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» Schur numbers and Rado numbers

» Weak Schur numbers and weak Rado numbers

» Off-diagonal generalized Schur numbers and weak
Schur numbers

> New results



Schur numbers and Rado numbers

Given a set A and a positive integer n:

A finite n-coloring of A is a function
A:A— {12 ...,n}

Equivalently, it is a partition of A into n disjoint subsets
A=A, UA,U .. .UA,_

The equivalence is given by A;= A1 (i)

That is, A; is the monochromatic subset of color i
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Definition: A set B of integers is sumfree if the equation x,+x,= x,
has no solution in B

Example: B={1,3,5}
Counterexamples: B’={1,2} or B’={2,3,5}

Question: Given positive integers N, n,
can we partition A={1,2,...,N} into n sumfree subsets?

Theorem (Schur, 1916): The answer is no if N is too large with
respect to n.
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Examples:
» N=4, n=2. {1,2,3,4}={1,4} U{2,3}

» N=5, n=2. Impossible to partition {1,2,3,4,5} in two
sumfree subsets.

Definition: The Schur number S(n) is the least N such that
the set {1,2,....,N} cannot be partitioned into n sumfree subsets.
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Equivalently, S(n) is the least integer N, such that for all
n-colouring A:{1,2,...N} — {1,2, ...,n}, there exists a
monochromatic solution to x,+x,= X,
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For n=3, we have S(3)=14

> {1,2,...,13} can be partitioned
into three sumfree subsets:

> {1,2,...,14} cannot be
partitioned into three sumfree
subsets.

Equivalently, for every 3-
coloring of the set {1,2,...,14},
there exists a monochromatic
solution to x,+ X, = X
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Schur numbers and Rado numbers

Rado (1933) considered systems of linear Diophantine
equations and the existence of monochromatic solutions
thereof.

Here, instead of equation x,+x,= x;, we now consider the more
general equation E(k):

where k,c are integers with k positive.

Definition: The Schur number S, (n) is the least integer N,
such that, for every n-coloring of the set {1,2,...,N}, there
exists a monochromatic solution to the equation E(k).



" | Results Ry(n,0)=S,(n)

> 11 19 29 | K*+k-1
14 43 94 173 | K3+2k?-2
45

161
2537
21681

Baumert, 1961 Beutelspacher and Brestovansky, 1982

Exo, 1994 Radziszowski, 1999 Fredricksen and Sweet, 2000
Boza, Marin, Revuelta and Sanz, 2010, 2014, 2016, 2019

Heule, 2018



' Results on R,(n,c), c>1

4c+5

(k+1)? +(c-1)(k+2)

13c+14

21c+43

31c+94

> 40c+41
< 44c+45

2121c+122
< 305c¢+306

Burr and Loo, 1992
Schaal, 1993,1995

Adhikari, Boza, Eliahou, Marin, Revuelta, Sanz, 2018
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When is R,(n,c) finite?

Conjecture (Adhikari, Boza, Eliahou, Marin, R, Sanz):
R, (n, c) is finite if and only if every divisor d < n of k-1 also
dividesc(k=2,n=1, ¢ 20).

> Truefor k=7

» Open fork =8

Adhikari, Boza, Eliahou, Marin, Revuelta, Sanz, 2020



Weak Schur and Weak Rado numbers
We now consider the equation E’(k,c):
X X+ X HC = X, g
X Fx; Vi#]
Note: Every solution of E’(k,c) is a solution of E(k,c)

Definition: The weak Rado number WR,(n,c) is the least
integer N, such that for every n-coloring of the set {1,2,...,N},
there exists a monochromatic solution of the equation E’(k,c).
If there is no such N, set WR,(n,c) = ~

Note: R,(n,c) £ WR,(n,c)



Weak Schur and Weak Rado numbers

We now consider the equation E’(k,0):
X X+, X 0 = X,
X Fx; Vi#]
Note: Every solution of E’(k,0) is a solution of E(k)

Definition: The weak Schur number WR,(n,0) is the least
integer N, such that for every n-coloring of the set {1,2,...,N},
there exists a monochromatic solution of the equation E’(k,0).



Weak Schur and Weak Rado numbers

We now consider the equation E’(k):
XXt X = X,
X Fx; Vi#]
Note: Every solution of E’(k) is a solution of E(k)

Definition: The weak Schur number WS (n) is the least
integer N, such that for every n-coloring of the set {1,2,...,N},
there exists a monochromatic solution of the equation E’(k).
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9

24

67

1977

Blanchard, Harary and Reis, 2006
Walker in 1952, claimed the value WR,(5,0) = 197, without proof.




Results WR,(n,0) = WS,(n)

9 24 52 101

24

67

2197

2583

Blanchard, Harary and Reis, 2006

Walker in 1952, claimed the value WR,(5,0) = 197, without proof.
Eliahou, Marin, Revuelta, Sanz, 2013

Eliahou et al., 2013

Boza, Marin, Revuelta, Sanz, 2019




WR,(n,c),c 21

4c+8

5c+24

6c+52

7¢+95

Conjecture

13c+22

2 39¢+62

Boza, Marin, Revuelta, Sanz, 2020

Conjecture: WR,(2 c) = (k+2)c+(k+2)(k+1)k/2-2k




Off-diagonal generalized Schur numbers

We now consider the system E(k1,k2,...,kr):
Xy ¥XpF... ¥ Xy g = Xyqaq
Xy FXoF ... ¥ X = Xypuq

Definition: The r-color off-diagonal generalized Schur
number S(r; k1,k2,...,kr) is the least integer M, such that any
r-coloring of the integer interval [1, M], must contain a r-colored
solution to the system E(k1,k2, ..., kr).



Off-diagonal generalized Schur numbers

» These numbers are given their name because of their similarity to the
classical off-diagonal Ramsey numbers.

» In dinamic survey of Radziszowski, the following is stated
R(k1,..., kr) > S(r; k1,..., kr)-2

» |n 2001, Robertson and Schaal determined all values of the
2-color off-diagonal Schur numbers, S(2; k1, k2).

» Not much progress has been made since then due to the great difficulty of
calculating these numbers.

» Advances in the computation of these numbers may be relevant considering
their relation to the off-diagonal Ramsey numbers, mentioned above, given
by Radziszowski.



Off-diagonal generalized Schur numbers

E, X, +X, = X,

E, X, +X, = X,

J\o

E X +..+X, =X, k=2
Theorem (Ahmed, Boza, R, Sanz, 2024)

For all k >= 2, we have the exact values of 3-color
off-diagonal generalized Schur number S(2,2,k)

Ok -4, sik&1+5N)
S(Z,2,k)=< . -
L9k—5, S1 kEl+5NJ




Off-diagonal generalized weak Schur numbers
We now consider the system E’(k1,k2,...,kr):
X ¥X¥.. . ¥Xy g = Xpeqeq
X ¥Xo¥...¥Xy 5 = Xypq

X XoF... X, = Xyaq
X ¥X; Vi#]j

Definition: The r-color off-diagonal generalized weak Schur
number WS(2; k1,k2,...,kr) is the least integer M, such that
any r-coloring of the integer interval [1, M], must contain a r-
colored solution to the system E’(k1,k2, ..., kr).



Off-diagonal generalized weak Schur numbers

WS(a,b)l b=2| 3 4 5 6 7 8 9 10
a=2| 9 16 23 37 53 71 93 119 | 2147
3 24 39 49 66 87 111 | 138 | 2168
4 52 76 93 118 | 150 | 2186 | 2226
5 101 | 130 | 156 | 2190 | 2235 | >285
6 166 | 2204 | 2241 | >285 | >345
7 253 | 2303 | 2351 | 2409
wszanl be2 3 4 c 5 WS(4,a,b)| b=4 ws3,3,ab)| b =3
a=2| 24 42 64 | 102 | 148 a=c e GESiE
3 64 | 105 | 138 | 194 | |ws@3ab)| b=3
4 151 | 204 a=3 | 2279
WsBab) b=3| 4 5 ws(22,ab)| b =2 3 4
a=3| 94 | 141 | 188 a=2| 67 117 | 2177
4 189 3 >183




New Results: 4-color off-diagonal generalized Schur numbers

S(22ab)a=2| 3 |4 | 5|67 |8|9[10[11[12/13]14]|15|16|17
b=2 | 45 | 77 |107|137|175/203|231/261|301/329|357|385|427|455|483|511
3 101|143|155/180|207|244/269|308|332|372(394|436
4 174(221|244(274|311|347|393|423
5 262|323/349|391|437
6 372|437

S(23ab){a=3| 4 | 5| 6| 7| 8|9 1011 S(24ab){a=4| 5 | 6 | 7
b=3 |135|191[197|235|265|317|349|399 431 b=4 | 296358409 | 467
4 239|285 (331|379 (426 > 454] 501
5 311|373|409 S(2,5,a,b)| a=5
6 432 b=5 |539




Ideas of proof

Lower Bounds

We will partition the integer interval [1, M] into r subsets A,, A2,..., Ar containing
no a r-colored solution to the system E(k1,k2, ..., kr).
Upper Bounds

Reformulation as a Boolean satisfiability problem, which can then be handled
by a SAT solver.

» Express the combinatorial constraints as Boolean
satisfiability problems.

» We then use a SAT solver to determine whether the
logical system is satisfiable or not.



S(2,2,2,17) = 511

{1,4,10,13,15,18,24,27,29,32,38,41,43,46,52,55,57,60,66,69,71,74,83,85,88,99,102,113,116,127,130,141,144,15
8,189,203,217,231,238,245,252,259,266,273,280,294,308,322,353,367,370,381,384,395,398,409,412,423,426,
428,437,440,442,445,451,454,456,459,465,468,470,473,479,482,484,487,493,496,498,501,507,510},

{2,3,11,12,16,17,25,26,30,31,39,40,44,45,53,54,58,59,67,68,72,73,81,82,86,87,95,96,100,101,109,110,114,115,1
23,124,128,137,
142,147,151,156,165,170,175,179,184,193,207,304,318,327,332,336,341,346,355,360,364,369,374,383,387,388
,396,397,401,402,410,411,415,416,424,425,429,430,438,439,443,444,452,453,457,458,466,467,471,472,480,48
1,485,486,494,495,499,500,508,509},

[5,9]U[19,23]U[33,37]U[47,51]U[61,65]U[75,79]U[89,93]U[104,107]U[118,121]U[132,135]U{148,149,161,162,1786,
190,321,335,349,350,362,363)
U[376,379]U[390,393]U[404,407]U[418,422]U[432,436]U[446,450]U[460,464]U[474,478]U[488,492]U[502,506],

{14,28,42,56,70,80,84,94,97,98,103,108,111,112,117,122,125,126,129,131,136}U[138,140]U{143,145,146,150}
U[152,155]U{157,

159,160,163,164}U[166,169]U[171,174]U{177,178}U[180,183]U[185,188]U{191,192}
U[194,202]U[204,206]U[208,216]U[218,230]U[232,237]U[239,244]U[246,251]U[253,258]U[260,265]U[267,272]U
[274,279]U[281,293]U[295,303]U[305,307]U[309,317]U{319,
3203U[323,326]U[328,331]U{333,334}U[337,340]U[342,345]U{347,348,351,352,354}
U[356,359]U{361,365,366,368}U[371,373]U

{375,380,382,385,386,389,394,399,400,403,408,413,414,417,427 431,441 ,455,469,483,497).



S(2,2,3,14) = 436

J,[1,39]U{82,86,90,94,98,102,106}
UJ,[110,136]U{140,144,148,152,156,160,190,367,371,375,379,383,387}UJ,[391,395]U
{399,403,407,411,415,419,423,427,431,435},

{2,6,10,14,18,22,26,41,45,49,53,56,57,60,61,64,65,68,72,76,80,84,88,92,95,96,99,100,103,104,10
7,108,111,115,119,123,
127,131,135,138,139,142,143,146,147,150,154,158,162,166,170,174,178,182,186,363,397,401,
405,406,409,410,413,414,

417,418,421,422,425,426,429,430,433,434},

{121,125,129,133,137,141,145}
UJ.[149,161]U[163,165]U[167,169]U[171,173]U[175,177]U[179,181]U[183,185]U[187,189]U[191,36
2]U[364,366]U[368,370]U[372,374]U[376,378]U[380,382]U[384,386]U[388,390]UJ,[392,408]U
{412,416,420,424,428,432),

{4,8,12,16,20,24)UJ,[28,40]U[42,44]U[46,48]U[50,52]U{54,55,58,59,62,63, 66,67}
U[69,71]U[73,75]U[77,79]UJ,[81,93]U{97,101,105,109,113,117}.



S(2,3,3,11) = 431
J,[1,9]UJ[22,42]UJ,[93,113]UJ,[318,338]UJ,[389,409]UJ ,[422,430],
J,[31,41]U[43,92]UJ,[94,104]UJ,[327,337]U[339,388]UJ,[390,400],
J,[106,112]U[114,317]UJ.[319,325],

Jo[2,8]U[10,21]UJ,[23,29]UJ,[402,408]U[410,421]UJ.[423,429]

S(2,3,4,8) = 426

{1,3,8)UJ,[44,50]UJ,[376,382]U{418,423,425},

[10,39]U[387,416],

{2}U[4, 7]U{9}U[40,43]U{45,381}U[383,386]U{417}U[419,422]U{424},

{47,49}U[51,375]U{377,379}.
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