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Ø Schur numbers and Rado numbers 
 
 
Ø Weak Schur numbers and weak Rado numbers 
 

Ø   Off-diagonal generalized Schur numbers and weak 
Schur numbers 

Ø New results 
 



Given a set Α and a positive integer n: 
	
 A finite  n-coloring  of Α is a function 
 
                      Δ : Α → {1,2, …,n} 
 
Equivalently,  it is a partition of A into n disjoint subsets   
                       
                        Α=Α1 ∪Α2 ∪ ...∪ Αn  

The equivalence is given by Αi = Δ-1 (i) 
 
That is, Αi is the monochromatic subset of color i  

	
	
	
	
	
	

 Schur numbers and Rado numbers 



	
	
	
	
	
	

  

 

 

 

 

 

 

Definition: A set B of integers is sumfree if the equation x1+x2= x3 
has  no solution in B  

 Schur numbers and Rado numbers 



	
	
	
	
	
	

  

 

 

 

 

 

 

Definition: A set B of integers is sumfree if the equation x1+x2= x3 
has  no solution in B  
 
Example: B={1,3,5} 
Counterexamples: B’={1,2} or B”={2,3,5} 
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Definition: A set B of integers is sumfree if the equation x1+x2= x3 
has  no solution in B  
 
Example: B={1,3,5} 
Counterexamples: B’={1,2} or B”={2,3,5} 
 
Question: Given positive integers N, n, 
                 can we partition A={1,2,…,N} into n sumfree subsets? 
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Definition: A set B of integers is sumfree if the equation x1+x2= x3 
has  no solution in B  
 
Example: B={1,3,5} 
Counterexamples: B’={1,2} or B”={2,3,5} 
 
Question: Given positive integers N, n, 
                 can we partition A={1,2,…,N} into n sumfree subsets? 
 
Theorem (Schur, 1916): The answer is no if N is too large with  
respect to n. 
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Examples:  
Ø  N=4, n=2. {1,2,3,4}={1,4}∪{2,3} 
 
Ø  N=5, n=2. Impossible to partition {1,2,3,4,5} in two  
sumfree subsets. 
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Examples:  
Ø  N=4, n=2. {1,2,3,4}={1,4}∪{2,3} 
 
Ø  N=5, n=2. Impossible to partition {1,2,3,4,5} in two  
sumfree subsets. 
 
Definition: The Schur number S(n) is the least N such that   
the set  {1,2,….,N} cannot be partitioned into n sumfree subsets. 
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Examples:  
Ø  N=4, n=2. {1,2,3,4}={1,4}∪{2,3} 
 
Ø  N=5, n=2. Impossible to partition {1,2,3,4,5} in two  
sumfree subsets. 
 
Definition: The Schur number S(n) is the least N such that   
the set  {1,2,….,N} cannot be partitioned into n sumfree subsets. 
 
Example:  S(2)=5 
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Examples:  
Ø  N=4, n=2. {1,2,3,4}={1,4}∪{2,3} 
 
Ø  N=5, n=2. Impossible to partition {1,2,3,4,5} in two  
sumfree subsets. 
 
Definition: The Schur number S(n) is the least N such that   
the set  {1,2,….,N} cannot be partitioned into n sumfree subsets. 
 
Example:  S(2)=5        
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Examples:  
Ø  N=4, n=2. {1,2,3,4}={1,4}∪{2,3} 
 
Ø  N=5, n=2. Impossible to partition {1,2,3,4,5} in two  
sumfree subsets. 
 
Definition: The Schur number S(n) is the least N such that   
the set  {1,2,….,N} cannot be partitioned into n sumfree subsets. 
 
Example:  S(2)=5        
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Examples:  
Ø  N=4, n=2. {1,2,3,4}={1,4}∪{2,3} 
 
Ø  N=5, n=2. Impossible to partition {1,2,3,4,5} in two  
sumfree subsets. 
 
Definition: The Schur number S(n) is the least N such that   
the set  {1,2,….,N} cannot be partitioned into n sumfree subsets. 
 
Example:  S(2)=5        
 
 
 
 
 

1 2 
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Examples:  
Ø  N=4, n=2. {1,2,3,4}={1,4}∪{2,3} 
 
Ø  N=5, n=2. Impossible to partition {1,2,3,4,5} in two  
sumfree subsets. 
 
Definition: The Schur number S(n) is the least N such that   
the set  {1,2,….,N} cannot be partitioned into n sumfree subsets. 
 
Example:  S(2)=5        
 
 
 
 
 

1 
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Examples:  
Ø  N=4, n=2. {1,2,3,4}={1,4}∪{2,3} 
 
Ø  N=5, n=2. Impossible to partition {1,2,3,4,5} in two  
sumfree subsets. 
 
Definition: The Schur number S(n) is the least N such that   
the set  {1,2,….,N} cannot be partitioned into n sumfree subsets. 
 
Example:  S(2)=5        
 
 
 
 
 

1 
2 3 
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Examples:  
Ø  N=4, n=2. {1,2,3,4}={1,4}∪{2,3} 
 
Ø  N=5, n=2. Impossible to partition {1,2,3,4,5} in two  
sumfree subsets. 
 
Definition: The Schur number S(n) is the least N such that   
the set  {1,2,….,N} cannot be partitioned into n sumfree subsets. 
 
Example:  S(2)=5        
 
 
 
 
 

1 
2 3 

1 3 
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Examples:  
Ø  N=4, n=2. {1,2,3,4}={1,4}∪{2,3} 
 
Ø  N=5, n=2. Impossible to partition {1,2,3,4,5} in two  
sumfree subsets. 
 
Definition: The Schur number S(n) is the least N such that   
the set  {1,2,….,N} cannot be partitioned into n sumfree subsets. 
 
Example:  S(2)=5        
 
 
 
 
 

1 
2 3 

1 3 4 
2 4 
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Examples:  
Ø  N=4, n=2. {1,2,3,4}={1,4}∪{2,3} 
 
Ø  N=5, n=2. Impossible to partition {1,2,3,4,5} in two  
sumfree subsets. 
 
Definition: The Schur number S(n) is the least N such that   
the set  {1,2,….,N} cannot be partitioned into n sumfree subsets. 
 
Example:  S(2)=5        
 
 
 
 
 

1 
2 3 4 

1 3 4 
2 4 
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Examples:  
Ø  N=4, n=2. {1,2,3,4}={1,4}∪{2,3} 
 
Ø  N=5, n=2. Impossible to partition {1,2,3,4,5} in two  
sumfree subsets. 
 
Definition: The Schur number S(n) is the least N such that   
the set  {1,2,….,N} cannot be partitioned into n sumfree subsets. 
 
Example:  S(2)=5        
 
 
 
 
 

1 4 
2 3 

1 3 4 
2 4 
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Examples:  
Ø  N=4, n=2. {1,2,3,4}={1,4}∪{2,3} 
 
Ø  N=5, n=2. Impossible to partition {1,2,3,4,5} in two  
sumfree subsets. 
 
Definition: The Schur number S(n) is the least N such that   
the set  {1,2,….,N} cannot be partitioned into n sumfree subsets. 
 
Example:  S(2)=5        
 
 
 
 
 

1 4 5 
2 3 5 

1 3 4 
2 4 
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Examples:  
Ø  N=4, n=2. {1,2,3,4}={1,4}∪{2,3} 
 
Ø  N=5, n=2. Impossible to partition {1,2,3,4,5} in two  
sumfree subsets. 
 
Definition: The Schur number S(n) is the least N such that   
the set  {1,2,….,N} cannot be partitioned into n sumfree subsets. 
 
Example:  S(2)=5 
 
Equivalently, S(n)  is the least integer N,  such that for all  
n-colouring   Δ : {1,2,…,N} → {1,2, …,n}, there exists a 
monochromatic solution  to  x1+x2= x3 
 
 
 
 
 
 

1 4 5 
2 3 5 
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For n=3, we have S(3)=14 
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For n=3, we have S(3)=14 
 
Ø {1,2,…,13} can be partitioned 

into three sumfree subsets: 
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For n=3, we have S(3)=14 
 
Ø {1,2,…,13} can be partitioned 

into three sumfree subsets: 
						

1	 4	 10	 13	
2	 3	 11	 12	
5	 6	 7	 8	 9	

	
	
	
	
	
	

 Schur numbers and Rado numbers 



For n=3, we have S(3)=14 
 
Ø {1,2,…,13} can be partitioned 

into three sumfree subsets: 
 
Ø  {1,2,…,14} cannot be 

partitioned into three sumfree 
subsets. 

 
   Equivalently, for every 3-

coloring of the set {1,2,…,14}, 
there exists a monochromatic 
solution to x1+ x2 = x3 

						

1	 4	 10	 13	
2	 3	 11	 12	
5	 6	 7	 8	 9	

	
	
	
	
	
	

 Schur numbers and Rado numbers 



For n=3, we have S(3)=14 
 
Ø {1,2,…,13} can be partitioned 

into three sumfree subsets: 
 
Ø  {1,2,…,14} cannot be 

partitioned into three sumfree 
subsets. 

 
   Equivalently, for every 3-

coloring of the set {1,2,…,14}, 
there exists a monochromatic 
solution to x1+ x2 = x3 

						

1	 4	 10	 13	
2	 3	 11	 12	
5	 6	 7	 8	 9	

	
	
	
	
	
	

1	 4	 10	 13	 14	
2	 3	 11	 12	 14	
5	 6	 7	 8	 9	 14	

 Schur numbers and Rado numbers 



	
	
	
	
	
	

    Rado (1933) considered systems of linear Diophantine 
equations and the existence of monochromatic solutions 
thereof. 

 Schur numbers and Rado numbers 



	
	
	
	
	
	

    Rado (1933) considered systems of linear Diophantine 
equations and the existence of monochromatic solutions 
thereof. 

    Here, instead of equation x1+x2= x3, we now consider the more 
general equation E(k,c): 

                             x1+x2+…+xk+c = xk+1 
    where k,c are integers with k positive and c nonnegative. 
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    Rado (1933) considered systems of linear Diophantine 
equations and the existence of monochromatic solutions 
thereof. 

    Here, instead of equation x1+x2= x3, we now consider the more 
general equation E(k,c): 

                             x1+x2+…+xk+c = xk+1 
    where k,c are integers with k positive and c nonnegative. 
 
    Definition: The Rado number Rk (n,c) is the least integer N, 

such that, for every n-coloring of the set  {1,2,…,N},  there 
exists  a monochromatic solution to the equation E(k,c). 

    If there is no such N, set Rk (n,c) = ∞ 
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    Rado (1933) considered systems of linear Diophantine 
equations and the existence of monochromatic solutions 
thereof. 

    Here, instead of equation x1+x2= x3, we now consider the more 
general equation E(k,0): 

                             x1+x2+…+xk+0 = xk+1 
    where k,c are integers with k positive. 
 
    Definition: The Schur number Rk (n,0) is the least integer N, 

such that, for every n-coloring of the set  {1,2,…,N},  there 
exists  a monochromatic solution to the equation E(k,0). 
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    Rado (1933) considered systems of linear Diophantine 
equations and the existence of monochromatic solutions 
thereof. 

    Here, instead of equation x1+x2= x3, we now consider the more 
general equation E(k): 

                             x1+x2+…+xk= xk+1 
    where k,c are integers with k positive. 
 
    Definition: The Schur number Sk (n) is the least integer N, 

such that, for every n-coloring of the set  {1,2,…,N},  there 
exists  a monochromatic solution to the equation E(k). 
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k	 2	 3	 4	 5	 k	
n=2	 5	 11	 19	 29	 K2+k-1	

n=3	 14	 43	 94	 173	 K3+2k2-2	
n=4	 45	

n=5	 161	

n=6	 ≥537	

n=7	 ≥1681	

Baumert, 1961       Beutelspacher and Brestovansky, 1982 
Exo, 1994               Radziszowski, 1999         Fredricksen and Sweet, 2000 
Boza, Marín, Revuelta and Sanz, 2010, 2014, 2016, 2019  
Heule, 2018 

Results Rk(n,0)=Sk(n) 



	
	
	
	
	
	

k	 2	 3	 4	 k	
n=2	 4c+5	 		(k+1)2	+(c-1)(k+2)	

n=3	 13c+14	 21c+43	 31c+94	

n=4	 ≥	40c+41	
≤		44c+45	

n=5	 ≥121c+122	
≤		305c+306	

Burr and Loo, 1992 
Schaal, 1993,1995 
Adhikari, Boza, Eliahou, Marín, Revuelta, Sanz, 2018 
 

Results on Rk(n,c), c>1 



	
	
	
	
	
	

When is Rk(n,c) finite? 



	
	
	
	
	
	

Conjecture (Adhikari, Boza, Eliahou, Marín, R, Sanz):  
Rk (n, c) is finite  if and only if every divisor d ≤ n of k-1 also 
divides c (k ≥ 2, n ≥ 1, c ≥ 0).    

Ø  True for k ≤ 7 
 
Ø  Open for k ≥ 8 

When is Rk(n,c) finite? 

Adhikari, Boza, Eliahou, Marín, Revuelta, Sanz, 2020 



	
	
	
	
	
	

  

 

 

 

 

 

 

    We now consider the equation E’(k,c): 
                             x1+x2+…+xk+c = xk+1 

       xi ≠ xj  ∀ i ≠ j 
    Note: Every solution of E’(k,c) is a solution of E(k,c) 
 
    Definition: The weak Rado number  WRk(n,c) is the least 

integer N, such that for every n-coloring of the set  {1,2,…,N},  
there exists  a monochromatic solution of the equation E’(k,c).    
If there is no such N, set WRk(n,c) = ∞ 

    Note: Rk(n,c) ≤ WRk(n,c)  
 
 
 
 
 
  
 

 Weak Schur and Weak Rado numbers 



	
	
	
	
	
	

  

 

 

 

 

 

 

    We now consider the equation E’(k,0): 
                             x1+x2+…+xk+0 = xk+1 

       xi ≠ xj  ∀ i ≠ j 
    Note: Every solution of E’(k,0) is a solution of E(k) 
 
    Definition: The weak Schur number  WRk(n,0) is the least 

integer N, such that for every n-coloring of the set  {1,2,…,N},  
there exists  a monochromatic solution of the equation E’(k,0).     
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    We now consider the equation E’(k): 
                             x1+x2+…+xk = xk+1 

       xi ≠ xj  ∀ i ≠ j 
    Note: Every solution of E’(k) is a solution of E(k) 
 
    Definition: The weak Schur number  WSk(n) is the least 

integer N, such that for every n-coloring of the set  {1,2,…,N},  
there exists  a monochromatic solution of the equation E’(k).     
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Results WRk(n,0) = WSk(n) 



k	 2	 3	 4	 5	 k	
n=2	 9	
n=3	 24	
n=4	 67	
n=5	 197?	
n=6	

	
	
	
	
	
	

Blanchard, Harary and Reis, 2006 
Walker in 1952, claimed the value WR2(5,0) = 197, without proof. 
 
 

	
	
	
	
	
	

Results WRk(n,0) = WSk(n) 



k	 2	 3	 4	 5	 k	
n=2	 9	 24	 52	 101	
n=3	 24	
n=4	 67	
n=5	 ≥197	
n=6	 ≥583	

	
	
	
	
	
	

Blanchard, Harary and Reis, 2006 
Walker in 1952, claimed the value WR2(5,0) = 197, without proof. 
Eliahou, Marín, Revuelta, Sanz, 2013 
Eliahou et al., 2013 
Boza, Marín, Revuelta, Sanz, 2019 
 
 

	
	
	
	
	
	

Results WRk(n,0) = WSk(n) 



	
	
	
	
	
	

k	 2	 3	 4	 5	 k	
n=2	 4c+8	 5c+24	 6c+52	 7c+95	 Conjecture	

n=3	 13c+22	

n=4	 ≥	39c+62	

n=5	

Boza, Marín, Revuelta, Sanz, 2020 
 
Conjecture: WRk(2 c) = (k+2)c+(k+2)(k+1)k/2-2k 

      WRk(n,c), c ≥ 1 



	
	
	
	
	
	

  

 

 

 

 

 

 

     
We now consider the system E(k1,k2,…,kr): 
                             x1+x2+…+xk1 = xk1+1 

                             x1+x2+…+xk2 = xk2+1 

                                       …..    
                             x1+x2+…+xkr = xkr+1   
 
    Definition: The r-color off-diagonal generalized Schur 

number  S(r; k1,k2,…,kr) is the least integer M, such that any 
r-coloring of the integer interval [1, M],  must contain a r-colored 
solution to the system E(k1,k2, …, kr). 

 
 
 
  
 

Off-diagonal generalized Schur numbers 



	
	
	
	
	
	

  

 

 

 

 

 

 

 
Ø  These numbers are given their name because of their similarity to the 

classical off-diagonal Ramsey numbers. 

Ø  In dinamic survey of Radziszowski, the following is stated  
                       R(k1,…, kr) > S(r; k1,…, kr)-2 
 
Ø  In 2001, Robertson and Schaal determined all values of the  
    2-color off-diagonal Schur numbers, S(2; k1, k2). 
 
Ø  Not much progress has been made since then due to the great difficulty of 

calculating these numbers. 

Ø  Advances in the computation of these numbers may be relevant considering 
their relation to the off-diagonal Ramsey numbers, mentioned above, given 
by Radziszowski. 

 
 
     

Off-diagonal generalized Schur numbers 



	
	
	
	
	
	

Theorem (Ahmed, Boza, R, Sanz, 2024)  
              
For all k >= 2, we have the exact values of 3-color  
off-diagonal generalized Schur number S(2,2,k) 
 
 
 

Off-diagonal generalized Schur numbers 

2 1 2 3

2 1 2 3

1 1

: x x  x ,
: x x  x ,
: x x  x ,  2 k k k

E
E
E k+

+ =⎧
⎪

+ =⎨
⎪ +…+ = ≥⎩

9 4,  si 1 5
(2,2, )

9 5,  si 1 5
k k N

S k
k k N
− ∉ +⎧ ⎫

= ⎨ ⎬
− ∈ +⎩ ⎭



	
	
	
	
	
	

  

 

 

 

 

 

 

We now consider the system E’(k1,k2,…,kr): 
                             x1+x2+…+xk1 = xk1+1 

                             x1+x2+…+xk2 = xk2+1 

                                       …..    
                             x1+x2+…+xkr = xkr+1   

       xi ≠ xj  ∀ i ≠ j 
     
    Definition: The r-color off-diagonal generalized weak Schur 

number  WS(2; k1,k2,…,kr) is the least integer M, such that 
any r-coloring of the integer interval [1, M],  must contain a r-
colored solution to the system E’(k1,k2, …, kr). 

 
 
 
 
  
 

 Off-diagonal generalized weak Schur numbers 



	
	
	
	
	
	

  

 

 

 

 

 

 

 Off-diagonal generalized weak Schur numbers 

WS(a,b) b =	2 3 4
a =	2 9 16 23
3 24 39
4 52
5
6
7

3 64 105
4 151

WS(3,a,b) b =	3 4 5
a =	3 94 141 188
4 189

5
37
49
76
101

138
204

53
66
93
130
166

5

6

194

6

156

253
≥204

8 9
119
138

4

b =	4

WS(2,3,a,b)

a =3
b =	3

111
93

3

7
71
87
118

a =	2 24 42 64 102 148 259

≥177117
≥183

WS(2,2,a,b)

a =	2
3

b =	2
67

43b =	2WS(2,a,b)

≥279

WS(4,a,b)

a =	4

150
≥190
≥241
≥303

≥186
≥235
≥285
≥351

10
≥147
≥168
≥226
≥285
≥345
≥409

WS(3,3,a,b) b =	3
a =	3 ≥369



	
	
	
	
	
	

New Results: 4-color off-diagonal generalized Schur numbers 

S(2,2,a,b) a=2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
b=2 45 77 107 137 175 203 231 261 301 329 357 385 427 455 483 511
3 101 143 155 180 207 244 269 308 332 372 394 436
4 174 221 244 274 311 347 393 423
5 262 323 349 391 437
6 372 437

S(2,3,a,b) a=3 4 5 6 7 8 9 10 11
b=3 135 191 197 235 265 317 349 399 431
4 239 285 331 379 426
5 311 373 409
6 432

S(2,4,a,b) a=4 5 6 7
b=4 296 358 409 467
5 454 501
S(2,5,a,b) a=5
b=5 539



	
	
	
	
	
	

  

 

 

 

 

 

 

Lower Bounds 
 
We will partition the integer interval [1, M] into r subsets A1, A2,…, Ar containing 
no a r-colored solution to the system E(k1,k2, …, kr). 

 
Upper Bounds 
 
Reformulation as a Boolean satisfiability problem, which can then be handled 
by a SAT solver. 
 
Ø  Express the combinatorial constraints as Boolean  
    satisfiability problems. 
 
Ø  We then use a SAT solver to determine whether the  
    logical system is satisfiable or not. 

 
 
 
  
 

 Ideas of proof 



  

 

 

 

 

 

 

{1,4,10,13,15,18,24,27,29,32,38,41,43,46,52,55,57,60,66,69,71,74,83,85,88,99,102,113,116,127,130,141,144,15
8,189,203,217,231,238,245,252,259,266,273,280,294,308,322,353,367,370,381,384,395,398,409,412,423,426, 
428,437,440,442,445,451,454,456,459,465,468,470,473,479,482,484,487,493,496,498,501,507,510}, 
 
{2,3,11,12,16,17,25,26,30,31,39,40,44,45,53,54,58,59,67,68,72,73,81,82,86,87,95,96,100,101,109,110,114,115,1
23,124,128,137, 
142,147,151,156,165,170,175,179,184,193,207,304,318,327,332,336,341,346,355,360,364,369,374,383,387,388
,396,397,401,402,410,411,415,416,424,425,429,430,438,439,443,444,452,453,457,458,466,467,471,472,480,48
1,485,486,494,495,499,500,508,509}, 
 
[5,9]U[19,23]U[33,37]U[47,51]U[61,65]U[75,79]U[89,93]U[104,107]U[118,121]U[132,135]U{148,149,161,162,176,
190,321,335,349,350,362,363}
U[376,379]U[390,393]U[404,407]U[418,422]U[432,436]U[446,450]U[460,464]U[474,478]U[488,492]U[502,506], 
 
{14,28,42,56,70,80,84,94,97,98,103,108,111,112,117,122,125,126,129,131,136}U[138,140]U{143,145,146,150}
U[152,155]U{157, 
159,160,163,164}U[166,169]U[171,174]U{177,178}U[180,183]U[185,188]U{191,192}
U[194,202]U[204,206]U[208,216]U[218,230]U[232,237]U[239,244]U[246,251]U[253,258]U[260,265]U[267,272]U 
[274,279]U[281,293]U[295,303]U[305,307]U[309,317]U{319, 
320}U[323,326]U[328,331]U{333,334}U[337,340]U[342,345]U{347,348,351,352,354}
U[356,359]U{361,365,366,368}U[371,373]U 
{375,380,382,385,386,389,394,399,400,403,408,413,414,417,427,431,441,455,469,483,497}. 
 



  

 

 

 

 

 

 

 
 
J1[1,39]U{82,86,90,94,98,102,106}
UJ0[110,136]U{140,144,148,152,156,160,190,367,371,375,379,383,387}UJ1[391,395]U 
{399,403,407,411,415,419,423,427,431,435}, 
 
{2,6,10,14,18,22,26,41,45,49,53,56,57,60,61,64,65,68,72,76,80,84,88,92,95,96,99,100,103,104,10
7,108,111,115,119,123, 
127,131,135,138,139,142,143,146,147,150,154,158,162,166,170,174,178,182,186,363,397,401, 
405,406,409,410,413,414, 
417,418,421,422,425,426,429,430,433,434}, 
 
{121,125,129,133,137,141,145}
UJ1[149,161]U[163,165]U[167,169]U[171,173]U[175,177]U[179,181]U[183,185]U[187,189]U[191,36
2]U[364,366]U[368,370]U[372,374]U[376,378]U[380,382]U[384,386]U[388,390]UJ0[392,408]U 
{412,416,420,424,428,432}, 
 
{4,8,12,16,20,24}UJ0[28,40]U[42,44]U[46,48]U[50,52]U{54,55,58,59,62,63,66,67}
U[69,71]U[73,75]U[77,79]UJ1[81,93]U{97,101,105,109,113,117}. 



  

 

 

 

 

 

 
J1[1,9]UJ0[22,42]UJ1[93,113]UJ0[318,338]UJ0[389,409]UJ0[422,430], 
 
J1[31,41]U[43,92]UJ0[94,104]UJ1[327,337]U[339,388]UJ0[390,400], 
 
J0[106,112]U[114,317]UJ1[319,325], 
 
J0[2,8]U[10,21]UJ1[23,29]UJ0[402,408]U[410,421]UJ1[423,429]. 

 
 
{1,3,8}UJ0[44,50]UJ0[376,382]U{418,423,425}, 
 
[10,39]U[387,416], 
 
{2}U[4,7]U{9}U[40,43]U{45,381}U[383,386]U{417}U[419,422]U{424}, 
 
{47,49}U[51,375]U{377,379}. 
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