m) \} \cup$ $| |_{i=1}^{k-2} \{ ((4+2i)_1, (6+2i)_2, (6+2i)_3 \sim^{-2} \}$ $(6+2i)_m$, $((5+2i)_1, (3+2i)_2, (3+2i)_3 \sim^{-2} (3+2i)_m)$.

・ロト ・ 戸 ・ ・ ヨ ト ・ ヨ ・ うへつ

Let v = 2k + 1. Then k > 4. We construct a required 2-factorization $\{T_1, T_2, T_3, T_4, H\}$ of $C_m[\pm\{0, 1, 2\}_v]$. Let C_m -factors be: $T_1: \{(0_1, 0_2, 2_3 \sim^1 2_m), (1_1, 1_2, 3_3 \sim^1 3_m), (2_1, 2_2, 0_3 \sim^1 0_m), (3_1, 3_2, 1_3 \sim^1 1_m), (3_1, 3_2, 1_$ $(4_1, 6_2, 5_3 \sim^1 5_m), (5_1, 5_2, 4_3 \sim^1 4_m), (6_1, 4_2, 6_3 \sim^1 6_m) \} \cup$ $|\int_{i=1}^{k-3} \{((5+2i)_1, (5+2i)_2, (6+2i)_3 \sim^1 (6+2i)_m), ((6+2i)_1, (6+2i)_2, (5+2i)_3 \sim^1 (6+2i)_2, (6+2i)_3 \sim^1 (6$ $(5+2i)_m$, $T_2: \{(0_1, (2k)_2, 0_3 \sim^2 0_m), (1_1, 2_2, 1_3 \sim^2 1_m), (2_1, 1_2, 2_3 \sim^2 2_m), (3_1, 4_2, 4_3 \sim^2 4_m), (3_1, 4_2, 4_3 \sim^2 4_m), (3_2, 4_3 \sim^2 4_m), (3_3, 4_2, 4_3 \sim^2 4_m), (3_3, 4_3 \sim^2 4_m), (3_3,$ $(4_1, 5_2, 6_3 \sim^2 6_m), (5_1, 3_2, 3_3 \sim^2 3_m), (6_1, 7_2, 5_3 \sim^2 5_m) \} \cup$ $\bigcup_{k=1}^{k=1} \{((5+2i)_1, (7+2i)_2, (5+2i)_3 \sim^2 (5+2i)_m), ((6+2i)_1, (4+2i)_2, (6+2i)_3 \sim^2 (5+2i)_m), ((6+2i)_1, (6+2i)_2, (6+2i)_3 \sim^2 (5+2i)_3 \sim^2$ $(6+2i)_m$, T_3 : $\{(0_1, 1_2, (2k)_3 \sim^{-1} (2k)_m), (1_1, 3_2, 2_3 \sim^{-1} 2_m), (2_1, 0_2, 1_3 \sim^{-1} 1_m), (3_1, 5_2, 3_3 \sim^{-1} 3_m), (3_1, 5_2, 3_m), (3_1$ $(4_1, 2_2, 4_3 \sim^{-1} 4_m), (5_1, 4_2, 5_3 \sim^{-1} 5_m), (6_1, 6_2, 7_3 \sim^{-1} 7_m) \} \cup$ $\bigcup_{i=1}^{k-3} \{((5+2i)_1, (6+2i)_2, (4+2i)_3 \sim^{-1} \}$ $(4+2i)_m$, $((6+2i)_1, (5+2i_2, (7+2i)_3 \sim (7+2i)_m))$, $T_4: \{(1_1, 0_2, 0_3 \sim^{-2} 0_m), (2_1, 3_2, 4_3 \sim^{-2} 4_m), (3_1, 2_2, 2_3 \sim^{-2} 2_m), (4_1, 4_2, 3_3 \sim^{-2} 3_m).$ $(5_1, 6_2, 6_3 \sim^{-2} 6_m) \} \cup$ $| |_{i=1}^{k-2} \{ ((4+2i)_1, (6+2i)_2, (6+2i)_3 \sim^{-2} \}$ $(6+2i)_m$, $((5+2i)_1, (3+2i)_2, (3+2i)_3 \sim^{-2} (3+2i)_m)$. Moreover, let $H = (P_1 \cup P_2)$ if k = 4 and $H = (P_1 \cup R_{k-4}^2 \cup R_{k-5}^2 \cup \cdots \cup R_1^2 \cup P_2 \cup R_1^1 \cup R_2^1 \cup \cdots \cup R_{k-4}^1) =$ (CODESCO'24) 09/07/2024 21 / 29

Let v = 2k + 1. Then k > 4. We construct a required 2-factorization $\{T_1, T_2, T_3, T_4, H\}$ of $C_m[\pm\{0, 1, 2\}_v]$. Let C_m -factors be: $T_1: \{(0_1, 0_2, 2_3 \sim^1 2_m), (1_1, 1_2, 3_3 \sim^1 3_m), (2_1, 2_2, 0_3 \sim^1 0_m), (3_1, 3_2, 1_3 \sim^1 1_m), (3_1, 3_2, 1_$ $(4_1, 6_2, 5_3 \sim^1 5_m), (5_1, 5_2, 4_3 \sim^1 4_m), (6_1, 4_2, 6_3 \sim^1 6_m) \} \cup$ $|\int_{i=1}^{k-3} \{((5+2i)_1, (5+2i)_2, (6+2i)_3 \sim^1 (6+2i)_m), ((6+2i)_1, (6+2i)_2, (5+2i)_3 \sim^1 (6+2i)_2, (6+2i)_3 \sim^1 (6$ $(5+2i)_m$, $T_2: \{(0_1, (2k)_2, 0_3 \sim^2 0_m), (1_1, 2_2, 1_3 \sim^2 1_m), (2_1, 1_2, 2_3 \sim^2 2_m), (3_1, 4_2, 4_3 \sim^2 4_m), (3_1, 4_2, 4_3 \sim^2 4_m), (3_2, 4_3 \sim^2 4_m), (3_3, 4_2, 4_3 \sim^2 4_m), (3_3, 4_3 \sim^2 4_m), (3_3,$ $(4_1, 5_2, 6_3 \sim^2 6_m), (5_1, 3_2, 3_3 \sim^2 3_m), (6_1, 7_2, 5_3 \sim^2 5_m) \} \cup$ $\bigcup_{k=1}^{k=1} \{((5+2i)_1, (7+2i)_2, (5+2i)_3 \sim^2 (5+2i)_m), ((6+2i)_1, (4+2i)_2, (6+2i)_3 \sim^2 (5+2i)_m), ((6+2i)_1, (6+2i)_2, (6+2i)_3 \sim^2 (5+2i)_3 \sim^2$ $(6+2i)_m$, T_3 : $\{(0_1, 1_2, (2k)_3 \sim^{-1} (2k)_m), (1_1, 3_2, 2_3 \sim^{-1} 2_m), (2_1, 0_2, 1_3 \sim^{-1} 1_m), (3_1, 5_2, 3_3 \sim^{-1} 3_m), (3_1, 5_2, 3_m), (3_1$ $(4_1, 2_2, 4_3 \sim^{-1} 4_m), (5_1, 4_2, 5_3 \sim^{-1} 5_m), (6_1, 6_2, 7_3 \sim^{-1} 7_m) \} \cup$ $\bigcup_{i=1}^{k-3} \{((5+2i)_1, (6+2i)_2, (4+2i)_3 \sim^{-1} \}$ $(4+2i)_m$, $((6+2i)_1, (5+2i_2, (7+2i)_3 \sim (7+2i)_m))$, $T_4: \{(1_1, 0_2, 0_3 \sim^{-2} 0_m), (2_1, 3_2, 4_3 \sim^{-2} 4_m), (3_1, 2_2, 2_3 \sim^{-2} 2_m), (4_1, 4_2, 3_3 \sim^{-2} 3_m).$ $(5_1, 6_2, 6_3 \sim^{-2} 6_m) \} \cup$ $| |_{i=1}^{k-2} \{ ((4+2i)_1, (6+2i)_2, (6+2i)_3 \sim^{-2} \}$ $(6+2i)_m$, $((5+2i)_1, (3+2i)_2, (3+2i)_3 \sim^{-2} (3+2i)_m)$. Moreover, let $H = (P_1 \cup P_2)$ if k = 4 and $H = (P_1 \cup R_{k-4}^2 \cup R_{k-5}^2 \cup \cdots \cup R_1^2 \cup P_2 \cup R_1^1 \cup R_2^1 \cup \cdots \cup R_{k-4}^1) =$ (CODESCO'24) 09/07/2024 21 / 29

Theorem (Alspach et al. 1989, Burgess et al. 2017)

If $v \ge m \ge 3$ are odd integers then $C_m[\pm\{0,1,2\}_v]$ has a 2-factorization into five C_v -factors.

09/07/2024

Theorem (Alspach et al. 1989, Burgess et al. 2017)

If $v \ge m \ge 3$ are odd integers then $C_m[\pm\{0,1,2\}_v]$ has a 2-factorization into five C_v -factors.

Lemma

If $v \ge 5$ is an odd integer then $C_3[\pm\{0,1,2\}_v]$ has a 2-factorization into one Hamiltonian cycle and four C_v -factors.

09/07/2024

Let v = 2k + 1. Then $k \ge 2$. We construct a 2-factorization $\{T_1, T_2, T_3, T_4, H\}$ of $C_3[\pm\{0, 1, 2\}_v]$. Let C_v -factors be:

イロト イポト イヨト イヨト

Let v = 2k + 1. Then $k \ge 2$. We construct a 2-factorization $\{T_1, T_2, T_3, T_4, H\}$ of $C_3[\pm\{0, 1, 2\}_v]$. Let C_v -factors be: $T_1 : \{(0_1, 0_2, 2_3 \stackrel{\beta}{\sim} (2k)_3), (0_3, 1_1, 1_2 \stackrel{\beta}{\sim} (2k - 1)_2), (1_3, 2_1, 2_2 \stackrel{\alpha}{\sim} (2k)_2)\},$

< (17) > < (27 >)
Let v = 2k + 1. Then $k \ge 2$. We construct a 2-factorization $\{T_1, T_2, T_3, T_4, H\}$ of $C_3[\pm\{0, 1, 2\}_v]$. Let C_v -factors be: $T_1 : \{(0_1, 0_2, 2_3 \stackrel{\beta}{\sim} (2k)_3), (0_3, 1_1, 1_2 \stackrel{\beta}{\sim} (2k - 1)_2), (1_3, 2_1, 2_2 \stackrel{\alpha}{\sim} (2k)_2)\},$ $T_2 : \{(0_2, 1_3, 1_1 \stackrel{\beta}{\sim} (2k - 1)_1), (0_3, 0_1, 2_2 \stackrel{\beta}{\sim} (2k)_2), (1_2, 2_3, 2_1 \stackrel{\alpha}{\sim} (2k)_1)\},$ Let v = 2k + 1. Then $k \ge 2$. We construct a 2-factorization $\{T_1, T_2, T_3, T_4, H\}$ of $C_3[\pm\{0, 1, 2\}_v]$. Let C_v -factors be: $T_1 : \{(0_1, 0_2, 2_3 \stackrel{\beta}{\sim} (2k)_3), (0_3, 1_1, 1_2 \stackrel{\beta}{\sim} (2k - 1)_2), (1_3, 2_1, 2_2 \stackrel{\alpha}{\sim} (2k)_2)\},$ $T_2 : \{(0_2, 1_3, 1_1 \stackrel{\beta}{\sim} (2k - 1)_1), (0_3, 0_1, 2_2 \stackrel{\beta}{\sim} (2k)_2), (1_2, 2_3, 2_1 \stackrel{\alpha}{\sim} (2k)_1)\},$ $T_3 : \{(0_1, 1_2, 1_3 \stackrel{\beta}{\sim} (2k - 1)_3), (0_2, 0_3, 2_1 \stackrel{\beta}{\sim} (2k)_1), (1_1, 2_2, 2_3 \stackrel{\alpha}{\sim} (2k)_3)\},$ Let v = 2k + 1. Then $k \ge 2$. We construct a 2-factorization $\{T_1, T_2, T_3, T_4, H\}$ of $C_3[\pm\{0, 1, 2\}_v]$. Let C_v -factors be: $T_1 : \{(0_1, 0_2, 2_3 \stackrel{\wedge}{\sim} (2k)_3), (0_3, 1_1, 1_2 \stackrel{\wedge}{\sim} (2k - 1)_2), (1_3, 2_1, 2_2 \stackrel{\alpha}{\sim} (2k)_2)\},$ $T_2 : \{(0_2, 1_3, 1_1 \stackrel{\wedge}{\sim} (2k - 1)_1), (0_3, 0_1, 2_2 \stackrel{\wedge}{\sim} (2k)_2), (1_2, 2_3, 2_1 \stackrel{\alpha}{\sim} (2k)_1)\},$ $T_3 : \{(0_1, 1_2, 1_3 \stackrel{\wedge}{\sim} (2k - 1)_3), (0_2, 0_3, 2_1 \stackrel{\wedge}{\sim} (2k)_1), (1_1, 2_2, 2_3 \stackrel{\alpha}{\sim} (2k)_3)\},$ $T_4 : \{((2k)_3, 0_2, 2_1, 1_2, 3_1 \stackrel{\alpha}{\sim} (2k - 1)_1), ((2k)_1, 0_3, 2_2, 1_3, 3_2 \stackrel{\alpha}{\sim} (2k - 1)_2), ((2k)_2, 0_1, 2_3, 1_1, 3_3 \stackrel{\alpha}{\sim} (2k - 1)_3)\}.$ Let v = 2k + 1. Then $k \ge 2$. We construct a 2-factorization $\{T_1, T_2, T_3, T_4, H\}$ of $C_3[\pm\{0, 1, 2\}_v]$. Let C_v -factors be: $T_1 : \{(0_1, 0_2, 2_3 \stackrel{\beta}{\sim} (2k)_3), (0_3, 1_1, 1_2 \stackrel{\beta}{\sim} (2k - 1)_2), (1_3, 2_1, 2_2 \stackrel{\alpha}{\sim} (2k)_2)\},$ $T_2 : \{(0_2, 1_3, 1_1 \stackrel{\beta}{\sim} (2k - 1)_1), (0_3, 0_1, 2_2 \stackrel{\beta}{\sim} (2k)_2), (1_2, 2_3, 2_1 \stackrel{\alpha}{\sim} (2k)_1)\},$ $T_3 : \{(0_1, 1_2, 1_3 \stackrel{\beta}{\sim} (2k - 1)_3), (0_2, 0_3, 2_1 \stackrel{\beta}{\sim} (2k)_1), (1_1, 2_2, 2_3 \stackrel{\alpha}{\sim} (2k)_3)\},$ $T_4 : \{((2k)_3, 0_2, 2_1, 1_2, 3_1 \stackrel{\alpha}{\sim} (2k - 1)_1), ((2k)_1, 0_3, 2_2, 1_3, 2_2 \stackrel{\alpha}{\sim} (2k - 1)_2),$ $((2k)_2, 0_1, 2_3, 1_1, 3_3 \stackrel{\alpha}{\sim} (2k - 1)_3)\}.$ Moreover, $H = (0_1 \stackrel{\delta}{\sim} 3_k, 2_{k+2} \stackrel{\gamma}{\sim} 1_2, 0_3 \stackrel{\delta}{\sim} 3_{k+2}, 2_{k+1} \stackrel{\gamma}{\sim} 1_1, 0_2 \stackrel{\delta}{\sim} 3_{k+1}, 2_k \stackrel{\gamma}{\sim} 1_3)$ is an Hamiltonian cycle.

09/07/2024

Signed Langford Sequences

Definition

A signed Langford sequence of order t and defect d is a sequence $\pm \mathcal{L}_d^t = (l_{-2t}, l_{-2t+1}, \dots, l_{-1}, *, l_1, l_2, \dots, l_{2t})$ of length 4t + 1 that satisfies the following conditions:

(1) for every $k \in \pm \{d, d+1, \dots, t+d-1\}$ there are exactly two elements $l_i, l_j \in \pm \mathcal{L}_d^t$ such that $l_i = l_j = k$, and (2) if $l_i = l_j = k$, then i < 0 < j and i + j + k = 0.

A (10) × A (10) × A (10)

Signed Langford Sequences

Definition

A signed Langford sequence of order t and defect d is a sequence $\pm \mathcal{L}_d^t = (I_{-2t}, I_{-2t+1}, \ldots, I_{-1}, *, I_1, I_2, \ldots, I_{2t})$ of length 4t + 1 that satisfies the following conditions: (1) for every $k \in \pm \{d, d + 1, \ldots, t + d - 1\}$ there are exactly two elements $I_i, I_j \in \pm \mathcal{L}_d^t$ such that $I_i = I_j = k$, and

(2) if
$$I_i = I_j = k$$
, then $i < 0 < j$ and $i + j + k = 0$.

The existence of signed Langford sequences has been completely settled by Jordon and Mitchell [31].

Theorem (Jordon, Mitchell; 2022)

For every positive integer d and every integer $t \ge 2d - 1$, there exists a signed Langford sequence of order t and defect d.

イロト 不得 トイヨト イヨト 二日

Signed Langford Sequences

Definition

A signed Langford sequence of order t and defect d is a sequence $\pm \mathcal{L}_d^t = (l_{-2t}, l_{-2t+1}, \dots, l_{-1}, *, l_1, l_2, \dots, l_{2t})$ of length 4t + 1 that satisfies the following conditions: (1) for every $k \in \pm \{d, d + 1, \dots, t + d - 1\}$ there are exactly two elements $l_i, l_j \in \pm \mathcal{L}_d^t$ such that $l_i = l_j = k$, and (2) if $l_i = l_i = k$, then i < 0 < j and i + j + k = 0.

Theorem (Jordon, Mitchell; 2022)

For every positive integer d and every integer $t \ge 2d - 1$, there exists a signed Langford sequence of order t and defect d.

Order 5 and defect 2,

$$(5, 6, 4, -2, -4, 3, -3, 2, -6, -5, *, 2, 3, 6, 4, 5, -5, -3, -6, -2, -4)$$

(日)

d

Signed Langford sequences are useful tools to construct 2-factorizations of graphs $C_m[\pm S_v]$, $C_m[\pm S_{2v}]$ and $C_m[\pm S_{4v}]$.

Signed Langford sequences are useful tools to construct 2-factorizations of graphs $C_m[\pm S_v]$, $C_m[\pm S_{2v}]$ and $C_m[\pm S_{4v}]$.

Lemma

Let m, v, d and r be integers such that both m and v are odd, $m \ge 3$, $0 < d \le \frac{v+3}{6}$, $0 \le r \le v - 2d + 1$ and moreover $r \ne 1$ when either $d \ge 2$ or v = 3 or v = m + 2 = 5. Let $S = \{d, d + 1, \dots, \frac{v-1}{2}\}$. Then there exists a 2-factorization of the graph $C_m[\pm S_v]$ into r Hamiltonian cycles and $(v - 2d - r + 1) C_m$ -factors.

Preliminary Results

Theorem (Aubert, Schneider; 1981)

If $v, m \ge 3$ are odd integers then $K_v \times C_m$ is decomposable into $\frac{v+1}{2}$ Hamiltonian cycles.

Theorem (Aubert, Schneider; 1981)

If v, $m \ge 3$ are odd integers then $K_v \times C_m$ is decomposable into $\frac{v+1}{2}$ Hamiltonian cycles.

Let J be a set of positive integers. An (n, J)-resolvable cycle design, denoted (n, J)-RCD, is a 2-factorization of K_n (when n id odd) or $K_n \setminus I$ (when n is even) such that the length of any cycle in the 2-factorization belongs to J. The existence of $(n, \{3, 5\})$ -resolvable cycle designs has been completely settled.

Theorem (Alspach et al.; 1989)

For each $n \ge 3$ there exists an $(n, \{3, 5\})$ -RCD if and only if $n \notin \{4, 6, 7, 11, 12\}$.

イロト イヨト イヨト ・

Theorem (Aubert, Schneider; 1981)

If v, $m \ge 3$ are odd integers then $K_v \times C_m$ is decomposable into $\frac{v+1}{2}$ Hamiltonian cycles.

Let J be a set of positive integers. An (n, J)-resolvable cycle design, denoted (n, J)-RCD, is a 2-factorization of K_n (when n id odd) or $K_n \setminus I$ (when n is even) such that the length of any cycle in the 2-factorization belongs to J. The existence of $(n, \{3, 5\})$ -resolvable cycle designs has been completely settled.

Theorem (Alspach et al.; 1989)

For each $n \ge 3$ there exists an $(n, \{3, 5\})$ -RCD if and only if $n \notin \{4, 6, 7, 11, 12\}$.

It is known that every connected circulant of valency four is decomposable into two Hamiltonian cycles.

Theorem (Bermond et al.; 1989)

Every 4-regular connected Cayley graph on a finite Abelian group can be decomposed into two Hamiltonian cycles.

(CODESCO'24)

Let $m, v \ge 3$ be odd integers. Then $(v - 1, 1) \in HWP(C_m[v]; m, mv)$ except when v = 3 or v = m + 2 = 5.

Image: A matrix and A matrix

Let $m, v \ge 3$ be odd integers. Then $(v - 1, 1) \in HWP(C_m[v]; m, mv)$ except when v = 3 or v = m + 2 = 5.

Proof

Case I: $v \leq 13$. Direct constructions of required 2-factorizations are given.

Let $m, v \ge 3$ be odd integers. Then $(v - 1, 1) \in HWP(C_m[v]; m, mv)$ except when v = 3 or v = m + 2 = 5.

Proof

Case I: $v \le 13$. Direct constructions of required 2-factorizations are given. Case II: $v \ge 15$.

Let $m, v \ge 3$ be odd integers. Then $(v - 1, 1) \in HWP(C_m[v]; m, mv)$ except when v = 3 or v = m + 2 = 5.

Proof

Case I: $v \leq 13$. Direct constructions of required 2-factorizations are given. Case II: $v \geq 15$. Factorize $C_m[v]$ into two factors: $C_m[\pm\{0,1,2\}_v]$ and $C_m[\pm\{3,4,\ldots,\frac{v-1}{2}\}_v]$.

Let $m, v \ge 3$ be odd integers. Then $(v - 1, 1) \in HWP(C_m[v]; m, mv)$ except when v = 3 or v = m + 2 = 5.

Proof

Case I: $v \le 13$. Direct constructions of required 2-factorizations are given. Case II: $v \ge 15$.

Factorize $C_m[v]$ into two factors: $C_m[\pm\{0,1,2\}_v]$ and $C_m[\pm\{3,4,\ldots,\frac{v-1}{2}\}_v]$.

By Lemma 15, there exists a 2-factorization of $C_m[\pm\{0,1,2\}_v]$ which contains four C_m -factors and one Hamiltonian cycle.

09/07/2024

Let $m, v \ge 3$ be odd integers. Then $(v - 1, 1) \in HWP(C_m[v]; m, mv)$ except when v = 3 or v = m + 2 = 5.

Proof

Case I: $v \le 13$. Direct constructions of required 2-factorizations are given. Case II: $v \ge 15$.

Factorize $C_m[v]$ into two factors: $C_m[\pm\{0,1,2\}_v]$ and $C_m[\pm\{3,4,\ldots,\frac{v-1}{2}\}_v]$.

By Lemma 15, there exists a 2-factorization of $C_m[\pm\{0,1,2\}_v]$ which contains four C_m -factors and one Hamiltonian cycle.

By Lemma 20, $C_m[\pm\{3,4,\ldots,\frac{\nu-1}{2}\}_{\nu}]$ is factorable into $\nu - 5 C_m$ factors.

・ロト ・ 四ト ・ ヨト ・ ヨト … ヨ

Let m, v be odd integers such that $m \ge 7$ and $v \ge 3$. Then, $(\alpha, \beta) \in HWP(K_{mv}; m, mv)$ if and only if $\alpha + \beta = \frac{mv-1}{2}$ with $\alpha, \beta \ge 0$.

Let m, v be odd integers such that $m \ge 7$ and $v \ge 3$. Then, $(\alpha, \beta) \in HWP(K_{mv}; m, mv)$ if and only if $\alpha + \beta = \frac{mv-1}{2}$ with $\alpha, \beta \ge 0$.

Proof

(日)

Let m, v be odd integers such that $m \ge 7$ and $v \ge 3$. Then, $(\alpha, \beta) \in HWP(K_{mv}; m, mv)$ if and only if $\alpha + \beta = \frac{mv-1}{2}$ with $\alpha, \beta \ge 0$.

Proof Let n = mv.

(日)

Let m, v be odd integers such that $m \ge 7$ and $v \ge 3$. Then, $(\alpha, \beta) \in HWP(K_{mv}; m, mv)$ if and only if $\alpha + \beta = \frac{mv-1}{2}$ with $\alpha, \beta \ge 0$.

Proof Let n = mv. Case I: $\beta \ge \frac{v+5}{2}$.

(日) (四) (日) (日) (日)

Let m, v be odd integers such that $m \ge 7$ and $v \ge 3$. Then, $(\alpha, \beta) \in HWP(K_{mv}; m, mv)$ if and only if $\alpha + \beta = \frac{mv-1}{2}$ with $\alpha, \beta \ge 0$.

Proof Let n = mv. Case I: $\beta \ge \frac{v+5}{2}$. Factorize K_n into $\frac{m+1}{2}$ factors: $K_v \times C_m$, $C_m[\pm\{1, 2, \dots, \frac{v-1}{2}\}_v]$, and $\frac{m-3}{2}$ copies of $C_m[v]$.

▲ 伊 ▶ ▲ 三 ▶ ▲ 三

Let m, v be odd integers such that $m \ge 7$ and $v \ge 3$. Then, $(\alpha, \beta) \in HWP(K_{mv}; m, mv)$ if and only if $\alpha + \beta = \frac{mv-1}{2}$ with $\alpha, \beta \ge 0$.

Proof

Let n = mv.

Case I: $\beta \geq \frac{\nu+5}{2}$. Factorize K_n into $\frac{m+1}{2}$ factors: $K_{\nu} \times C_m$, $C_m[\pm\{1, 2, \dots, \frac{\nu-1}{2}\}_{\nu}]$, and $\frac{m-3}{2}$ copies of $C_m[\nu]$. Case II: $\beta \leq \frac{\nu+3}{2}$ and $\beta \neq 1$ when $\nu = 3$. The complete graph K_m is clearly decomposable into two circulants: C(m; 1, 2) and $C(m; 3, 4, \dots, \frac{m-1}{2})$.

Let m, v be odd integers such that $m \ge 7$ and $v \ge 3$. Then, $(\alpha, \beta) \in HWP(K_{mv}; m, mv)$ if and only if $\alpha + \beta = \frac{mv-1}{2}$ with $\alpha, \beta \ge 0$.

Proof

Let n = mv. Case I: $\beta \geq \frac{v+5}{2}$. Factorize K_n into $\frac{m+1}{2}$ factors: $K_v \times C_m$, $C_m[\pm\{1, 2, \dots, \frac{v-1}{2}\}_v]$, and $\frac{m-3}{2}$ copies of $C_m[v]$. Case II: $\beta \leq \frac{v+3}{2}$ and $\beta \neq 1$ when v = 3. The complete graph K_m is clearly decomposable into two circulants: C(m; 1, 2) and $C(m; 3, 4, \dots, \frac{m-1}{2})$. If $v \notin \{7, 11\}$, consider a 2-factorization $\mathcal{F} = \{F_1, F_2, \dots, F_{\frac{v-1}{2}}\}$ of K_v such that each 2-factor consists of C_3 - and C_5 -cycles only, which exist by Theorem 22.

· < / </l>

Let m, v be odd integers such that $m \ge 7$ and $v \ge 3$. Then, $(\alpha, \beta) \in HWP(K_{mv}; m, mv)$ if and only if $\alpha + \beta = \frac{mv-1}{2}$ with $\alpha, \beta \ge 0$.

Proof

Let n = mv. Case I: $\beta \geq \frac{v+5}{2}$. Factorize K_n into $\frac{m+1}{2}$ factors: $K_v \times C_m$, $C_m[\pm\{1, 2, \dots, \frac{v-1}{2}\}_v]$, and $\frac{m-3}{2}$ copies of $C_m[v]$. Case II: $\beta \leq \frac{v+3}{2}$ and $\beta \neq 1$ when v = 3. The complete graph K_m is clearly decomposable into two circulants: C(m; 1, 2) and $C(m; 3, 4, \dots, \frac{m-1}{2})$. If $v \notin \{7, 11\}$, consider a 2-factorization $\mathcal{F} = \{F_1, F_2, \dots, F_{\frac{v-1}{2}}\}$ of K_v such that each 2-factor consists of C_3 - and C_5 -cycles only, which exist by Theorem 22. Case III: $\beta = 1$ and v = 3. We decompose K_n in exactly the same way as in Case II. $K_3[\pm\{0, 1, 2\}_m]$ is factorable, by Lemma 17, into one Hamiltonian cycle and four C_m -factors. All copies of $C_m[3]$ are factorized into C_m -factors.

イロト イヨト イヨト -

09/07/2024

s.ozkan@gtu.edu.tr

∃ →

• • • • • • • •

- B. Alspach, H. Gavlas, M. Sajna, and H. Verrall, Cycle decompositions IV: complete directed graphs and fixed length directed cycles, J. Comb. Theory Ser. A. 103(1) (2003), 165-208.
- B. Alspach, R. Haggkvist, *Some observations on the Oberwolfach problem*, J. Graph Theory, **9** (1985), 177-187.
- B. Alspach, P. J. Schellenberg, D. R. Stinson and D. Wagner, The Oberwolfach problem and factors of uniform odd length cycles, J. Combin. Theory Ser. A, 52 (1989), 20-43.
- P. Adams, E. J. Billington, D. E. Bryant, and S. I. El-Zanati, *On the Hamilton-Waterloo problem*, Graphs Combin. **18** (2002), 31-51.
 - P. Adams and D. Bryant, *Two-factorisations of complete graphs of orders fifteen and seventeen*, Australasian J. of Combinatorics, **35** (2006), 113-118.
 - D. Bryant, P. Danziger, On bipartite 2-factorizations of $K_n I$ and the Oberwolfach problem, J. Graph Theory **68(1)** (2011), 22-37.

(日)

- D. Bryant, P. Danziger, and M. Dean, On the Hamilton-Waterloo Problem for Bipartite 2-Factors, J. Comb. Des. 21(2) (2013), 60-80.
- J. C. Bermond, A. Germa, and D. Sotteau, *Resolvable decomposition* of K_n^* , J. Comb. Theory Ser. A. **26(2)** (1979), 179-185.
- F. E. Bennett, X. Zhang, *Resolvable Mendelsohn designs with block size 4*, Aequationes Math. **40(1)** (1990), 248-260.
- A. Burgess, N. Francetic, and M. Sajna, On the directed Oberwolfach Problem with equal cycle lengths: the odd case, Australas. J. Comb. 71(2) (2018), 272-292.
- A. Burgess, M. Sajna, *On the directed Oberwolfach Problem with equal cycle lengths*, Electron. J. Comb. **21(1)** (2014), 1-15.
- A. Burgess, P. Danziger, and T. Traetta, *On the Hamilton-Waterloo problem with odd orders*, J. Comb. Des. **25(6)** (2017), 258-287.
- A. Burgess, P. Danziger, and T. Traetta, *On the Hamilton-Waterloo problem with odd cycle lengths*, J. Comb. Des. **26(2)** (2018), 51-83.

Image: A matrix and a matrix

- S. Bonvicini, M. Buratti, Octahedral, dicyclic and special linear solutions of some Hamilton-Waterloo problems, Ars Math. Contemp. 14(1) (2017), 1-14.
- P. Danziger, G. Quattrocchi, and B. Stevens, The Hamilton-Waterloo problem for cycle sizes 3 and 4, J. Comb. Des., 17(4) (2009), 342-352.
- R. K. Guy, Unsolved combinatorial problems, In: Proceedings of the Conference on Combinatorial Mathematics and Its Applications, Oxford, 1967 (D. J. A. Welsh, Ed.), Academic Press, New York, 1971.
- A. Deza, F. Franek, W. Hua, M. Meszka, A. Rosa, Solutions to the Oberwolfach problem for orders 18 to 40, Journal of Combinatorial Mathematics and Combinatorial Computing, 74 (2010), 95102.
 - R. Haggkvist, A lemma on cycle decompositions, North-Holland Mathematics Studies 115 (1985), 227-232.
 - D.G. Hoffman, P. J. Schellenberg, *The existence of* C_k -factorizations of $K_{2n} F$, Discrete Math. **97** (1991), 243-250.

< □ > < □ > < □ > < □ >

- W. Imrich, S. Klavzar *Product graphs: Structure and Recognition*, John Wiley and Sons Incorporated, New York, 2000.
- M. Keranen, S. Özkan, The Hamilton-Waterloo problem with 4-cycles and a single factor of n-cycles, Graphs Combin. 29 (2013), 1827–1837.
- J. Liu, *The equipartite Oberwolfach problem with uniform tables*, J. Comb. Theory Ser. A. **101** (2003), 20–34.
- E. Shabani, M. Sajna, *On the Directed Oberwolfach Problem with variable cycle lengths*, 2020, arXiv preprint arXiv:2009.08731.
- U. Odabaşı, S. Özkan, *The Hamilton-Waterloo problem with* C_4 and C_m factors, Discrete Math. **339(1)** (2016), 263-269.
- B. Alspach, P.J. Schellenberg, D.R. Stinson, D. Wagner, *The Oberwolfach problem and factors of uniform odd length cycles*, J. Combin. Theory Ser. A 52 (1989) 20—43.
 - J. Aubert, B. Schneider, *Decomposition de* $K_m + K_n$ *en cycles Hamiltoniens*, Discrete Math. 37 (1981) 18–27.

(CODESCO'24)

09/07/2024

29 / 29

- J.C. Bermond, O. Favaron, M. Mahéo, Hamiltonian decomposition of Cayley graphs of degree 4, J. Combin. Theory Ser. B 46 (1989) 142—153.
- A.C. Burgess, P. Danziger, T. Traetta, *On the Hamilton–Waterloo problem with odd orders*, J. Combin. Des. 25 (2017) 258–287.
- A.C. Burgess, P. Danziger, T. Traetta, On the Hamilton-Waterloo problem with odd cycle lengths, J. Combin. Des. 26 (2018) 51-83.
- C.J. Colbourn, J.H. Dinitz (eds.), Handbook of Combinatorial Designs, 2nd ed., CRC Press, 2007.
- H. Jordon, L. Mitchell, *Signed Langford sequences*, Discrete Math. 345 (2022) 112719.