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Conjectures

(1) Buratti (2007) → Horak, Rosa (2009)

(2) Bacher (2008) and Meszka (2012) → AP, Pellegrini (2015)

(3) Adamaszek (20??) → Meszka, AP, Pellegrini (202?)
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Complete graphs

Kv = complete graph of order v , with V (Kv ) = {0,1, . . . ,v −1}
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Hamiltonian paths

Hamiltonian path of Kv = path H such that V (H) = V (Kv )
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H = [0,6,2,1,4,3,5]
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Edge-lengths

De�nition

The length of an edge {x ,y} of Kv is

ℓ({x ,y}) =min(|x−y |,v −|x−y |).

Given G ≤ Kv , the list of edge-lengths of G is

ℓ(G ) = {ℓ(e) : e ∈ E (G )}.

e ∈ E (Kv ) ⇒ ℓ(e)≤ ⌊ v
2
⌋
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Example
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H = [0 , 6 , 2 , 1 , 4 , 3 , 5]

A.Pasotti Graphs with prescribed edge-lengths



Example

16

5 2

0

34

6

4
1

1

32

H = [0 6, 6 4, 2 1, 1 3, 4 1, 3 2, 5]
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Example
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H = [0 1, 6 3, 2 1, 1 3, 4 1, 3 2, 5]

⇒ ℓ(H) = {1,3,1,3,1,2}= {13,2,32}
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Length of {x ,y} = distance of x and y in (0,1,2, . . . ,v −1)
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Length of {x ,y} = distance of x and y in (0,1,2, . . . ,v −1)
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Length of {x ,y} = distance of x and y in (0,1,2, . . . ,v −1)
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Conjecture n.1

Buratti (2007) → Horak, Rosa (2009)
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Buratti's conjecture

Conjecture [Buratti, 2007]

Given ANY prime p = 2n+1 and ANY list L of 2n elements taken from
{1, . . . ,n}, there exists a Hamiltonian path H of Kp such that ℓ(H) = L.
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Mail Marco-Alex
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Mail Marco-Alex

A.Pasotti Graphs with prescribed edge-lengths



Georg Cantor (1845�1918)

To ask the right question is harder than to answer it.
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Buratti's conjecture

Conjecture [Buratti, 2007]

Given ANY prime p = 2n+1 and ANY list L of 2n elements taken from
{1, . . . ,n}, there exists a Hamiltonian path H of Kp such that ℓ(H) = L.

Alex Rosa:"This conjecture is a combinatorial disease!"
at �Combinatorics 2008�, Costermano, Italy (2008).
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A generalization of the Buratti's conjecture

Problem [Horak and Rosa, 2009]

Given a positive integer v , determine all lists L such that there exists a
Hamiltonian path H of Kv with ℓ(H) = L.

Conjecture [Horak and Rosa, 2009]

Let L= {ℓa11 , ℓa22 , . . . , ℓ
ak
k } with |L|= v −1 and 1≤ ℓi ≤ ⌊ v

2
⌋, then there

exists a Hamiltonian path H of Kv such that ℓ(H) = L if and only if

for all subsets J ⊆ [1,k]:

∑
j∈J

aj ≥ gcd{v , ℓi : i ∈ [1,k]\J}−1 (1)
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A necessary condition

Proposition [AP and Pellegrini, 2014]

Condition (1) is equivalent to:

for any divisor d of v , the number of multiples of d
in L does not exceed v −d .

(2)

Proposition [AP and Pellegrini, 2014]

The list of the edge-lengths of any Hamiltonian path of Kv satis�es
condition (2).
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The BHR-conjecture

The BHR-conjecture

For ANY positive integer v and ANY list L with v −1 elements taken

from
{
1,2, . . . ,

⌊
v
2

⌋}
and satisfying condition (2) there exists a

Hamiltonian path H of Kv such that ℓ(H) = L.

Given L −→ BHR(L).
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First results on the BHR-conjecture

U= underlying set of L

BHR(L) is true in each of the following cases:

|L| ≤ 36 [Meszka, 2008 + McKay-Peters, 2022]

L=M ∪{1a} for any list M and a> aM , where aM is a suitable

constant depending on M [Horak-Rosa, 2009]

|U| ≤ 2 [Horak-Rosa + Dinitz-Janiszewski, 2009]

U = {1,2,3} [Capparelli-Del Fra, 2010]

U ⊆ {1,2,3,5} [AP-Pellegrini, 2014]

L= {1a,2b,xc} when x is even and a+b ≥ x−1
[AP-Pellegrini, 2014]

. . .
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An explicit bound

Theorem [Ollis, AP, Pellegrini, Schmitt, 2022]

If M is a list with underlying set U = {x1, . . . ,xk} with

1< x1 < .. . < xk , then BHR(L) is true whenever L=M ∪{1s} with

s > 3xk −5+∑
k
i=1 xi .
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Conjecture n.2

Bacher (2008) and Meszka (2012) → AP, Pellegrini (2015)
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G = a near 1-factor of K2n+1
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Conjecture [Meszka, 2012]

Given ANY prime p = 2n+1 and ANY list L of n elements taken from
{1, . . . ,n}, there exists a near 1-factor F of Kp such that ℓ(F ) = L.

Rosa, On a problem of Mariusz Meszka, Discrete Math. (2015)
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G = a near 1-factor of K2n+1
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Conjecture [Meszka, 2012]

Given ANY prime p = 2n+1 and ANY list L of n elements taken from
{1, . . . ,n}, there exists a near 1-factor F of Kp such that ℓ(F ) = L.

Rosa, On a problem of Mariusz Meszka, Discrete Math. (2015)
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From BHR to MPP

Buratti : Horak-Rosa = Meszka : Pasotti-Pellegrini
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A generalization of Meszka's conjecture

MPP-Conjecture [AP, Pellegrini, 2015]

Let v = 2n+1 be ANY odd integer and let L be ANY list of n elements
taken from {1, . . . ,n}. Then there exists a near 1-factor F of Kv such
that ℓ(F ) = L if and only if the following condition holds:

for any divisor d of v , the number of multiples of d
in L does not exceed v−d

2
.

(3)

Proposition [AP, Pellegrini, 2015]

The list of edge-lengths of any near 1-factor of Kv satis�es condition (3).
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Results about MPP-conjecture

Theorem [AP, Pellegrini, 2015]

MPP-conjecture is true for any list L with n elements such that:

2n+1≤ 23;

L= {ℓa1}, L= {ℓa1, ℓb2};

L= {1,2, . . . ,n};

L= {1a,2b, tc} with 1) t not coprime with 2n+1 OR
2) a+b ≥ ⌊ t−1

2
⌋ OR

3) t ≤ 11.
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The King's Table Problem
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The King's Table Problem

 Seating Couples Around the King's Table and
 a New Characterization of Prime Numbers

 Emmanuel Preissmann and Maurice Mischler

 1. INTRODUCTION A king invites n couples for dinner at his round table contain-
 ing 2n + 1 seats, the king taking the last unoccupied chair. The king has to address the
 following problem [1]: Given an arbitrary set of n couples, no one married for more
 than n years, is it always possible to seat all n couples at his table according to the
 royal protocol stipulating that if the two spouses of a couple are in their ath year of
 marriage, they have to occupy two chairs at circular distance al {"Circular distance
 a" means that the two chairs are separated by exactly a - 1 chairs.)

 In other words, given an arbitrary set of n natural numbers d' , . . . , dn in { 1 , . . . , n],
 is it always possible to find an involution of In + 1 circularly ordered points having a
 unique fixed point and consisting of n disjoint transpositions exchanging respectively
 two points at circular distance d' , d-i, . . . , dnl

 Theorem 1. The king 's problem for a table surrounded by 2n + 1 > 3 seats has a
 solution for every set of distances between 1 and n if and only if2n + ' is a prime
 number.

 This result can be considered as a new characterization of (odd) prime numbers.
 Our proof is not constructive, unfortunately. We don't know if there exists a fast

 algorithm constructing a solution for an arbitrary prime number 2n + ' and an arbitrary
 set of distances d', ... , dn in {1, . . . , n}.

 In the sequel, we identify the 2n + 1 chairs of the king's table with the 2n + 1
 elements 0, . . . , 2n of Z/(2n + 1)Z. The distance between two seats a and ß in
 {0, . . . , 2n] is minfla - ß'9 2n + 1 - 'a - ß'). We identify the set {0, . . . , 2n] with
 the finite field ¥p of p = 2n + 1 elements if p = 2n + 1 is a prime number.

 We end this introduction with a few remarks. The rest of the paper is devoted to
 the proof of Theorem 1. This proof has some analogies with the proof of a famous
 theorem by Chevalley and Waring, see [3, Théorème 3, p. 13].

 The following reformulation is due to Michael Eisermann (personal communi-
 cation, 2008): Given an odd prime number p = 2n + 1 and n nonzero elements
 d', ... ,dn of the finite field ¥p, it is always possible to find elements b', . . . , bn,
 c', . . . , cn in ¥p such that the following factorization holds in ¥p[t]:

 f'(t2 + bjt+Cj)=t2n-l,
 7 = 1

 where the discriminants of the factors satisfy the identities bj - 4c j = dj. Indeed, the
 two roots of the i th quadratic factor (t2 + b¡t + c¿) are two nonzero elements of ¥p at
 "circular distance" d¡ and the 2n elements of F* are all simple roots of the polynomial
 t2n - 1.

 Considering distances as elements of the multiplicative monoid (Z/(2n + 1)Z)/
 {±1}, one gets an action of (Z/(2n + 1)Z)* on all possible royal dinners: given an
 invertible element À modulo 2n + 1 and a solution associating to the ¿th married couple

 268 © THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 1 16
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With graph terminology

2n+1 seats → 2n+1 vertices

round table → cycle of length 2n+1

king → isolated vertex

a couple → an edge

years of marriage → edge-length

a solution → a near 1-factor of K2n+1

The King's Table Problem ≡ Meszka's Problem
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The King's Table Problem

Conjecture [Bacher, 2008]

There exists a solution to the king's table problem if all distances are
invertible elements modulo the total number 2n+1 of seats.

Conjecture [Bacher, 2008]

Let L be a list of n positive integers not exceeding n and coprime with
2n+1. Then there exists a near 1-factor F of K2n+1 such that ℓ(F ) = L.

In the prime case:

The proof by Preissmann and Mischler is not constructive

Alternative NON constructive proofs are given by:
Karasev and Petrov (2012)
Kohen and Sadofschi Costa (2016)

A.Pasotti Graphs with prescribed edge-lengths



The King's Table Problem

Conjecture [Bacher, 2008]

There exists a solution to the king's table problem if all distances are
invertible elements modulo the total number 2n+1 of seats.

Conjecture [Bacher, 2008]

Let L be a list of n positive integers not exceeding n and coprime with
2n+1. Then there exists a near 1-factor F of K2n+1 such that ℓ(F ) = L.

In the prime case:

The proof by Preissmann and Mischler is not constructive

Alternative NON constructive proofs are given by:
Karasev and Petrov (2012)
Kohen and Sadofschi Costa (2016)

A.Pasotti Graphs with prescribed edge-lengths



MPP-conjecture is still open!

MPP-Conjecture [AP, Pellegrini, 2015]

Let v = 2n+1 be ANY odd integer and let L be ANY list of n elements
taken from {1, . . . ,n}. Then there exists a near 1-factor F of Kv such
that ℓ(F ) = L if and only if the following condition holds:

for any divisor d of v , the number of multiples of d
in L does not exceed v−d

2
.
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And the Queen???

Question

Why doesn't the queen attend the dinner??

Add a place at the table.

⇓

Take a 1-factor (perfect matching) in a complete graph of even order.

0 1

7 2

6 3

5 4
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Conjecture n.3

Adamaszek (20??) → Meszka, AP, Pellegrini (202?)
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The King's Table Problem in the even case

Conjecture [Adamaszek, 20??]

There exists a solution to the king's table problem if all distances are
invertible elements modulo the total number 2n of seats.

Conjecture [Adamaszek, 20??]

Let L be a list of n positive integers not exceeding n and coprime with
2n. Then there exists a 1-factor F of K2n such that ℓ(F ) = L.

This conjecture holds:

for n prime, Mezei (2013)

for any n, Kohen and Sadofschi Costa (2016)

Theorem [Kohen, Sadofschi Costa, 2016]

Let L be a list of n positive integers not exceeding n and coprime with
2n. Then there exists a 1-factor F of K2n such that ℓ(F ) = L.
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The King's Table Problem in the even case

Example

Take n = 2, L= {22}.
F = {{0,2},{1,3}} is a 1-factor of K4 with ℓ(F ) = L.

Conjecture??

Let v = 2n be ANY even integer and let L be ANY list of n elements
taken from {1, . . . ,n}. Then there exists a 1-factor F of Kv such that
ℓ(F ) = L if and only if the following condition holds:

for any divisor d of v , the number of multiples of d
in L does not exceed v−d

2
.

IT DOES NOT HOLD!!!

Problem

Find a �good� conjecture to state!
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Some necessary conditions

Proposition [Meszka, AP, Pellegrini, 202?]

Let v = 2n and L be a list of n positive integers not exceeding n. If there
exists a 1-factor F of Kv such that ℓ(F ) = L, then:

(1) for any divisor d of v such that d does not divide n, the number of
multiples of d in L does not exceed v−d

2

(2) L contains an even number of even integers.

Necessary but not su�cient conditions!

Example

Take n = 5 and L= {22,3,52} ⇒ v = 10, d = 2.
There is no 1-factor F of K10 such that ℓ(F ) = L.
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A complete solution for the extremal cases

Case 1: one edge-length with multiplicity n

Proposition [Meszka, AP, Pellegrini, 202?]

Let 1≤ x ≤ n. There exists a 1-factor F of K2n such that ℓ(F ) = {xn} if

and only if gcd(x ,2n) is a divisor of n.

Case 2: n edge-lengths with multiplicity 1

Proposition [Meszka, AP, Pellegrini, 202?]

Let L= {1,2, . . . ,n}. There exists a 1-factor F of K2n such that ℓ(F ) = L
if and only if n ≡ 0,1 (mod 4).
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A new open problem

Problem [Meszka, AP, Pellegrini, 202?]

Given an even integer v = 2n, determine all lists L satisfying conditions

(1) for any divisor d of v such that d does not divide n, the number of
multiples of d in L does not exceed v−d

2

(2) L contains an even number of even integers

such that there exists a 1-factor F of Kv such that ℓ(F ) = L.
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A complete solution for the two edge-lengths case

Theorem [Meszka, AP, Pellegrini, 202?]

Let 1≤ x ,y ≤ n, x ̸= y and 1≤ a< n. Let dx = gcd(x ,2n),
dy = gcd(y ,2n) and d = gcd(x ,y ,2n). There exists a 1-factor F of K2n

such that ℓ(F ) = {xn−a,ya} if and only if d divides n and one of the
following cases occurs:

(1) x
d is even, y

d is odd, n−a is even and either
(a) dx divides n; or
(b) dx does not divide n and 2a≥ dx ;

(2) x
d is odd, y

d is even, a is even and either
(a) dy divides n; or
(b) dy does not divide n and 2(n−a)≥ dy ;

(3) x
d and y

d are both odd, and the following two conditions are both
satis�ed:
(a) a is even or da≥ dx .
(b) n−a is even or d(n−a)≥ dy .
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A new conjecture

At the moment we have no idea for a general conjecture, so we focus on
the case n prime.

Conjecture [Meszka, AP, Pellegrini, 202?]

Let n be a prime and let L be a list of n positive integers less than n.
There exists a 1-factor F of K2n such that ℓ(F ) = L if and only if the
number of even integers in L is even.

Example

Take n = 5 and L= {22,3,52} ⇒ v = 10, d = 2.
There is no 1-factor F of K10 such that ℓ(F ) = L.
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A tool for attacking the King's table problem

De�nition [Skolem, 1957]

A Skolem sequence of order n is a sequence S = (s0,s1, . . . ,s2n−1) of 2n
integers such that for every k ∈ {1,2, . . . ,n} the following conditions hold:

(1) there exist exactly two elements si ,sj ∈ S such that si = sj = k ;

(2) if si = sj = k with i < j , then j− i = k .

n = 4 : S = (1,1,3,4,2,3,2,4)
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Skolem sequences

Skolem sequence of order n

⇓

{(ai ,bi ) : 1≤ i ≤ n, bi −ai = i} with
n⋃

i=1

{ai ,bi}= {0,1, . . . ,2n−1}

n = 4 : S = (1,1,3,4,2,3,2,4) → {(0,1),(4,6),(2,5),(3,7)}

0 1

7 2

6 3

5 4
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Example

S = (1,1,3,4,2,3,2,4) → {(0,1),(4,6),(2,5),(3,7)}

⇓

F = {{0,1},{4,6},{2,5},{3,7}}∪{8}

18

7 2

0

5 4

36
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k-extended Skolem sequences

De�nition [Baker, 1995]

A k-extended Skolem sequence of order n is a sequence
S = (s0,s1,s2, . . . ,s2n) of 2n+1 integers satisfying conditions (1) and (2)
and such that sk = 0.

k = 2n−1 ⇒ hooked Skolem sequence
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Example

5− extended Skolem sequence of order 3 :

S = (3,1,1,3,2,0,2) → {(1,2),(4,6),(0,3)}∪{5}

⇓

F = {{1,2},{4,6},{0,3}}∪{5}

16

5 2

0

34
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Skolem sequences of a list

De�nition

Let L= {1a1 ,2a2 , . . . , nan}, with |L|= n and ai ≥ 0.
A Skolem sequence of L is a sequence S = (s0,s1, . . . ,s2n−1) such that:

Ti := {(x ,y) | sx = sy = i = y −x} has size ai⋃
Ti = {0,1, . . . ,2n−1}
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Example

L= {2,32,4}

⇒ L= {2,3,3,4}

Skolem sequence of L: S = (3,3,4,3,3,2,4,2)

T1 = /0, T2 = {(5,7)}, T3 = {(0,3),(1,4)}, T4 = {(2,6)}
4⋃

i=1

Ti = {0,1, . . . ,7}

⇓
F = {{5,7},{0,3},{1,4},{2,6}} 1-factor of K8 s.t. ℓ(F ) = L

0 1

7 2

6 3

5 4
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Example

L= {1,2,42} and k = 5

5-extended Skolem sequence of L: S = (4,2,4,2,4,0,4,1,1)

T1 = {(7,8)}, T2 = {(1,3)}, T3 = /0, T4 = {(0,4),(2,6)}
4⋃

i=1

Ti = {0,1, . . . ,8}\{5}

⇓
F = {{7,8},{1,3},{0,4},{2,6}}∪{5} near 1-factor of K9 s.t. ℓ(F ) = L

18

7 2

0

5 4

36

A.Pasotti Graphs with prescribed edge-lengths



Example

L= {1,2,42} and k = 5

5-extended Skolem sequence of L: S = (4,2,4,2,4,0,4,1,1)

T1 = {(7,8)}, T2 = {(1,3)}, T3 = /0, T4 = {(0,4),(2,6)}
4⋃

i=1

Ti = {0,1, . . . ,8}\{5}

⇓
F = {{7,8},{1,3},{0,4},{2,6}}∪{5} near 1-factor of K9 s.t. ℓ(F ) = L

18

7 2

0

5 4

36

A.Pasotti Graphs with prescribed edge-lengths



The mind revels in conjecture. Where information is lacking, it will gladly
�ll in the gaps.

James Geary
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