Graphs with prescribed edge-lengths: open problems and new results

Anita Pasotti
anita.pasotti@unibs.it

Università degli Studi di Brescia, Italy

Conjectures

(1) Buratti (2007) \rightarrow Horak, Rosa (2009)
(2) Bacher (2008) and Meszka (2012) \rightarrow AP, Pellegrini (2015)
(3) Adamaszek (20??) \rightarrow Meszka, AP, Pellegrini (202?)

Complete graphs

$K_{v}=$ complete graph of order v, with $V\left(K_{v}\right)=\{0,1, \ldots, v-1\}$

K_{7}

Hamiltonian paths

Hamiltonian path of $K_{v}=$ path H such that $V(H)=V\left(K_{v}\right)$

Edge-lengths

Definition

The length of an edge $\{x, y\}$ of K_{v} is

$$
\ell(\{x, y\})=\min (|x-y|, v-|x-y|) .
$$

Given $G \leq K_{v}$, the list of edge-lengths of G is

$$
\ell(G)=\{\ell(e): e \in E(G)\} .
$$

$e \in E\left(K_{v}\right) \Rightarrow \ell(e) \leq\left\lfloor\frac{v}{2}\right\rfloor$

Example

$H=[0,6,2,1,4,3,5]$

Example

$H=\left[0,6,4,2,1,3,4,3^{2}, 5\right]$

Example

$H=\left[0,6,{ }^{6}, 2,1,3,4,3^{2}, 5\right]$

Example

$H=\left[0,6^{3}, 2,1,{ }^{3}, 4,3^{2}, 5\right]$

Example

$$
H=\left[0,6^{3}, 2,1^{3}, 4^{1}, 3^{2}, 5\right] \Rightarrow \ell(H)=\{1,3,1,3,1,2\}=\left\{1^{3}, 2,3^{2}\right\}
$$

Length of $\{x, y\}=$ distance of x and y in $(0,1,2, \ldots, v-1)$

Length of $\{x, y\}=$ distance of x and y in $(0,1,2, \ldots, v-1)$

$H=[0,6,2,1,4,3,5]$

Length of $\{x, y\}=$ distance of x and y in $(0,1,2, \ldots, v-1)$

$$
H=[0,1,6,2,1,4,3,5]
$$

Length of $\{x, y\}=$ distance of x and y in $(0,1,2, \ldots, v-1)$

$$
H=\left[0,6^{3}, 2,1,4,3,5\right]
$$

Length of $\{x, y\}=$ distance of x and y in $(0,1,2, \ldots, v-1)$

$$
H=\left[0,6,2 \frac{1}{,} 1,4,3,5\right]
$$

Length of $\{x, y\}=$ distance of x and y in $(0,1,2, \ldots, v-1)$

$$
H=\left[0,6,2,1^{3}, 4,3,5\right]
$$

Length of $\{x, y\}=$ distance of x and y in $(0,1,2, \ldots, v-1)$

$$
H=[0,6,2,1,4 \stackrel{1}{3}, 3,5]
$$

Length of $\{x, y\}=$ distance of x and y in $(0,1,2, \ldots, v-1)$

$$
H=\left[0,6,2,1,4,3^{2}, 5\right]
$$

Conjecture n. 1

Buratti (2007) \rightarrow Horak, Rosa (2009)

Buratti's conjecture

Conjecture [Buratti, 2007]
Given ANY prime $p=2 n+1$ and ANY list L of $2 n$ elements taken from $\{1, \ldots, n\}$, there exists a Hamiltonian path H of K_{p} such that $\ell(H)=L$.

Mail Marco-Alex

On Wed, 3 Jan 2007, Marco Buratti wrote:
> Dear Alex,
> the new year has just begun and already I need your help ...
> I wonder whether the following problem has been studied and, in the
> affirmative case, I would like to know what has been done. You maybe can
> suggest the name of some people who worked on this problem.
$>$
$>$ The problem is:
$>$
$>$ Given an odd prime p and a list L of $p-1$ elements in the set
$>\{1,2, \ldots,(p-1) / 2\}$, does there exist a hamiltonian path H of $\mathrm{K}\left(Z_{-} p\right)$ (the
> complete graph on Z_p) such that the list of all differences between
> adjacent vertices of H is (lpm L)?
$>$
> I conjecture that the answer is always YES but, at the moment, I am not able
$>$ to prove it.
$>$
> Thanks in advance and please forgive me for asking your help so frequently.
> Best regards,
> Marco

Mail Marco-Alex

?

Alexander Rosa rosa@mcmaster.ca
a Marco Buratti v

Dear Marco,

this looks like a very nice problem. I am not aware of anyone having tried this, let alone solved it. I want to look at it myself!

Best regards, Alex

Georg Cantor (1845-1918)

To ask the right question is harder than to answer it.

Buratti's conjecture

Conjecture [Buratti, 2007]
Given ANY prime $p=2 n+1$ and ANY list L of $2 n$ elements taken from $\{1, \ldots, n\}$, there exists a Hamiltonian path H of K_{p} such that $\ell(H)=L$.

Alex Rosa:"This conjecture is a combinatorial disease!" at "Combinatorics 2008", Costermano, Italy (2008).

A generalization of the Buratti's conjecture

Problem [Horak and Rosa, 2009]
Given a positive integer v, determine all lists L such that there exists a Hamiltonian path H of K_{v} with $\ell(H)=L$.

Conjecture [Horak and Rosa, 2009]
Let $L=\left\{\ell_{1}^{a_{1}}, \ell_{2}^{a_{2}}, \ldots, \ell_{k}^{a_{k}}\right\}$ with $|L|=v-1$ and $1 \leq \ell_{i} \leq\left\lfloor\frac{v}{2}\right\rfloor$, then there exists a Hamiltonian path H of K_{v} such that $\ell(H)=L$ if and only if for all subsets $J \subseteq[1, k]$:

$$
\begin{equation*}
\sum_{j \in J} a_{j} \geq \operatorname{gcd}\left\{v, \ell_{i}: i \in[1, k] \backslash J\right\}-1 \tag{1}
\end{equation*}
$$

A necessary condition

Proposition [AP and Pellegrini, 2014]
Condition (1) is equivalent to:
for any divisor d of v, the number of multiples of d in L does not exceed $v-d$.

Proposition [AP and Pellegrini, 2014]

The list of the edge-lengths of any Hamiltonian path of K_{v} satisfies condition (2).

The BHR-conjecture

The BHR-conjecture

For ANY positive integer v and ANY list L with $v-1$ elements taken from $\left\{1,2, \ldots,\left\lfloor\frac{v}{2}\right\rfloor\right\}$ and satisfying condition (2) there exists a Hamiltonian path H of K_{v} such that $\ell(H)=L$.

Given $L \longrightarrow \operatorname{BHR}(L)$.

First results on the BHR-conjecture

$U=$ underlying set of L
$\operatorname{BHR}(\mathrm{L})$ is true in each of the following cases:

- $|L| \leq 36 \quad$ [Meszka, $2008+$ McKay-Peters, 2022]
- $L=M \cup\left\{1^{a}\right\}$ for any list M and $a>a_{M}$, where a_{M} is a suitable constant depending on M [Horak-Rosa, 2009]
- $|U| \leq 2 \quad$ [Horak-Rosa + Dinitz-Janiszewski, 2009]
- $U=\{1,2,3\} \quad$ [Capparelli-Del Fra, 2010]
- $U \subseteq\{1,2,3,5\} \quad$ [AP-Pellegrini, 2014]
- $L=\left\{1^{a}, 2^{b}, x^{c}\right\}$ when x is even and $a+b \geq x-1$
[AP-Pellegrini, 2014]
$U=$ underlying set of L
$\operatorname{BHR}(\mathrm{L})$ is true in each of the following cases:
- $|L| \leq 36 \quad[$ Meszka, $2008+$ McKay-Peters, 2022]
- $L=M \cup\left\{1^{a}\right\}$ for any list M and $a>a_{M}$, where a_{M} is a suitable constant depending on M [Horak-Rosa, 2009]
- $|U| \leq 2 \quad$ [Horak-Rosa + Dinitz-Janiszewski, 2009]
- $U=\{1,2,3\} \quad$ [Capparelli-Del Fra, 2010]
- $U \subseteq\{1,2,3,5\} \quad[A P-P e l l e g r i n i, ~ 2014]$
- $L=\left\{1^{a}, 2^{b}, x^{c}\right\}$ when x is even and $a+b \geq x-1$
[AP-Pellegrini, 2014]

An explicit bound

Theorem [Ollis, AP, Pellegrini, Schmitt, 2022]
If M is a list with underlying set $U=\left\{x_{1}, \ldots, x_{k}\right\}$ with
$1<x_{1}<\ldots<x_{k}$, then $\operatorname{BHR}(L)$ is true whenever $L=M \cup\left\{1^{s}\right\}$ with $s>3 x_{k}-5+\sum_{i=1}^{k} x_{i}$.

First results on the BHR-conjecture

$U=$ underlying set of L
$\operatorname{BHR}(\mathrm{L})$ is true in each of the following cases:

- $|L| \leq 36 \quad$ [Meszka, $2008+$ McKay-Peters, 2022]
- $L=M \cup\left\{1^{a}\right\}$ for any list M and $a>a_{M}$, where a_{M} is a suitable constant depending on M [Horak-Rosa, 2009]
- $|U| \leq 2 \quad$ [Horak-Rosa + Dinitz-Janiszewski, 2009]
- $U=\{1,2,3\} \quad$ [Capparelli-Del Fra, 2010]
- $U \subseteq\{1,2,3,5\} \quad$ [AP-Pellegrini, 2014]
- $L=\left\{1^{a}, 2^{b}, x^{c}\right\}$ when x is even and $a+b \geq x-1$
[AP-Pellegrini, 2014]

Bibliography on the BHR-conjecture

- Agirseven, Ollis, in preparation (202?)
- Agirseven, Ollis, preprint (2024)
- Capparelli, Del Fra, Electron. J. Combin. (2010)
- Chand, Ollis, preprint (2022)
- Dinitz, Janiszewski, Bull. Inst. Combin. Appl. (2009)
- Horak, Rosa, Electron. J. Combin. (2009)
- McKay, Peters, J. Integer Sequences (2022)
- Meszka, private communication (2008)
- Monopoli, Electron. J. Combin. (2015)
- Ollis, AP, Pellegrini, Schmitt, Discrete Math. (2021)
- Ollis, AP, Pellegrini, Schmitt, Ars Math. Contemp. (2022)
- AP, Pellegrini, Electron. J. Combin. (2014)
- AP, Pellegrini, Discrete Math. (2014)
- Vázques-Ávila, Bull. Inst. Combin. Appl. (2022)
- Vázques-Ávila, Bol. Soc. Mat. Mex. (2023)

Bibliography on the BHR-conjecture

- Meszka, private communication (2008)
- Horak, Rosa, Electron. J. Combin. (2009)
- Dinitz, Janiszewski, Bull. Inst. Combin. Appl. (2009)
- Capparelli, Del Fra, Electron. J. Combin. (2010)
- AP, Pellegrini, Electron. J. Combin. (2014)
- AP, Pellegrini, Discrete Math. (2014)
- Monopoli, Electron. J. Combin. (2015)
- Ollis, AP, Pellegrini, Schmitt, Discrete Math. (2021)
- Chand, Ollis, preprint (2022)
- McKay, Peters, J. Integer Sequences (2022)
- Ollis, AP, Pellegrini, Schmitt, Ars Math. Contemp. (2022)
- Vázques-Ávila, Bull. Inst. Combin. Appl. (2022)
- Vázques-Ávila, Bol. Soc. Mat. Mex. (2023)
- Agirseven, Ollis, preprint (2024)
- Agirseven, Ollis, in preparation (202?)

Bibliography on the BHR-conjecture

- Meszka, private communication (2008)
- Horak, Rosa, Electron. J. Combin. (2009)
- Dinitz, Janiszewski, Bull. Inst. Combin. Appl. (2009)
- Capparelli, Del Fra, Electron. J. Combin. (2010)
- AP, Pellegrini, Electron. J. Combin. (2014)
- AP, Pellegrini, Discrete Math. (2014)
- Monopoli, Electron. J. Combin. (2015)
- Ollis, AP, Pellegrini, Schmitt, Discrete Math. (2021)
- Chand, Ollis, preprint (2022)
- McKay, Peters, J. Integer Sequences (2022)
- Ollis, AP, Pellegrini, Schmitt, Ars Math. Contemp. (2022)
- Vázques-Ávila, Bull. Inst. Combin. Appl. (2022)
- Vázques-Ávila, Bol. Soc. Mat. Mex. (2023)
- Agirseven, Ollis, preprint (2024)
- Agirseven, Ollis, in preparation (202?)

Conjecture n. 2

Bacher (2008) and Meszka (2012) \rightarrow AP, Pellegrini (2015)

$G=a$ near 1-factor of $K_{2 n+1}$

$G=a$ near 1 -factor of $K_{2 n+1}$

Conjecture [Meszka, 2012]

Given ANY prime $p=2 n+1$ and ANY list L of n elements taken from $\{1, \ldots, n\}$, there exists a near 1 -factor F of K_{p} such that $\ell(F)=L$.

Rosa, On a problem of Mariusz Meszka, Discrete Math. (2015)

From BHR to MPP

Buratti : Horak-Rosa $=$ Meszka : Pasotti-Pellegrini

A generalization of Meszka's conjecture

MPP-Conjecture [AP, Pellegrini, 2015]
Let $v=2 n+1$ be ANY odd integer and let L be ANY list of n elements taken from $\{1, \ldots, n\}$. Then there exists a near 1 -factor F of K_{v} such that $\ell(F)=L$ if and only if the following condition holds:
for any divisor d of v, the number of multiples of d in L does not exceed $\frac{v-d}{2}$.

Proposition [AP, Pellegrini, 2015]
The list of edge-lengths of any near 1-factor of K_{v} satisfies condition (3).

Results about MPP-conjecture

Theorem [AP, Pellegrini, 2015]

MPP-conjecture is true for any list L with n elements such that:

- $2 n+1 \leq 23$;
- $L=\left\{\ell_{1}^{a}\right\}, L=\left\{\ell_{1}^{a}, \ell_{2}^{b}\right\}$;
- $L=\{1,2, \ldots, n\}$;
- $L=\left\{1^{a}, 2^{b}, t^{c}\right\}$ with 1) t not coprime with $2 n+1$ OR

2) $a+b \geq\left\lfloor\frac{t-1}{2}\right\rfloor \mathrm{OR}$
3) $t \leq 11$.

The King's Table Problem

Seating Couples Around the King's Table and a New Characterization of Prime Numbers

Emmanuel Preissmann and Maurice Mischler

1. INTRODUCTION A king invites n couples for dinner at his round table containing $2 n+1$ seats, the king taking the last unoccupied chair. The king has to address the following problem [1]: Given an arbitrary set of n couples, no one married for more than n years, is it always possible to seat all n couples at his table according to the royal protocol stipulating that if the two spouses of a couple are in their a th year of marriage, they have to occupy two chairs at circular distance a? ("Circular distance a " means that the two chairs are separated by exactly $a-1$ chairs.)

In other words, given an arbitrary set of n natural numbers d_{1}, \ldots, d_{n} in $\{1, \ldots, n\}$, is it always possible to find an involution of $2 n+1$ circularly ordered points having a unique fixed point and consisting of n disjoint transpositions exchanging respectively two points at circular distance $d_{1}, d_{2}, \ldots, d_{n}$?

Theorem 1. The king's problem for a table surrounded by $2 n+1 \geq 3$ seats has a solution for every set of distances between 1 and n if and only if $2 n+1$ is a prime number.

The American Mathematical Monthly 116 (2009), 268-272.

With graph terminology

- $2 n+1$ seats $\rightarrow 2 n+1$ vertices
- round table \rightarrow cycle of length $2 n+1$
- king \rightarrow isolated vertex
- a couple \rightarrow an edge
- years of marriage \rightarrow edge-length
- a solution \rightarrow a near 1-factor of $K_{2 n+1}$

With graph terminology

- $2 n+1$ seats $\rightarrow 2 n+1$ vertices
- round table \rightarrow cycle of length $2 n+1$
- king \rightarrow isolated vertex
- a couple \rightarrow an edge
- years of marriage \rightarrow edge-length
- a solution \rightarrow a near 1-factor of $K_{2 n+1}$

The King's Table Problem \equiv Meszka's Problem

Seating Couples Around the King's Table and a New Characterization of Prime Numbers

Emmanuel Preissmann and Maurice Mischler

1. INTRODUCTION A king invites n couples for dinner at his round table containing $2 n+1$ seats, the king taking the last unoccupied chair. The king has to address the following problem [1]: Given an arbitrary set of n couples, no one married for more than n years, is it always possible to seat all n couples at his table according to the royal protocol stipulating that if the two spouses of a couple are in their a th year of marriage, they have to occupy two chairs at circular distance a? ("Circular distance a " means that the two chairs are separated by exactly $a-1$ chairs.)

In other words, given an arbitrary set of n natural numbers d_{1}, \ldots, d_{n} in $\{1, \ldots, n\}$, is it always possible to find an involution of $2 n+1$ circularly ordered points having a unique fixed point and consisting of n disjoint transpositions exchanging respectively two points at circular distance $d_{1}, d_{2}, \ldots, d_{n}$?

Theorem 1. The king's problem for a table surrounded by $2 n+1 \geq 3$ seats has a solution for every set of distances between 1 and n if and only if $2 n+1$ is a prime number.

The American Mathematical Monthly 116 (2009), 268-272.

Conjecture [Bacher, 2008]

There exists a solution to the king's table problem if all distances are invertible elements modulo the total number $2 n+1$ of seats.

Conjecture [Bacher, 2008]

Let L be a list of n positive integers not exceeding n and coprime with $2 n+1$. Then there exists a near 1 -factor F of $K_{2 n+1}$ such that $\ell(F)=L$.

The King's Table Problem

Conjecture [Bacher, 2008]

There exists a solution to the king's table problem if all distances are invertible elements modulo the total number $2 n+1$ of seats.

Conjecture [Bacher, 2008]

Let L be a list of n positive integers not exceeding n and coprime with $2 n+1$. Then there exists a near 1 -factor F of $K_{2 n+1}$ such that $\ell(F)=L$.

In the prime case:

- The proof by Preissmann and Mischler is not constructive
- Alternative NON constructive proofs are given by:
- Karasev and Petrov (2012)
- Kohen and Sadofschi Costa (2016)

MPP-conjecture is still open!

MPP-Conjecture [AP, Pellegrini, 2015]

Let $v=2 n+1$ be ANY odd integer and let L be ANY list of n elements taken from $\{1, \ldots, n\}$. Then there exists a near 1 -factor F of K_{V} such that $\ell(F)=L$ if and only if the following condition holds:
for any divisor d of v, the number of multiples of d in L does not exceed $\frac{v-d}{2}$.

And the Queen???

Question

Why doesn't the queen attend the dinner??

And the Queen???

Question

Why doesn't the queen attend the dinner??

Add a place at the table.
\Downarrow
Take a 1-factor (perfect matching) in a complete graph of even order.

Conjecture n. 3

Adamaszek (20??) \rightarrow Meszka, AP, Pellegrini (202?)

Conjecture [Adamaszek, 20??]
There exists a solution to the king's table problem if all distances are invertible elements modulo the total number $2 n$ of seats.

Conjecture [Adamaszek, 20??]
Let L be a list of n positive integers not exceeding n and coprime with $2 n$. Then there exists a 1 -factor F of $K_{2 n}$ such that $\ell(F)=L$.

The King's Table Problem in the even case

Conjecture [Adamaszek, 20??]
There exists a solution to the king's table problem if all distances are invertible elements modulo the total number $2 n$ of seats.

Conjecture [Adamaszek, 20??]
Let L be a list of n positive integers not exceeding n and coprime with $2 n$. Then there exists a 1 -factor F of $K_{2 n}$ such that $\ell(F)=L$.

This conjecture holds:

- for n prime, Mezei (2013)
- for any n, Kohen and Sadofschi Costa (2016)

Theorem [Kohen, Sadofschi Costa, 2016]

Let L be a list of n positive integers not exceeding n and coprime with $2 n$. Then there exists a 1 -factor F of $K_{2 n}$ such that $\ell(F)=L$.

The King's Table Problem in the even case

Conjecture [Adamaszek, 20??]
There exists a solution to the king's table problem if all distances are invertible elements modulo the total number $2 n$ of seats.

Conjecture [Adamaszek, 20??]
Let L be a list of n positive integers not exceeding n and coprime with $2 n$. Then there exists a 1 -factor F of $K_{2 n}$ such that $\ell(F)=L$.

This conjecture holds:

- for n prime, Mezei (2013)
- for any n, Kohen and Sadofschi Costa (2016)

Theorem [Kohen, Sadofschi Costa, 2016]

Let L be a list of n positive integers not exceeding n and coprime with $2 n$. Then there exists a 1 -factor F of $K_{2 n}$ such that $\ell(F)=L$.

The King's Table Problem in the even case

Example

Take $n=2, L=\left\{2^{2}\right\}$.
$F=\{\{0,2\},\{1,3\}\}$ is a 1 -factor of K_{4} with $\ell(F)=L$.

The King's Table Problem in the even case

Example

Take $n=2, L=\left\{2^{2}\right\}$.
$F=\{\{0,2\},\{1,3\}\}$ is a 1 -factor of K_{4} with $\ell(F)=L$.

Conjecture??

Let $v=2 n$ be ANY even integer and let L be ANY list of n elements taken from $\{1, \ldots, n\}$. Then there exists a 1 -factor F of K_{v} such that $\ell(F)=L$ if and only if the following condition holds:
for any divisor d of v, the number of multiples of d in L does not exceed $\frac{v-d}{2}$.

The King's Table Problem in the even case

Example

Take $n=2, L=\left\{2^{2}\right\}$.
$F=\{\{0,2\},\{1,3\}\}$ is a 1 -factor of K_{4} with $\ell(F)=L$.

Conjecture??

Let $v=2 n$ be ANY even integer and let L be ANY list of n elements taken from $\{1, \ldots, n\}$. Then there exists a 1 -factor F of K_{v} such that $\ell(F)=L$ if and only if the following condition holds:
for any divisor d of v, the number of multiples of d in L does not exceed $\frac{v-d}{2}$.

IT DOES NOT HOLD!!!

The King's Table Problem in the even case

Example

Take $n=2, L=\left\{2^{2}\right\}$.
$F=\{\{0,2\},\{1,3\}\}$ is a 1 -factor of K_{4} with $\ell(F)=L$.

Conjecture??

Let $v=2 n$ be ANY even integer and let L be ANY list of n elements taken from $\{1, \ldots, n\}$. Then there exists a 1 -factor F of K_{v} such that $\ell(F)=L$ if and only if the following condition holds:
for any divisor d of v, the number of multiples of d in L does not exceed $\frac{v-d}{2}$.

IT DOES NOT HOLD!!!

Problem

Find a "good" conjecture to state!

Some necessary conditions

Proposition [Meszka, AP, Pellegrini, 202?]
Let $v=2 n$ and L be a list of n positive integers not exceeding n. If there exists a 1 -factor F of K_{v} such that $\ell(F)=L$, then:
(1) for any divisor d of v such that d does not divide n, the number of multiples of d in L does not exceed $\frac{v-d}{2}$
(2) L contains an even number of even integers.

Some necessary conditions

Proposition [Meszka, AP, Pellegrini, 202?]
Let $v=2 n$ and L be a list of n positive integers not exceeding n. If there exists a 1 -factor F of K_{v} such that $\ell(F)=L$, then:
(1) for any divisor d of v such that d does not divide n, the number of multiples of d in L does not exceed $\frac{v-d}{2}$
(2) L contains an even number of even integers.

Necessary but not sufficient conditions!

Example

Take $n=5$ and $L=\left\{2^{2}, 3,5^{2}\right\}$

Some necessary conditions

Proposition [Meszka, AP, Pellegrini, 202?]
Let $v=2 n$ and L be a list of n positive integers not exceeding n. If there exists a 1 -factor F of K_{v} such that $\ell(F)=L$, then:
(1) for any divisor d of v such that d does not divide n, the number of multiples of d in L does not exceed $\frac{v-d}{2}$
(2) L contains an even number of even integers.

Necessary but not sufficient conditions!

Example

Take $n=5$ and $L=\left\{2^{2}, 3,5^{2}\right\} \Rightarrow v=10, d=2$.

Some necessary conditions

Proposition [Meszka, AP, Pellegrini, 202?]
Let $v=2 n$ and L be a list of n positive integers not exceeding n. If there exists a 1 -factor F of K_{v} such that $\ell(F)=L$, then:
(1) for any divisor d of v such that d does not divide n, the number of multiples of d in L does not exceed $\frac{v-d}{2}$
(2) L contains an even number of even integers.

Necessary but not sufficient conditions!

Example

Take $n=5$ and $L=\left\{2^{2}, 3,5^{2}\right\} \Rightarrow v=10, d=2$.
There is no 1 -factor F of K_{10} such that $\ell(F)=L$.

A complete solution for the extremal cases

Case 1: one edge-length with multiplicity n
Proposition [Meszka, AP, Pellegrini, 202?]
Let $1 \leq x \leq n$. There exists a 1-factor F of $K_{2 n}$ such that $\ell(F)=\left\{x^{n}\right\}$ if and only if $\operatorname{gcd}(x, 2 n)$ is a divisor of n.

Case 2: n edge-lengths with multiplicity 1
Proposition [Meszka, AP, Pellegrini, 202?]
Let $L=\{1,2, \ldots, n\}$. There exists a 1-factor F of $K_{2 n}$ such that $\ell(F)=L$ if and only if $n \equiv 0,1(\bmod 4)$.

A new open problem

Problem [Meszka, AP, Pellegrini, 202?]
Given an even integer $v=2 n$, determine all lists L satisfying conditions (1) for any divisor d of v such that d does not divide n, the number of multiples of d in L does not exceed $\frac{v-d}{2}$
(2) L contains an even number of even integers
such that there exists a 1 -factor F of K_{v} such that $\ell(F)=L$.

A complete solution for the two edge-lengths case

Theorem [Meszka, AP, Pellegrini, 202?]

Let $1 \leq x, y \leq n, x \neq y$ and $1 \leq a<n$. Let $d_{x}=\operatorname{gcd}(x, 2 n)$, $d_{y}=\operatorname{gcd}(y, 2 n)$ and $d=\operatorname{gcd}(x, y, 2 n)$. There exists a 1 -factor F of $K_{2 n}$ such that $\ell(F)=\left\{x^{n-a}, y^{a}\right\}$ if and only if d divides n and one of the following cases occurs:
(1) $\frac{x}{d}$ is even, $\frac{y}{d}$ is odd, $n-a$ is even and either
(a) d_{x} divides n; or
(b) d_{x} does not divide n and $2 a \geq d_{x}$;
(2) $\frac{x}{d}$ is odd, $\frac{y}{d}$ is even, a is even and either
(a) d_{y} divides n; or
(b) d_{y} does not divide n and $2(n-a) \geq d_{y}$;
(3) $\frac{x}{d}$ and $\frac{y}{d}$ are both odd, and the following two conditions are both satisfied:
(a) a is even or $d a \geq d_{x}$.
(b) $n-a$ is even or $d(n-a) \geq d_{y}$.

A new conjecture

At the moment we have no idea for a general conjecture, so we focus on the case n prime.

Conjecture [Meszka, AP, Pellegrini, 202?]
Let n be a prime and let L be a list of n positive integers less than n. There exists a 1-factor F of $K_{2 n}$ such that $\ell(F)=L$ if and only if the number of even integers in L is even.

A new conjecture

At the moment we have no idea for a general conjecture, so we focus on the case n prime.

Conjecture [Meszka, AP, Pellegrini, 202?]
Let n be a prime and let L be a list of n positive integers less than n. There exists a 1-factor F of $K_{2 n}$ such that $\ell(F)=L$ if and only if the number of even integers in L is even.

Example

Take $n=5$ and $L=\left\{2^{2}, 3,5^{2}\right\} \Rightarrow v=10, d=2$.
There is no 1 -factor F of K_{10} such that $\ell(F)=L$.

A tool for attacking the King's table problem

Definition [Skolem, 1957]
A Skolem sequence of order n is a sequence $S=\left(s_{0}, s_{1}, \ldots, s_{2 n-1}\right)$ of $2 n$ integers such that for every $k \in\{1,2, \ldots, n\}$ the following conditions hold:
(1) there exist exactly two elements $s_{i}, s_{j} \in S$ such that $s_{i}=s_{j}=k$;
(2) if $s_{i}=s_{j}=k$ with $i<j$, then $j-i=k$.

$$
n=4: S=(1,1,3,4,2,3,2,4)
$$

Skolem sequences

Skolem sequence of order n

$$
\left\{\left(a_{i}, b_{i}\right): 1 \leq i \leq n, b_{i}-a_{i}=i\right\} \text { with } \bigcup_{i=1}^{n}\left\{a_{i}, b_{i}\right\}=\{0,1, \ldots, 2 n-1\}
$$

$$
n=4: S=(1,1,3,4,2,3,2,4) \rightarrow\{(0,1),(4,6),(2,5),(3,7)\}
$$

Skolem sequences

Skolem sequence of order n
\Downarrow

$$
\left\{\left(a_{i}, b_{i}\right): 1 \leq i \leq n, b_{i}-a_{i}=i\right\} \text { with } \bigcup_{i=1}^{n}\left\{a_{i}, b_{i}\right\}=\{0,1, \ldots, 2 n-1\}
$$

$$
n=4: S=(1,1,3,4,2,3,2,4) \rightarrow\{(0,1),(4,6),(2,5),(3,7)\}
$$

Example

$$
\begin{aligned}
& S=(1,1,3,4,2,3,2,4) \rightarrow\{(0,1),(4,6),(2,5),(3,7)\} \\
& \Downarrow \\
& F=\{\{0,1\},\{4,6\},\{2,5\},\{3,7\}\} \cup\{8\}
\end{aligned}
$$

Definition [Baker, 1995]

A k-extended Skolem sequence of order n is a sequence $S=\left(s_{0}, s_{1}, s_{2}, \ldots, s_{2 n}\right)$ of $2 n+1$ integers satisfying conditions (1) and (2) and such that $s_{k}=0$.
$k=2 n-1 \Rightarrow$ hooked Skolem sequence

Example

5 - extended Skolem sequence of order 3 :
$S=(3,1,1,3,2,0,2) \rightarrow\{(1,2),(4,6),(0,3)\} \cup\{5\}$ \Downarrow

$$
F=\{\{1,2\},\{4,6\},\{0,3\}\} \cup\{5\}
$$

Skolem sequences of a list

Definition

Let $L=\left\{1^{a_{1}}, 2^{a_{2}}, \ldots, n^{a_{n}}\right\}$, with $|L|=n$ and $a_{i} \geq 0$.
A Skolem sequence of L is a sequence $S=\left(s_{0}, s_{1}, \ldots, s_{2 n-1}\right)$ such that:

- $T_{i}:=\left\{(x, y) \mid s_{x}=s_{y}=i=y-x\right\}$ has size a_{i}
- $\cup T_{i}=\{0,1, \ldots, 2 n-1\}$

Example

$L=\left\{2,3^{2}, 4\right\}$

Example

$L=\left\{2,3^{2}, 4\right\} \Rightarrow L=\{2,3,3,4\}$
Skolem sequence of $L: S=(3,3,4,3,3,2,4,2)$

Example

$$
L=\left\{2,3^{2}, 4\right\} \Rightarrow L=\{2,3,3,4\}
$$

Skolem sequence of $L: S=(3,3,4,3,3,2,4,2)$

$$
T_{1}=\emptyset, \quad T_{2}=\{(5,7)\}, \quad T_{3}=\{(0,3),(1,4)\}, \quad T_{4}=\{(2,6)\}
$$

$$
\bigcup_{i=1}^{4} T_{i}=\{0,1, \ldots, 7\}
$$

\Downarrow
$F=\{\{5,7\},\{0,3\},\{1,4\},\{2,6\}\}$ 1-factor of K_{8} s.t. $\ell(F)=L$

Example

$L=\left\{1,2,4^{2}\right\}$ and $k=5$
5-extended Skolem sequence of $L: S=(4,2,4,2,4,0,4,1,1)$

Example

$L=\left\{1,2,4^{2}\right\}$ and $k=5$

5-extended Skolem sequence of $L: S=(4,2,4,2,4,0,4,1,1)$

$$
T_{1}=\{(7,8)\}, \quad T_{2}=\{(1,3)\}, \quad T_{3}=\emptyset, \quad T_{4}=\{(0,4),(2,6)\}
$$

$$
\bigcup_{i=1}^{4} T_{i}=\{0,1, \ldots, 8\} \backslash\{5\}
$$

$$
\Downarrow
$$

$F=\{\{7,8\},\{1,3\},\{0,4\},\{2,6\}\} \cup\{5\}$ near 1-factor of K_{9} s.t. $\ell(F)=L$

The mind revels in conjecture. Where information is lacking, it will gladly fill in the gaps.

James Geary

