Graphs with prescribed edge-lengths: open problems and new results

> Anita Pasotti anita.pasotti@unibs.it

Università degli Studi di Brescia, Italy

 $\leftarrow \equiv \rightarrow$

- (1) Buratti (2007) \rightarrow Horak, Rosa (2009)
- (2) Bacher (2008) and Meszka (2012) \rightarrow AP, Pellegrini (2015)
- (3) Adamaszek (20??) \rightarrow Meszka, AP, Pellegrini (202?)

= nar

Complete graphs

 $K_v = \text{complete graph of order } v$, with $V(K_v) = \{0, 1, \dots, v-1\}$

 K_7

▶ < ≣ >

Hamiltonian paths

Hamiltonian path of K_{ν} = path H such that $V(H) = V(K_{\nu})$

H = [0, 6, 2, 1, 4, 3, 5]

문에 비원에 다

Definition

The length of an edge $\{x, y\}$ of K_v is

$$\ell(\{x,y\}) = \min(|x-y|, v-|x-y|).$$

Given $G \leq K_{v}$, the list of edge-lengths of G is

$$\ell(G) = \{\ell(e) : e \in E(G)\}.$$

 $e \in E(K_{\nu}) \Rightarrow \ell(e) \leq \lfloor \frac{\nu}{2} \rfloor$

문어 비원이다.

H = [0, 6, 2, 1, 4, 3, 5]

문에 비원에 다

H = [0, 6, 6, 2, 1, 1, 3, 4, 3, 2, 5]

문어 귀 문어 !!

H = [0, 6, 6, 2, 1, 1, 3, 4, 3, 2, 5]

문어 귀 문어 !!

 $H = [0, \frac{1}{2}, 6, \frac{3}{2}, 2, \frac{1}{2}, 1, \frac{3}{2}, 4, \frac{1}{2}, 3, \frac{2}{2}, 5]$

문에 비원에 다

 $H = \begin{bmatrix} 0 & \frac{1}{2} & 6 & \frac{3}{2} & 2 & \frac{1}{2} & 1 & \frac{3}{2} & \frac{4}{2} & \frac{1}{3} & \frac{3}{2} & \frac{2}{5} \end{bmatrix} \implies \ell(H) = \{1, 3, 1, 3, 1, 2\} = \{1^3, 2, 3^2\}$

문에 비원에 다

э

H = [0, 6, 2, 1, 4, 3, 5]

→ < Ξ → </p>

H = [0, 1, 6, 2, 1, 4, 3, 5]

▶ < ∃ > ...

 $H = [0, 6^{3}, 2, 1, 4, 3, 5]$

- ∢ ≣ ▶

 $H = [0, 6, 2^{\frac{1}{2}}, 1, 4, 3, 5]$

▶ < ∃ > ...

 $H = [0, 6, 2, 1^{3}, 4, 3, 5]$

→ < Ξ → </p>

 $H = [0, 6, 2, 1, 4^{\frac{1}{2}}, 3, 5]$

→ < Ξ → </p>

 $H = [0, 6, 2, 1, 4, 3^{2}, 5]$

▶ < ∃ > ...

Buratti (2007) \rightarrow Horak, Rosa (2009)

< ≣ > _ ≣

Conjecture [Buratti, 2007]

Given ANY prime p = 2n+1 and ANY list L of 2n elements taken from $\{1, \ldots, n\}$, there exists a Hamiltonian path H of K_p such that $\ell(H) = L$.

→ < Ξ → </p>

Mail Marco-Alex

On Wed, 3 Jan 2007, Marco Buratti wrote:

> Dear Alex,

> the new year has just begun and already I need your help ...

> I wonder whether the following problem has been studied and, in the

> affirmative case, I would like to know what has been done. You maybe can

> suggest the name of some people who worked on this problem.

>

```
> The problem is:
```

```
>
```

> Given an odd prime p and a list L of p-1 elements in the set

> {1,2,...,(p-1)/2}, does there exist a hamiltonian path H of K(Z_p) (the

> complete graph on Z_p) such that the list of all differences between

```
> adjacent vertices of H is (\pm L)?
```

>

> I conjecture that the answer is always YES but, at the moment, I am not able > to prove it.

>

> Thanks in advance and please forgive me for asking your help so frequently.

> Best regards,

> Marco

Alexander Rosa <rosa@mcmaster.ca>

a Marco Buratti 🔻

Dear Marco,

this looks like a very nice problem. I am not aware of anyone having tried this, let alone solved it. I want to look at it myself!

Best regards, Alex

문에 비문어

<u>Georg</u> Cantor (1845–1918)

To ask the right question is harder than to answer it.

Conjecture [Buratti, 2007]

Given ANY prime p = 2n+1 and ANY list L of 2n elements taken from $\{1, \ldots, n\}$, there exists a Hamiltonian path H of K_p such that $\ell(H) = L$.

Alex Rosa:"This conjecture is a combinatorial disease!" at "Combinatorics 2008", Costermano, Italy (2008).

< ∃→

Problem [Horak and Rosa, 2009]

Given a positive integer v, determine all lists L such that there exists a Hamiltonian path H of K_v with $\ell(H) = L$.

Conjecture [Horak and Rosa, 2009]

Let $L = \{\ell_1^{a_1}, \ell_2^{a_2}, \dots, \ell_k^{a_k}\}$ with |L| = v - 1 and $1 \le \ell_i \le \lfloor \frac{v}{2} \rfloor$, then there exists a Hamiltonian path H of K_v such that $\ell(H) = L$ if and only if for all subsets $J \subseteq [1, k]$:

$$\sum_{j\in J} a_j \ge \gcd\{v, \ell_i : i \in [1, k] \setminus J\} - 1 \tag{1}$$

Proposition [AP and Pellegrini, 2014]

Condition (1) is equivalent to:

for any divisor d of v, the number of multiples of din L does not exceed v - d.

(2)

▶ < ∃ >

Proposition [AP and Pellegrini, 2014]

The list of the edge-lengths of any Hamiltonian path of K_{ν} satisfies condition (2).

The BHR-conjecture

For ANY positive integer v and ANY list L with v-1 elements taken from $\{1, 2, \dots, \lfloor \frac{v}{2} \rfloor\}$ and satisfying condition (2) there exists a Hamiltonian path H of K_v such that $\ell(H) = L$.

Given $L \longrightarrow BHR(L)$.

< ∃→

First results on the BHR-conjecture

U = underlying set of L

• . . .

BHR(L) is true in each of the following cases:

- $|L| \leq 36$ [Meszka, 2008 + McKay-Peters, 2022]
- L = M ∪ {1^a} for any list M and a > a_M, where a_M is a suitable constant depending on M [Horak-Rosa, 2009]
- $|U| \le 2$ [Horak-Rosa + Dinitz-Janiszewski, 2009]
- $U = \{1, 2, 3\}$ [Capparelli-Del Fra, 2010]
- $U \subseteq \{1, 2, 3, 5\}$ [AP-Pellegrini, 2014]
- $L = \{1^a, 2^b, x^c\}$ when x is even and $a + b \ge x 1$ [AP-Pellegrini, 2014]

▲ 문 ▶ . ▲ 문 ▶ ...

First results on the BHR-conjecture

U = underlying set of L

• . . .

BHR(L) is true in each of the following cases:

- $|L| \leq 36$ [Meszka, 2008 + McKay-Peters, 2022]
- L = M ∪ {1^a} for any list M and a > a_M, where a_M is a suitable constant depending on M [Horak-Rosa, 2009]
- $|U| \le 2$ [Horak-Rosa + Dinitz-Janiszewski, 2009]
- $U = \{1, 2, 3\}$ [Capparelli-Del Fra, 2010]
- $U \subseteq \{1, 2, 3, 5\}$ [AP-Pellegrini, 2014]
- $L = \{1^a, 2^b, x^c\}$ when x is even and $a + b \ge x 1$ [AP-Pellegrini, 2014]

▲ 문 ▶ . ▲ 문 ▶ ...

Theorem [Ollis, AP, Pellegrini, Schmitt, 2022]

If M is a list with underlying set $U = \{x_1, \ldots, x_k\}$ with

 $1 < x_1 < \ldots < x_k$, then BHR(L) is true whenever $L = M \cup \{1^s\}$ with $s > 3x_k - 5 + \sum_{i=1}^k x_i$.

→ < Ξ → </p>

First results on the BHR-conjecture

U = underlying set of L

• . . .

BHR(L) is true in each of the following cases:

- $|L| \leq 36$ [Meszka, 2008 + McKay-Peters, 2022]
- L = M ∪ {1^a} for any list M and a > a_M, where a_M is a suitable constant depending on M [Horak-Rosa, 2009]
- $|U| \le 2$ [Horak-Rosa + Dinitz-Janiszewski, 2009]
- $U = \{1, 2, 3\}$ [Capparelli-Del Fra, 2010]
- $U \subseteq \{1, 2, 3, 5\}$ [AP-Pellegrini, 2014]
- $L = \{1^a, 2^b, x^c\}$ when x is even and $a + b \ge x 1$ [AP-Pellegrini, 2014]

▲ 문 ▶ . ▲ 문 ▶ ...

Bibliography on the BHR-conjecture

- Agirseven, Ollis, in preparation (202?)
- Agirseven, Ollis, preprint (2024)
- Capparelli, Del Fra, Electron. J. Combin. (2010)
- Chand, Ollis, preprint (2022)
- Dinitz, Janiszewski, Bull. Inst. Combin. Appl. (2009)
- Horak, Rosa, Electron. J. Combin. (2009)
- McKay, Peters, J. Integer Sequences (2022)
- Meszka, private communication (2008)
- Monopoli, Electron. J. Combin. (2015)
- Ollis, AP, Pellegrini, Schmitt, Discrete Math. (2021)
- Ollis, AP, Pellegrini, Schmitt, Ars Math. Contemp. (2022)
- AP, Pellegrini, Electron. J. Combin. (2014)
- AP, Pellegrini, Discrete Math. (2014)
- Vázques-Ávila, Bull. Inst. Combin. Appl. (2022)
- Vázques-Ávila, Bol. Soc. Mat. Mex. (2023)

Bibliography on the BHR-conjecture

- Meszka, private communication (2008)
- Horak, Rosa, Electron. J. Combin. (2009)
- Dinitz, Janiszewski, Bull. Inst. Combin. Appl. (2009)
- Capparelli, Del Fra, Electron. J. Combin. (2010)
- AP, Pellegrini, Electron. J. Combin. (2014)
- AP, Pellegrini, Discrete Math. (2014)
- Monopoli, Electron. J. Combin. (2015)
- Ollis, AP, Pellegrini, Schmitt, Discrete Math. (2021)
- Chand, Ollis, preprint (2022)
- McKay, Peters, J. Integer Sequences (2022)
- Ollis, AP, Pellegrini, Schmitt, Ars Math. Contemp. (2022)
- Vázques-Ávila, Bull. Inst. Combin. Appl. (2022)
- Vázques-Ávila, Bol. Soc. Mat. Mex. (2023)
- Agirseven, Ollis, preprint (2024)
- Agirseven, Ollis, in preparation (202?)

∃ → 3

Bibliography on the BHR-conjecture

- Meszka, private communication (2008)
- Horak, Rosa, Electron. J. Combin. (2009)
- Dinitz, Janiszewski, Bull. Inst. Combin. Appl. (2009)
- Capparelli, Del Fra, Electron. J. Combin. (2010)
- AP, Pellegrini, Electron. J. Combin. (2014)
- AP, Pellegrini, Discrete Math. (2014)
- Monopoli, Electron. J. Combin. (2015)
- Ollis, AP, Pellegrini, Schmitt, Discrete Math. (2021)
- Chand, Ollis, preprint (2022)
- McKay, Peters, J. Integer Sequences (2022)
- Ollis, AP, Pellegrini, Schmitt, Ars Math. Contemp. (2022)
- Vázques-Ávila, Bull. Inst. Combin. Appl. (2022)
- Vázques-Ávila, Bol. Soc. Mat. Mex. (2023)
- Agirseven, Ollis, preprint (2024)
- Agirseven, Ollis, in preparation (202?)

∃ → 3

Bacher (2008) and Meszka (2012) \rightarrow AP, Pellegrini (2015)

▶ < ∃ >

G = a near 1-factor of K_{2n+1}

▶ ★ 臣 ▶ …
G = a near 1-factor of K_{2n+1}

Conjecture [Meszka, 2012]

Given ANY prime p = 2n+1 and ANY list L of n elements taken from $\{1, ..., n\}$, there exists a near 1-factor F of K_p such that $\ell(F) = L$.

Rosa, On a problem of Mariusz Meszka, Discrete Math. (2015)

Buratti : Horak-Rosa = Meszka : Pasotti-Pellegrini

문어 비문어 ...

MPP-Conjecture [AP, Pellegrini, 2015]

Let v = 2n+1 be ANY odd integer and let *L* be ANY list of *n* elements taken from $\{1, ..., n\}$. Then there exists a near 1-factor *F* of K_v such that $\ell(F) = L$ if and only if the following condition holds:

for any divisor d of v, the number of multiples of d in L does not exceed $\frac{v-d}{2}$.

(3)

Proposition [AP, Pellegrini, 2015]

The list of edge-lengths of any near 1-factor of K_{ν} satisfies condition (3).

Theorem [AP, Pellegrini, 2015]

MPP-conjecture is true for any list L with n elements such that:

- $2n + 1 \le 23;$
- $L = \{\ell_1^a\}, L = \{\ell_1^a, \ell_2^b\};$
- $L = \{1, 2, \dots, n\};$
- $L = \{1^a, 2^b, t^c\}$ with 1) t not coprime with 2n+1 OR 2) $a+b \ge \lfloor \frac{t-1}{2} \rfloor$ OR 3) $t \le 11$.

The King's Table Problem

▲ 문 ▶ ▲ 문 ▶ …

э

Seating Couples Around the King's Table and a New Characterization of Prime Numbers

Emmanuel Preissmann and Maurice Mischler

1. INTRODUCTION A king invites *n* couples for dinner at his round table containing 2n + 1 seats, the king taking the last unoccupied chair. The king has to address the following problem [1]: Given an arbitrary set of *n* couples, no one married for more than *n* years, is it always possible to seat all *n* couples at his table according to the royal protocol stipulating that if the two spouses of a couple are in their ath year of marriage, they have to occupy two chairs at *circular distance a*? ("*Circular distance a*" means that the two chairs are separated by exactly a - 1 chairs.)

In other words, given an arbitrary set of *n* natural numbers d_1, \ldots, d_n in $\{1, \ldots, n\}$, is it always possible to find an involution of 2n + 1 circularly ordered points having a unique fixed point and consisting of *n* disjoint transpositions exchanging respectively two points at circular distance d_1, d_2, \ldots, d_n ?

Theorem 1. The king's problem for a table surrounded by $2n + 1 \ge 3$ seats has a solution for every set of distances between 1 and n if and only if 2n + 1 is a prime number.

The American Mathematical Monthly 116 (2009), 268-272.

4 戸下

With graph terminology

- 2n+1 seats $\rightarrow 2n+1$ vertices
- round table \rightarrow cycle of length 2n+1
- king \rightarrow isolated vertex
- ullet a couple ightarrow an edge
- ullet years of marriage ightarrow edge-length
- a solution \rightarrow a near 1-factor of K_{2n+1}

- ₹ 🖬 🕨

With graph terminology

- 2n+1 seats $\rightarrow 2n+1$ vertices
- round table \rightarrow cycle of length 2n+1
- king \rightarrow isolated vertex
- ullet a couple ightarrow an edge
- ullet years of marriage ightarrow edge-length
- a solution \rightarrow a near 1-factor of K_{2n+1}

The King's Table Problem \equiv Meszka's Problem

- ₹ 🖬 🕨

Seating Couples Around the King's Table and a New Characterization of Prime Numbers

Emmanuel Preissmann and Maurice Mischler

1. INTRODUCTION A king invites *n* couples for dinner at his round table containing 2n + 1 seats, the king taking the last unoccupied chair. The king has to address the following problem [1]: Given an arbitrary set of *n* couples, no one married for more than *n* years, is it always possible to seat all *n* couples at his table according to the royal protocol stipulating that if the two spouses of a couple are in their ath year of marriage, they have to occupy two chairs at *circular distance a*? ("*Circular distance a*" means that the two chairs are separated by exactly a - 1 chairs.)

In other words, given an arbitrary set of *n* natural numbers d_1, \ldots, d_n in $\{1, \ldots, n\}$, is it always possible to find an involution of 2n + 1 circularly ordered points having a unique fixed point and consisting of *n* disjoint transpositions exchanging respectively two points at circular distance d_1, d_2, \ldots, d_n ?

Theorem 1. The king's problem for a table surrounded by $2n + 1 \ge 3$ seats has a solution for every set of distances between 1 and n if and only if 2n + 1 is a prime number.

The American Mathematical Monthly 116 (2009), 268-272.

4 戸下

Conjecture [Bacher, 2008]

There exists a solution to the king's table problem if all distances are invertible elements modulo the total number 2n+1 of seats.

Conjecture [Bacher, 2008]

Let L be a list of n positive integers not exceeding n and coprime with 2n+1. Then there exists a near 1-factor F of K_{2n+1} such that $\ell(F) = L$.

-∢ ≣ →

Conjecture [Bacher, 2008]

There exists a solution to the king's table problem if all distances are invertible elements modulo the total number 2n+1 of seats.

Conjecture [Bacher, 2008]

Let L be a list of n positive integers not exceeding n and coprime with 2n+1. Then there exists a near 1-factor F of K_{2n+1} such that $\ell(F) = L$.

In the prime case:

- The proof by Preissmann and Mischler is not constructive
- Alternative NON constructive proofs are given by:
 - Karasev and Petrov (2012)
 - Kohen and Sadofschi Costa (2016)

- ∢ ≣ →

MPP-Conjecture [AP, Pellegrini, 2015]

Let v = 2n+1 be ANY odd integer and let L be ANY list of n elements taken from $\{1, \ldots, n\}$. Then there exists a near 1-factor F of K_v such that $\ell(F) = L$ if and only if the following condition holds:

for any divisor d of v, the number of multiples of d in L does not exceed $\frac{v-d}{2}$.

And the Queen???

Question

Why doesn't the queen attend the dinner??

< ≣⇒

And the Queen???

Question

Why doesn't the queen attend the dinner??

Add a place at the table.

∜

Take a 1-factor (perfect matching) in a complete graph of even order.

< ∃→

Adamaszek (20??) \rightarrow Meszka, AP, Pellegrini (202?)

▶ < Ξ > ...

э

Conjecture [Adamaszek, 20??]

There exists a solution to the king's table problem if all distances are invertible elements modulo the total number 2n of seats.

Conjecture [Adamaszek, 20??]

Let L be a list of n positive integers not exceeding n and coprime with 2n. Then there exists a 1-factor F of K_{2n} such that $\ell(F) = L$.

글 > - - 글 >

Conjecture [Adamaszek, 20??]

There exists a solution to the king's table problem if all distances are invertible elements modulo the total number 2n of seats.

Conjecture [Adamaszek, 20??]

Let L be a list of n positive integers not exceeding n and coprime with 2n. Then there exists a 1-factor F of K_{2n} such that $\ell(F) = L$.

This conjecture holds:

- for *n* prime, Mezei (2013)
- for any *n*, Kohen and Sadofschi Costa (2016)

Theorem [Kohen, Sadofschi Costa, 2016]

Let L be a list of n positive integers not exceeding n and coprime with 2n. Then there exists a 1-factor F of K_{2n} such that $\ell(F) = L$.

물 제 문 제 문 제

Conjecture [Adamaszek, 20??]

There exists a solution to the king's table problem if all distances are invertible elements modulo the total number 2n of seats.

Conjecture [Adamaszek, 20??]

Let L be a list of n positive integers not exceeding n and coprime with 2n. Then there exists a 1-factor F of K_{2n} such that $\ell(F) = L$.

This conjecture holds:

- for *n* prime, Mezei (2013)
- for any *n*, Kohen and Sadofschi Costa (2016)

Theorem [Kohen, Sadofschi Costa, 2016]

Let L be a list of n positive integers not exceeding n and coprime with 2n. Then there exists a 1-factor F of K_{2n} such that $\ell(F) = L$.

물 제 문 제 문 제

Example

Take n = 2, $L = \{2^2\}$. $F = \{\{0, 2\}, \{1, 3\}\}$ is a 1-factor of K_4 with $\ell(F) = L$.

▶ < Ξ > ...

Example

Take n = 2, $L = \{2^2\}$. $F = \{\{0, 2\}, \{1, 3\}\}$ is a 1-factor of K_4 with $\ell(F) = L$.

Conjecture??

Let v = 2n be ANY even integer and let L be ANY list of n elements taken from $\{1, \ldots, n\}$. Then there exists a 1-factor F of K_v such that $\ell(F) = L$ if and only if the following condition holds:

for any divisor d of v, the number of multiples of d in L does not exceed $\frac{v-d}{2}$.

▶ < ∃ >

Example

Take n = 2, $L = \{2^2\}$. $F = \{\{0, 2\}, \{1, 3\}\}$ is a 1-factor of K_4 with $\ell(F) = L$.

Conjecture??

Let v = 2n be ANY even integer and let L be ANY list of n elements taken from $\{1, ..., n\}$. Then there exists a 1-factor F of K_v such that $\ell(F) = L$ if and only if the following condition holds:

for any divisor d of v, the number of multiples of d in L does not exceed $\frac{v-d}{2}$.

IT DOES NOT HOLD!!!

Example

Take n = 2, $L = \{2^2\}$. $F = \{\{0, 2\}, \{1, 3\}\}$ is a 1-factor of K_4 with $\ell(F) = L$.

Conjecture??

Let v = 2n be ANY even integer and let L be ANY list of n elements taken from $\{1, ..., n\}$. Then there exists a 1-factor F of K_v such that $\ell(F) = L$ if and only if the following condition holds:

for any divisor d of v, the number of multiples of d in L does not exceed $\frac{v-d}{2}$.

IT DOES NOT HOLD!!!

Let v = 2n and L be a list of n positive integers not exceeding n. If there exists a 1-factor F of K_v such that $\ell(F) = L$, then:

(1) for any divisor d of v such that d does not divide n, the number of multiples of d in L does not exceed $\frac{v-d}{2}$

(2) L contains an even number of even integers.

Let v = 2n and L be a list of n positive integers not exceeding n. If there exists a 1-factor F of K_v such that $\ell(F) = L$, then:

(1) for any divisor d of v such that d does not divide n, the number of multiples of d in L does not exceed $\frac{v-d}{2}$

(2) L contains an even number of even integers.

Necessary but not sufficient conditions!

Example

Take n = 5 and $L = \{2^2, 3, 5^2\}$

→

Let v = 2n and L be a list of n positive integers not exceeding n. If there exists a 1-factor F of K_v such that $\ell(F) = L$, then:

(1) for any divisor d of v such that d does not divide n, the number of multiples of d in L does not exceed $\frac{v-d}{2}$

(2) L contains an even number of even integers.

Necessary but not sufficient conditions!

Example

Take
$$n = 5$$
 and $L = \{2^2, 3, 5^2\} \Rightarrow v = 10, d = 2$.

-∢ ≣ →

Let v = 2n and L be a list of n positive integers not exceeding n. If there exists a 1-factor F of K_v such that $\ell(F) = L$, then:

(1) for any divisor d of v such that d does not divide n, the number of multiples of d in L does not exceed $\frac{v-d}{2}$

(2) L contains an even number of even integers.

Necessary but not sufficient conditions!

Example

Take n = 5 and $L = \{2^2, 3, 5^2\} \Rightarrow v = 10, d = 2$. There is no 1-factor F of K_{10} such that $\ell(F) = L$.

Case 1: one edge-length with multiplicity *n*

Proposition [Meszka, AP, Pellegrini, 202?] Let $1 \le x \le n$. There exists a 1-factor F of K_{2n} such that $\ell(F) = \{x^n\}$ if and only if gcd(x, 2n) is a divisor of n.

Case 2: *n* edge-lengths with multiplicity 1

Proposition [Meszka, AP, Pellegrini, 202?]

Let $L = \{1, 2, ..., n\}$. There exists a 1-factor F of K_{2n} such that $\ell(F) = L$ if and only if $n \equiv 0, 1 \pmod{4}$.

→ < ∃ →</p>

Problem [Meszka, AP, Pellegrini, 202?]

Given an even integer v = 2n, determine all lists L satisfying conditions

(1) for any divisor d of v such that d does not divide n, the number of multiples of d in L does not exceed $\frac{v-d}{2}$

(2) *L* contains an even number of even integers such that there exists a 1-factor *F* of K_V such that $\ell(F) = L$.

Theorem [Meszka, AP, Pellegrini, 202?]

Let $1 \le x, y \le n, x \ne y$ and $1 \le a < n$. Let $d_x = \gcd(x, 2n)$, $d_y = \gcd(y, 2n)$ and $d = \gcd(x, y, 2n)$. There exists a 1-factor F of K_{2n} such that $\ell(F) = \{x^{n-a}, y^a\}$ if and only if d divides n and one of the following cases occurs:

(1)
$$\frac{x}{d}$$
 is even, $\frac{y}{d}$ is odd, $n - a$ is even and either

- (a) d_x divides *n*; or
- (b) d_x does not divide n and $2a \ge d_x$;
- (2) $\frac{x}{d}$ is odd, $\frac{y}{d}$ is even, *a* is even and either
 - (a) dy divides n; or
 - (b) d_y does not divide n and $2(n-a) \ge d_y$;
- (3) $\frac{x}{d}$ and $\frac{y}{d}$ are both odd, and the following two conditions are both satisfied:
 - (a) a is even or $da \ge d_x$.
 - (b) n-a is even or $d(n-a) \ge d_y$.

- ∢ ≣ →

At the moment we have no idea for a general conjecture, so we focus on the case n prime.

Conjecture [Meszka, AP, Pellegrini, 202?]

Let *n* be a prime and let *L* be a list of *n* positive integers less than *n*. There exists a 1-factor *F* of K_{2n} such that $\ell(F) = L$ if and only if the number of even integers in *L* is even.

- ∢ ≣ →

At the moment we have no idea for a general conjecture, so we focus on the case n prime.

Conjecture [Meszka, AP, Pellegrini, 202?]

Let *n* be a prime and let *L* be a list of *n* positive integers less than *n*. There exists a 1-factor *F* of K_{2n} such that $\ell(F) = L$ if and only if the number of even integers in *L* is even.

Example

Take n = 5 and $L = \{2^2, 3, 5^2\} \Rightarrow v = 10, d = 2$. There is no 1-factor F of K_{10} such that $\ell(F) = L$.

글 > - - 글 >

Definition [Skolem, 1957]

A Skolem sequence of order *n* is a sequence $S = (s_0, s_1, ..., s_{2n-1})$ of 2n integers such that for every $k \in \{1, 2, ..., n\}$ the following conditions hold:

- (1) there exist exactly two elements $s_i, s_j \in S$ such that $s_i = s_j = k$;
- (2) if $s_i = s_j = k$ with i < j, then j i = k.

$$n = 4$$
: $S = (1, 1, 3, 4, 2, 3, 2, 4)$

Skolem sequences

Skolem sequence of order *n*

 $n = 4: S = (1,1,3,4,2,3,2,4) \rightarrow \{(0,1),(4,6),(2,5),(3,7)\}$

문에 비용에 다

Skolem sequences

Skolem sequence of order *n*

 $n = 4: S = (1,1,3,4,2,3,2,4) \rightarrow \{(0,1),(4,6),(2,5),(3,7)\}$

문어 수 문어

Example

▲ 문 ▶ . ▲ 문 ▶ ...

э

Definition [Baker, 1995]

A k-extended Skolem sequence of order n is a sequence $S = (s_0, s_1, s_2, \dots, s_{2n})$ of 2n + 1 integers satisfying conditions (1) and (2) and such that $s_k = 0$.

$k = 2n - 1 \Rightarrow$ hooked Skolem sequence

- ₹ 🖬 🕨

- ∢ ≣ →

-

Definition

Let $L = \{1^{a_1}, 2^{a_2}, \dots, n^{a_n}\}$, with |L| = n and $a_i \ge 0$. A Skolem sequence of L is a sequence $S = (s_0, s_1, \dots, s_{2n-1})$ such that:

•
$$T_i := \{(x, y) \mid s_x = s_y = i = y - x\}$$
 has size a_i

•
$$\bigcup T_i = \{0, 1, \ldots, 2n-1\}$$

$$L = \{2, 3^2, 4\}$$

A.Pasotti Graphs with prescribed edge-lengths

∃ のへで

- < 臣 → - < 臣 → - -

$$L = \{2, 3^2, 4\} \Rightarrow L = \{2, 3, 3, 4\}$$

Skolem sequence of L: S = (3, 3, 4, 3, 3, 2, 4, 2)

1

문에 비원에 다

 $L = \{2, 3^2, 4\} \Rightarrow L = \{2, 3, 3, 4\}$

Skolem sequence of L: S = (3, 3, 4, 3, 3, 2, 4, 2)

$$T_{1} = \emptyset, \quad T_{2} = \{(5,7)\}, \quad T_{3} = \{(0,3), (1,4)\}, \quad T_{4} = \{(2,6)\}$$
$$\bigcup_{i=1}^{4} T_{i} = \{0,1,\ldots,7\}$$
$$\bigcup_{i=1}^{4} U_{i} = \{0,1,\ldots,7\}$$

 $F = \{\{5,7\}, \{0,3\}, \{1,4\}, \{2,6\}\} \text{ 1-factor of } K_8 \text{ s.t. } \ell(F) = L$

$$L = \{1, 2, 4^2\}$$
 and $k = 5$

5-extended Skolem sequence of L: S = (4, 2, 4, 2, 4, 0, 4, 1, 1)

▶ ★ 臣 ▶ …

Ξ.

$$L = \{1, 2, 4^2\}$$
 and $k = 5$

5-extended Skolem sequence of L: S = (4, 2, 4, 2, 4, 0, 4, 1, 1)

$$T_{1} = \{(7,8)\}, \quad T_{2} = \{(1,3)\}, \quad T_{3} = \emptyset, \quad T_{4} = \{(0,4), (2,6)\}$$
$$\bigcup_{i=1}^{4} T_{i} = \{0,1,\ldots,8\} \setminus \{5\}$$
$$\bigcup_{i=1}^{4} T_{i} = \{0,1,\ldots,8\} \setminus \{5\}$$

 $F = \{\{7,8\},\{1,3\},\{0,4\},\{2,6\}\} \cup \{5\} \text{ near 1-factor of } K_9 \text{ s.t. } \ell(F) = L$

The mind revels in conjecture. Where information is lacking, it will gladly fill in the gaps.

James Geary

< ≣⇒

э