

SEVILLA, 2024
M. Pastora Revuelta Universidad de Sevilla, Spain

SEVILLA, 2024
M. Pastora Revuelta

Universidad de Sevilla, Spain

UNIVERSIDAD DE SEVILLA

2) \rightarrow Smaller M for any kne col. in [1, L (2)]
> Schur numbers and Rado numbers
$>$ Weak Schur numbers and weak Rado numbers
> Off-diagonal generalized Schur numbers and weak Schur numbers
$>$ New results

Given a set A and a positive integer n :
A finite n-coloring of A is a function

$$
\Delta: A \rightarrow\{1,2, \ldots, n\}
$$

Equivalently, it is a partition of A into n disjoint subsets

$$
A=A_{1} \cup A_{2} \cup \ldots \cup A_{n}
$$

The equivalence is given by $A_{i}=\Delta^{-1}$ (i)
That is, $\boldsymbol{A}_{\boldsymbol{i}}$ is the monochromatic subset of color \boldsymbol{i}

Schur numbers and Rado numbers
Definition: A set B of integers is sumfree if the equation $x_{1}+x_{2}=x_{3}$ has no solution in B

Schur numbers and Rado numbers
Definition: A set B of integers is sumfree if the equation $x_{1}+x_{2}=x_{3}$ has no solution in B

Example: $B=\{1,3,5\}$
Counterexamples: $B^{\prime}=\{1,2\}$ or $B^{\prime \prime}=\{2,3,5\}$

Schur numbers and Rado numbers
Definition: A set B of integers is sumfree if the equation $x_{1}+x_{2}=x_{3}$ has no solution in B

Example: $B=\{1,3,5\}$
Counterexamples: $B^{\prime}=\{1,2\}$ or $B^{\prime \prime}=\{2,3,5\}$
Question: Given positive integers N, n, can we partition $A=\{1,2, \ldots, N\}$ into n sumfree subsets?

Schur numbers and Rado numbers
Definition: A set B of integers is sumfree if the equation $x_{1}+x_{2}=x_{3}$ has no solution in B

Example: $B=\{1,3,5\}$
Counterexamples: $B^{\prime}=\{1,2\}$ or $B^{\prime \prime}=\{2,3,5\}$
Question: Given positive integers N, n, can we partition $A=\{1,2, \ldots, N\}$ into n sumfree subsets?

Theorem (Schur, 1916): The answer is no if N is too large with respect to n .

Schur numbers and Rado numbers

Examples:

$>N=4, n=2 .\{1,2,3,4\}=\{1,4\} \cup\{2,3\}$
$>N=5, n=2$. Impossible to partition $\{1,2,3,4,5\}$ in two sumfree subsets.

Schur numbers and Rado numbers

Examples:

$>N=4, n=2 .\{1,2,3,4\}=\{1,4\} \cup\{2,3\}$
$>N=5, n=2$. Impossible to partition $\{1,2,3,4,5\}$ in two sumfree subsets.

Definition: The Schur number $S(n)$ is the least N such that the set $\{1,2, \ldots, N\}$ cannot be partitioned into n sumfree subsets.

Schur numbers and Rado numbers

Examples:

$>N=4, n=2 .\{1,2,3,4\}=\{1,4\} \cup\{2,3\}$
$>N=5, n=2$. Impossible to partition $\{1,2,3,4,5\}$ in two sumfree subsets.

Definition: The Schur number $S(n)$ is the least N such that the set $\{1,2, \ldots, N\}$ cannot be partitioned into n sumfree subsets.

Example: $S(2)=5$

Schur numbers and Rado numbers

Examples:

$>N=4, n=2 .\{1,2,3,4\}=\{1,4\} \cup\{2,3\}$
$>N=5, n=2$. Impossible to partition $\{1,2,3,4,5\}$ in two sumfree subsets.

Definition: The Schur number $S(n)$ is the least N such that the set $\{1,2, \ldots, N\}$ cannot be partitioned into n sumfree subsets.

Example: $S(2)=5$

Schur numbers and Rado numbers

Examples:

$>N=4, n=2 .\{1,2,3,4\}=\{1,4\} \cup\{2,3\}$
$>N=5, n=2$. Impossible to partition $\{1,2,3,4,5\}$ in two sumfree subsets.

Definition: The Schur number $S(n)$ is the least N such that the set $\{1,2, \ldots, N\}$ cannot be partitioned into n sumfree subsets.

Example: S(2)=5

Schur numbers and Rado numbers

Examples:

$>N=4, n=2 .\{1,2,3,4\}=\{1,4\} \cup\{2,3\}$
$>N=5, n=2$. Impossible to partition $\{1,2,3,4,5\}$ in two sumfree subsets.

Definition: The Schur number $S(n)$ is the least N such that the set $\{1,2, \ldots, N\}$ cannot be partitioned into n sumfree subsets.

Example: $S(2)=5$

Schur numbers and Rado numbers

Examples:

$>N=4, n=2 .\{1,2,3,4\}=\{1,4\} \cup\{2,3\}$
$>N=5, n=2$. Impossible to partition $\{1,2,3,4,5\}$ in two sumfree subsets.

Definition: The Schur number $S(n)$ is the least N such that the set $\{1,2, \ldots, N\}$ cannot be partitioned into n sumfree subsets.

Example: $S(2)=5$

1		
2		

Schur numbers and Rado numbers

Examples:

$>N=4, n=2 .\{1,2,3,4\}=\{1,4\} \cup\{2,3\}$
$>N=5, n=2$. Impossible to partition $\{1,2,3,4,5\}$ in two sumfree subsets.

Definition: The Schur number $S(n)$ is the least N such that the set $\{1,2, \ldots, N\}$ cannot be partitioned into n sumfree subsets.

Example: $S(2)=5$

1		
2	3	

Schur numbers and Rado numbers

Examples:

$>N=4, n=2 .\{1,2,3,4\}=\{1,4\} \cup\{2,3\}$
$>N=5, n=2$. Impossible to partition $\{1,2,3,4,5\}$ in two sumfree subsets.

Definition: The Schur number $S(n)$ is the least N such that the set $\{1,2, \ldots, N\}$ cannot be partitioned into n sumfree subsets.

Example: $S(2)=5$

1		
2	3	

1	3	
2		

Schur numbers and Rado numbers

Examples:

$>N=4, n=2 .\{1,2,3,4\}=\{1,4\} \cup\{2,3\}$
$>N=5, n=2$. Impossible to partition $\{1,2,3,4,5\}$ in two sumfree subsets.

Definition: The Schur number $S(n)$ is the least N such that the set $\{1,2, \ldots, N\}$ cannot be partitioned into n sumfree subsets.

Example: $S(2)=5$

1		
2	3	

1	3	4
2	4	

Schur numbers and Rado numbers

Examples:

$>N=4, n=2 .\{1,2,3,4\}=\{1,4\} \cup\{2,3\}$
$>N=5, n=2$. Impossible to partition $\{1,2,3,4,5\}$ in two sumfree subsets.

Definition: The Schur number $S(n)$ is the least N such that the set $\{1,2, \ldots, N\}$ cannot be partitioned into n sumfree subsets.

Example: $S(2)=5$

1		
2	3	4

1	3	4
2	4	

Schur numbers and Rado numbers

Examples:

$>N=4, n=2 .\{1,2,3,4\}=\{1,4\} \cup\{2,3\}$
$>N=5, n=2$. Impossible to partition $\{1,2,3,4,5\}$ in two sumfree subsets.

Definition: The Schur number $S(n)$ is the least N such that the set $\{1,2, \ldots, N\}$ cannot be partitioned into n sumfree subsets.

Example: $S(2)=5$

1	4	
2	3	

1	3	4
2	4	

Schur numbers and Rado numbers

Examples:

$>N=4, n=2 .\{1,2,3,4\}=\{1,4\} \cup\{2,3\}$
$>N=5, n=2$. Impossible to partition $\{1,2,3,4,5\}$ in two sumfree subsets.

Definition: The Schur number $S(n)$ is the least N such that the set $\{1,2, \ldots, N\}$ cannot be partitioned into n sumfree subsets.

Example: $S(2)=5$

1	4	5
2	3	5

1	3	4
2	4	

Schur numbers and Rado numbers

Examples:

$>N=4, n=2 .\{1,2,3,4\}=\{1,4\} \cup\{2,3\}$
$>N=5, n=2$. Impossible to partition $\{1,2,3,4,5\}$ in two sumfree subsets.

Definition: The Schur number $S(n)$ is the least N such that the set $\{1,2, \ldots ., N\}$ cannot be partitioned into n sumfree subsets.

Example: $S(2)=5$

1	4	5
2	3	5

Equivalently, $S(n)$ is the least integer N, such that for all n-colouring $\Delta:\{1,2, \ldots, N\} \rightarrow\{1,2, \ldots, n\}$, there exists a monochromatic solution to $x_{1}+x_{2}=x_{3}$

Schur numbers and Rado numbers
For $n=3$, we have $S(3)=14$

Schur numbers and Rado numbers

For $n=3$, we have $S(3)=14$
$>\{1,2, \ldots, 13\}$ can be partitioned into three sumfree subsets:

Schur numbers and Rado numbers
For $n=3$, we have $S(3)=14$
$>\{1,2, \ldots, 13\}$ can be partitioned into three sumfree subsets:

1	4	10	13	
2	3	11	12	
5	6	7	8	9

For $n=3$, we have $S(3)=14$
$>\{1,2, \ldots, 13\}$ can be partitioned into three sumfree subsets:

1	4	10	13	
2	3	11	12	
5	6	7	8	9

> $\{1,2, \ldots, 14\}$ cannot be partitioned into three sumfree subsets.

Equivalently, for every 3coloring of the set $\{1,2, \ldots, 14\}$, there exists a monochromatic solution to $\mathrm{x}_{1}+\mathrm{x}_{2}=\mathrm{x}_{3}$

For $n=3$, we have $\boldsymbol{S}(3)=14$
$>\{1,2, \ldots, 13\}$ can be partitioned into three sumfree subsets:

1	4	10	13	
2	3	11	12	
5	6	7	8	9

> $\{1,2, \ldots, 14\}$ cannot be partitioned into three sumfree subsets.

Equivalently, for every 3coloring of the set $\{1,2, \ldots, 14\}$, there exists a monochromatic solution to $x_{1}+x_{2}=x_{3}$

1	4	10	13		14
2	3	11	12		14
5	6	$\mathbf{7}$	8	9	14

Schur numbers and Rado numbers
Rado (1933) considered systems of linear Diophantine equations and the existence of monochromatic solutions thereof.

Rado (1933) considered systems of linear Diophantine equations and the existence of monochromatic solutions thereof.

Here, instead of equation $\boldsymbol{x}_{1}+\boldsymbol{x}_{2}=\boldsymbol{x}_{3}$, we now consider the more general equation $E(k, c)$:

$$
x_{1}+x_{2}+\ldots+x_{k}+c=x_{k+1}
$$

where k, c are integers with k positive and c nonnegative.

Rado (1933) considered systems of linear Diophantine equations and the existence of monochromatic solutions thereof.

Here, instead of equation $\boldsymbol{x}_{1}+\boldsymbol{x}_{2}=\boldsymbol{x}_{3}$, we now consider the more general equation $E(k, c)$:

$$
x_{1}+x_{2}+\ldots+x_{k}+c=x_{k+1}
$$

where k, c are integers with k positive and c nonnegative.

Definition: The Rado number $\boldsymbol{R}_{\boldsymbol{k}}(\mathbf{n}, \boldsymbol{c})$ is the least integer \mathbf{N}, such that, for every n-coloring of the set $\{1,2, \ldots, \mathbf{N}\}$, there exists a monochromatic solution to the equation $\mathbf{E}(\boldsymbol{k}, \mathbf{c})$. If there is no such N, set $\boldsymbol{R}_{\boldsymbol{k}}(\boldsymbol{n}, \boldsymbol{c})=\infty$

Rado (1933) considered systems of linear Diophantine equations and the existence of monochromatic solutions thereof.

Here, instead of equation $\boldsymbol{x}_{1}+\boldsymbol{x}_{2}=\boldsymbol{x}_{3}$, we now consider the more general equation $E(k, 0)$:

$$
x_{1}+x_{2}+\ldots+x_{k}+0=x_{k+1}
$$

where k, c are integers with k positive.

Definition: The Schur number $\boldsymbol{R}_{k}(\boldsymbol{n}, 0)$ is the least integer \mathbf{N}, such that, for every n-coloring of the set $\{1,2, \ldots, \mathbf{N}\}$, there exists a monochromatic solution to the equation $\mathbf{E}(\boldsymbol{k}, 0)$.

Rado (1933) considered systems of linear Diophantine equations and the existence of monochromatic solutions thereof.

Here, instead of equation $\boldsymbol{x}_{1}+\boldsymbol{x}_{2}=\boldsymbol{x}_{\mathbf{3}}$, we now consider the more general equation $E(k)$:

$$
x_{1}+x_{2}+\ldots+x_{k}=x_{k+1}
$$

where k, c are integers with k positive.

Definition: The Schur number $\boldsymbol{S}_{\boldsymbol{k}}(\boldsymbol{n})$ is the least integer \mathbf{N}, such that, for every n-coloring of the set $\{1,2, \ldots, \mathbf{N}\}$, there exists a monochromatic solution to the equation $\mathbf{E (k)}$.

Results $R_{k}(n, 0)=S_{k}(n)$

k	2	3	4	5	k
$n=2$	$\mathbf{5}$	$\mathbf{1 1}$	$\mathbf{1 9}$	$\mathbf{2 9}$	$k^{2}+\boldsymbol{k}-1$
$n=3$	$\mathbf{1 4}$	$\mathbf{4 3}$	94	173	$k^{3}+2 k^{2}-2$
$n=4$	$\mathbf{4 5}$				
$n=5$	161				
$n=6$	≥ 537				
$n=7$	≥ 1681				

Baumert, 1961 Beutelspacher and Brestovansky, 1982
Exo, 1994
Radziszowski, 1999 Fredricksen
Boza, Marín, Revuelta and Sanz, 2010, 2014, 2016, 2019 Heule, 2018

Results on $R_{k}(n, c), c>1$

k	2	3	4	k
$n=2$	$4 c+5$			$(k+1)^{2}+(c-1)(k+2)$
$n=3$	$13 c+14$	$21 c+43$	$31 c+94$	
$n=4$	$\geq 40 c+41$ $\leq 44 c+45$			
$n=5$	$\geq 121 c+122$ $\leq 305 c+306$			

Burr and Loo, 1992
Schaal, 1993,1995
Adhikari, Boza, Eliahou, Marín, Revuelta, Sanz, 2018

When is $R_{k}(n, c)$ finite?

Conjecture (Adhikari, Boza, Eliahou, Marín, R, Sanz): $\boldsymbol{R}_{\boldsymbol{k}}(\boldsymbol{n}, \boldsymbol{c})$ is finite if and only if every divisor $d \leq n$ of $k-1$ also divides $c(k \geq 2, n \geq 1, c \geq 0)$.
$>$ True for $k \leq 7$
$>$ Open for $\mathrm{k} \geq 8$

Adhikari, Boza, Eliahou, Marín, Revuelta, Sanz, 2020

Weak Schur and Weak Rado numbers
We now consider the equation $E^{\prime}(\boldsymbol{k}, \mathbf{c})$:

$$
\begin{gathered}
x_{1}+x_{2}+\ldots+x_{k}+c=x_{k+1} \\
x_{i} \neq x_{j} \forall i \neq j
\end{gathered}
$$

Note: Every solution of $E^{\prime}(k, c)$ is a solution of $E(k, c)$

Definition: The weak Rado number $W R_{k}(n, c)$ is the least integer \mathbf{N}, such that for every n-coloring of the set $\{1,2, \ldots, \mathbf{N}\}$, there exists a monochromatic solution of the equation $E^{\prime}(k, c)$. If there is no such N, set $W \boldsymbol{R}_{k}(n, c)=\infty$

Note: $R_{k}(n, c) \leq W R_{k}(n, c)$

Weak Schur and Weak Rado numbers
We now consider the equation $E^{\prime}(\boldsymbol{k}, 0)$:

$$
\begin{gathered}
x_{1}+x_{2}+\ldots+x_{k}+0=x_{k+1} \\
x_{i} \neq x_{j} \forall i \neq j
\end{gathered}
$$

Note: Every solution of $E^{\prime}(k, 0)$ is a solution of $E(k)$

Definition: The weak Schur number $W R_{k}(n, 0)$ is the least integer \mathbf{N}, such that for every n-coloring of the set $\{1,2, \ldots, \mathbf{N}\}$, there exists a monochromatic solution of the equation $E^{\prime}(k, 0)$.

Weak Schur and Weak Rado numbers
We now consider the equation $E^{\prime}(k)$:

$$
\begin{gathered}
x_{1}+x_{2}+\ldots+x_{k}=x_{k+1} \\
x_{i} \neq x_{j} \forall i \neq j
\end{gathered}
$$

Note: Every solution of $E^{\prime}(k)$ is a solution of $E(k)$

Definition: The weak Schur number $W_{k}(n)$ is the least integer \mathbf{N}, such that for every n-coloring of the set $\{1,2, \ldots, \mathbf{N}\}$, there exists a monochromatic solution of the equation $E^{\prime}(k)$.

Results $W R_{k}(n, 0)=W S_{k}(n)$

Results $W R_{k}(n, 0)=W S_{k}(n)$

k	2	3	4	5	k
$n=2$	9				
$n=3$	24				
$n=4$	67				
$n=5$	$197 ?$				
$n=6$					

Blanchard, Harary and Reis, 2006
Walker in 1952, claimed the value $\mathrm{WR}_{2}(5,0)=197$, without proof.

Results $W R_{k}(n, 0)=W S_{k}(n)$

k	2	3	4	5	k
$n=2$	9	24	52	101	
$n=3$	24				
$n=4$	67				
$n=5$	≥ 197				
$n=6$	≥ 583				

Blanchard, Harary and Reis, 2006
Walker in 1952, claimed the value $W_{2}(5,0)=197$, without proof.
Eliahou, Marín, Revuelta, Sanz, 2013
Eliahou et al., 2013
Boza, Marín, Revuelta, Sanz, 2019

$$
W R_{k}(n, c), \mathrm{c} \geq 1
$$

k	2	3	4	5	k
$n=2$	$4 c+8$	$5 c+24$	$6 c+52$	$7 c+95$	Conjecture
$n=3$	$\mathbf{1 3 c + 2 2}$				
$n=4$	$\geq 39 c+62$				
$n=5$					

Boza, Marín, Revuelta, Sanz, 2020
Conjecture: $W R_{k}(2 c)=(k+2) c+(k+2)(k+1) k / 2-2 k$

We now consider the system $E(\mathbf{k} 1, k \mathbf{2}, \ldots, k r)$:

$$
\begin{aligned}
& x_{1}+x_{2}+\ldots+x_{k 1}=x_{k 1+1} \\
& x_{1}+x_{2}+\ldots+x_{k 2}=x_{k 2+1} \\
& \ldots . . \\
& x_{1}+x_{2}+\ldots+x_{k r}=x_{k r+1}
\end{aligned}
$$

Definition: The r-color off-diagonal generalized Schur number $\mathbf{S}(\mathbf{r} ; \mathbf{k 1}, \mathbf{k 2}, \ldots, \mathbf{k r})$ is the least integer \mathbf{M}, such that any r-coloring of the integer interval [1, M], must contain a r-colored solution to the system $E(k 1, k 2, \ldots, k r)$.

Off-diagonal generalized Schur numbers

> These numbers are given their name because of their similarity to the classical off-diagonal Ramsey numbers.
> In dinamic survey of Radziszowski, the following is stated

$$
R(k 1, \ldots, k r)>S(r ; k 1, \ldots, k r)-2
$$

> In 2001, Robertson and Schaal determined all values of the 2-color off-diagonal Schur numbers, S(2; k1, k2).
> Not much progress has been made since then due to the great difficulty of calculating these numbers.
> Advances in the computation of these numbers may be relevant considering their relation to the off-diagonal Ramsey numbers, mentioned above, given by Radziszowski.

Off-diagonal generalized Schur numbers

$$
\left\{\begin{array}{l}
E_{2}: \mathrm{x}_{1}+\mathrm{x}_{2}=\mathrm{x}_{3}, \\
E_{2}: \mathrm{x}_{1}+\mathrm{x}_{2}=\mathrm{x}_{3}, \\
E_{k}: \mathrm{x}_{1}+\ldots+\mathrm{x}_{k}=\mathrm{x}_{k+1}, k \geq 2
\end{array}\right.
$$

Theorem (Ahmed, Boza, R, Sanz, 2024)

For all $k>=2$, we have the exact values of 3 -color off-diagonal generalized Schur number $S(2,2, k)$

$$
S(2,2, k)=\left\{\begin{array}{l}
9 k-4, \text { si } k \notin 1+5 N \\
9 k-5, \text { si } k \in 1+5 N
\end{array}\right\}
$$

Off-diagonal generalized weak Schur numbers
We now consider the system $E^{\prime}(\mathbf{k} \mathbf{1}, \mathbf{k 2}, \ldots, k r)$:

$$
\begin{aligned}
& x_{1}+x_{2}+\ldots+x_{k 1}=x_{k 1+1} \\
& x_{1}+x_{2}+\ldots+x_{k 2}=x_{k 2+1} \\
& \ldots \ldots \\
& x_{1}+x_{2}+\ldots+x_{k r}=x_{k r+1} \\
& x_{i} \neq x_{j} \forall i \neq j
\end{aligned}
$$

Definition: The r-color off-diagonal generalized weak Schur number WS(2; $\mathbf{k 1}, \mathbf{k} 2, \ldots, \mathbf{k r}$) is the least integer \boldsymbol{M}, such that any r-coloring of the integer interval [1, M], must contain a r colored solution to the system $E^{\prime}(k 1, k 2, \ldots, k r)$.

Off-diagonal generalized weak Schur numbers

WS(a,b)	$b=2$	3	4	5	6	7	8	9	10
$a=2$	9	16	23	37	53	71	93	119	≥ 147
3		24	39	49	66	87	111	138	≥ 168
4			52	76	93	118	150	≥ 186	≥ 226
5				101	130	156	≥ 190	≥ 235	≥ 285
6					166	≥ 204	≥ 241	≥ 285	≥ 345
7						253	≥ 303	≥ 351	≥ 409

$\mathrm{Ws}(2, a, b)$	$b=2$	3	4	5	6
$a=2$	24	42	64	102	148
3		64	105	138	194
4			151	204	

$\mathrm{Ws}(4, \mathrm{a}, \mathrm{b})$	$b=4$
$a=4$	259
$\mathrm{ws}(2,3, \mathrm{a}, \mathrm{b})$ $b=3$ $a=3$ ≥ 279	

$w s(3,3, a, b)$	$b=3$
$a=3$	≥ 369

$s(2,2, a, b)$	$a=2$	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
$b=2$	45	77	107	137	175	203	231	261	301	329	357	385	427	455	483	511
3		101	143	155	180	207	244	269	308	332	372	394	436			
4			174	221	244	274	311	347	393	423						
5				262	323	349	391	437								
6					372	437										

$S(2,3, a, b)$	$a=3$	4	5	6	7	8	9	10	11
$b=3$	135	191	197	235	265	317	349	399	431
4		239	285	331	379	426			
5			311	373	409				
6				432					

$s(2,4, a, b)$	$a=4$	5	6	7
b=4	296	358	409	467
5		454	501	
S(2,5,a,b)			$a=5$	
$\mathrm{b}=5$			539	

Ideas of proof

Lower Bounds

We will partition the integer interval [1, M] into r subsets $A_{1}, A 2, \ldots$, Ar containing no a r-colored solution to the system $E(k 1, k 2, \ldots, k r)$.

Upper Bounds

Reformulation as a Boolean satisfiability problem, which can then be handled by a SAT solver.
> Express the combinatorial constraints as Boolean satisfiability problems.
> We then use a SAT solver to determine whether the logical system is satisfiable or not.

$S(2,2,2,17)=511$

$\{1,4,10,13,15,18,24,27,29,32,38,41,43,46,52,55,57,60,66,69,71,74,83,85,88,99,102,113,116,127,130,141,144,15$ $8,189,203,217,231,238,245,252,259,266,273,280,294,308,322,353,367,370,381,384,395,398,409,412,423,426$, $428,437,440,442,445,451,454,456,459,465,468,470,473,479,482,484,487,493,496,498,501,507,510\}$,
$\{2,3,11,12,16,17,25,26,30,31,39,40,44,45,53,54,58,59,67,68,72,73,81,82,86,87,95,96,100,101,109,110,114,115,1$ 23,124,128,137,
$142,147,151,156,165,170,175,179,184,193,207,304,318,327,332,336,341,346,355,360,364,369,374,383,387,388$, $396,397,401,402,410,411,415,416,424,425,429,430,438,439,443,444,452,453,457,458,466,467,471,472,480,48$ $1,485,486,494,495,499,500,508,509\}$,
[5,9]U[19,23]U[33,37]U[47,51]U[61,65]U[75,79] $\cup[89,93] \cup[104,107] \cup[118,121] \cup[132,135] \cup\{148,149,161,162,176$, 190,321,335,349,350,362,363\} $\mathrm{U}[376,379] \mathrm{U}[390,393] \cup[404,407] \mathrm{U}[418,422] \cup[432,436] \cup[446,450] \cup[460,464] \mathrm{U}[474,478] \cup[488,492] \cup[502,506]$,
$\{14,28,42,56,70,80,84,94,97,98,103,108,111,112,117,122,125,126,129,131,136\} \cup[138,140] \cup\{143,145,146,150\}$ U[152, 155] $\cup\{157$,
159,160,163,164\}U[166, 169]U[171, 174]U\{177,178\}U[180,183]U[185, 188]U\{191,192\}
U[194,202]U[204,206]U[208,216]U[218,230]U[232,237]U[239,244]U[246,251]U[253,258]U[260,265]U[267,272]U [274,279]U[281,293]U[295,303]U[305,307]U[309,317]U\{319,
$320\} \cup[323,326] \cup[328,331] \cup\{333,334\} \cup[337,340] \cup[342,345] \cup\{347,348,351,352,354\}$
U[356,359]U\{361,365,366,368\}U[371,373]U
$\{375,380,382,385,386,389,394,399,400,403,408,413,414,417,427,431,441,455,469,483,497\}$.

$S(2,2,3,14)=436$

$J_{1}[1,39] \cup\{82,86,90,94,98,102,106\}$
UJ ${ }_{0}[110,136] \cup\{140,144,148,152,156,160,190,367,371,375,379,383,387\} \cup J_{1}[391,395] \cup$ $\{399,403,407,411,415,419,423,427,431,435\}$,
$\{2,6,10,14,18,22,26,41,45,49,53,56,57,60,61,64,65,68,72,76,80,84,88,92,95,96,99,100,103,104,10$ 7,108,111,115,119,123,
$127,131,135,138,139,142,143,146,147,150,154,158,162,166,170,174,178,182,186,363,397,401$, 405,406,409,410,413,414,
$417,418,421,422,425,426,429,430,433,434\}$,
$\{121,125,129,133,137,141,145\}$
UJ ${ }_{1}[149,161] \cup[163,165] \cup[167,169] \cup[171,173] \cup[175,177] \cup[179,181] \cup[183,185] \cup[187,189] \cup[191,36$ 2]U[364,366]U[368,370]U[372,374]U[376,378]U[380,382]U[384,386]U[388,390]UJ $[392,408] \cup$ $\{412,416,420,424,428,432\}$,
$\{4,8,12,16,20,24\} \cup J_{0}[28,40] \cup[42,44] \cup[46,48] \cup[50,52] \cup\{54,55,58,59,62,63,66,67\}$ $\cup[69,71] \cup[73,75] \cup[77,79] \cup Ј_{1}[81,93] \cup\{97,101,105,109,113,117\}$.

$S(2,3,3,11)=431$

$J_{1}[1,9] \cup J_{0}[22,42] \cup J_{1}[93,113] \cup J_{0}[318,338] \cup J_{0}[389,409] \cup J_{0}[422,430]$,
$J_{1}[31,41] \cup[43,92] \cup J_{0}[94,104] \cup J_{1}[327,337] \cup[339,388] \cup J_{0}[390,400]$,
$J_{0}[106,112] \cup[114,317] \cup J_{1}[319,325]$,
$J_{0}[2,8] \cup[10,21] \cup J_{1}[23,29] \cup J_{0}[402,408] \cup[410,421] \cup J_{1}[423,429]$.
$S(2,3,4,8)=426$
$\{1,3,8\} \cup J_{0}[44,50] \cup J_{0}[376,382] \cup\{418,423,425\}$,
[10,39]U[387,416],
$\{2\} \cup[4,7] \cup\{9\} \cup[40,43] \cup\{45,381\} \cup[383,386] \cup\{417\} \cup[419,422] \cup\{424\}$,
$\{47,49\} \cup[51,375] \cup\{377,379\}$.

SEVILLA, 2024
M. Pastora Revuelta Universidad de Sevilla, Spain

