Hemisystems and Strongly Regular Graphs

Valentino Smaldore
Università degli Studi di Padova
Combinatorial Designs and Codes

joint works with V. Pallozzi Lavorante and F. Romaniello

$$
\text { July 9, } 2024
$$

(1) Hemisystems on $H\left(3, q^{2}\right)$
(2) The new hemisystem
(3) Strongly regular graphs

4 Two-weight codes

Hemisystems on $H\left(3, q^{2}\right)$

m-regular systems

$\mathcal{P}_{d, e}:=$ polar space of rank (vector dimension of a maximal subspace) d, and e as follows:

$\mathcal{P}_{d, e}$	$Q^{+}(2 d-1, q)$	$H(2 d-1, q)$	$W(2 d-1, q)$	$Q(2 d, q)$	$H(2 d, q)$	$Q^{-}(2 d+1, q)$
e	0	$1 / 2$	1	1	$3 / 2$	2

$\mathcal{M}_{\mathcal{P}_{d, e}}$ will denote the set of generators of the polar space $\mathcal{P}_{d, e}$, while $\left|\mathcal{M}_{\mathcal{P}_{d-1, e}}\right|$ will denote the number of generators passing through a point.

Definition

A (non-trivial) m-regular system on a polar space $\mathcal{P}_{d, e}$ is a set \mathcal{R} of generators such that every point of $\mathcal{P}_{d, e}$ lies on exactly m generators in $\mathcal{R}, 0<m<\left|\mathcal{M}_{\mathcal{P}_{d-1, e}}\right|$.

Hemisystems on $H\left(3, q^{2}\right)$

Segre's Theorem

m-regular systems were introduced on Hermitian varieties by Beniamino Segre in Forme e geometrie hermitiane, con particolare riguardo al caso finito. In that article Segre proved the following theorem on Hermitian surfaces $H\left(3, q^{2}\right)$, whose generators are lines, and each point lies on $n=q+1$ of them.

Theorem (Segre's Theorem, 1965)

Let $\mathcal{H}=H\left(3, q^{2}\right)$ be an Hermitian surface. m-regular systems do not exist for q even. If q is odd, all the m-regular systems on \mathcal{H} are hemistystems, i.e. $m=\frac{n}{2}=\frac{q+1}{2}$.

Hemisystems on $H\left(3, q^{2}\right)$

Segre＇s hemisystem on $H(3,9)$

$$
q=3
$$

$$
|H(3,9)|=280
$$

$$
\left|\mathcal{M}_{H(3,9)}\right|=112
$$

Proposition（B．Segre，1965）

There exists a hemisystem，unique up to isomorphism，of 56 generator lines on the Hermitian surface $H(3,9)$ ．

Hemisystems on $H\left(3, q^{2}\right)$
Thas' conjecture

Hemisystems on $H\left(3, q^{2}\right)$

Results for $q>3$
(1) Hemisystems on the Hermitian surface, A. Cossidente, T. Penttila, Journal of the London Mathematical Society, 72(2), pp. 731-741, 2005.
(2) Every flock generalized quadrangle has a hemisystem, J. Bamberg, M. Giudici, G.F. Royle, Bulletin of the London Mathematical Society, 42 pp. 795-810, 2010.
(3) Hemisystems of small flock generalized quadrangles, J. Bamberg, M. Giudici, G.F. Royle, Designs Codes and Cryptography, 67, pp. 137-157, 2013.
(9) A new infinite family of hemisystems of the Hermitian surface, J. Bamberg, M. Lee, K. Momihara, Q. Xiang, Combinatorica, 38, pp. 43-66, 2018.

New hemisystem of the Hermitian surface

 Korchmáros-Nagy-Speziali construction
Theorem (G. Korchmáros, G. Nagy, P. Speziali, 2019)

Let p be a prime number where $p=1+16 a^{2}$, with an integer a. Then there exist an hemisystem in the Hermitian surface $H\left(3, p^{2}\right)$ of $P G\left(3, p^{2}\right)$.

Theorem (V. Pallozzi Lavorante, V.S., 2023)

The previous theorem holds also when $p=1+4 a^{2}$.

The new hemisystem Maximal curves

$\mathcal{X}:=$ projective algebraic curve of $P G\left(3, q^{2}\right)$.

Theorem (Hasse-Weil bound)

$\left|N_{q^{2}}(\mathcal{X})-q^{2}-1\right| \leq 2 \mathfrak{g} q$, where \mathfrak{g} is the genus of \mathcal{X}.

Definition

A curve \mathcal{X} is maximal if its number of points $N_{q^{2}}(\mathcal{X})$ attains the Hasse-Weil upper bound.

The new hemisystem

Sufficient conditions

\mathcal{X} maximal curve naturally embedded in $H\left(3, q^{2}\right)$.
$\forall P \in H\left(3, q^{2}\right) \backslash \mathcal{X}$, let n_{P} be the number of generators on P meeting \mathcal{X}.

Definition

The set of generators \mathcal{M} is an half-hemisystem on \mathcal{X} if:
(A) On each $Q \in \mathcal{X}$ there are exactly $\frac{q+1}{2}$ generators from \mathcal{M}.
(B) For any point $P \in H\left(3, q^{2}\right) \backslash \mathcal{X}, \mathcal{M}$ has as many as $\frac{n_{p}}{2}$ generators on P meeting \mathcal{X}.
\mathcal{H} set of all imaginary chords of \mathcal{X}.

Theorem

$\mathcal{M} \cup \mathcal{H}$ is an hemisystem of $H\left(3, q^{2}\right)$.

The new hemisystem

Fuhrmann-Torres curve

$\mathcal{X}^{+}:=Y^{q}-Y Z^{q-1}=X^{\frac{q+1}{2}} Z^{\frac{q-1}{2}}$.
$\mathcal{X}^{+}:=\left\{\left(1, u, v, v^{2}\right) \left\lvert\, u^{\frac{q+1}{2}}=v^{q}-v\right., u, v \in \mathbb{F}_{q^{2}}\right\} \cup\{(0,0,0,1)\}$.

Proposition

- \mathcal{X}^{+}has genus $\mathfrak{g}\left(\mathcal{X}^{+}\right)=\frac{1}{4}(q-1)^{2}$;
- $N_{q^{2}}\left(\mathcal{X}^{+}\right)=\frac{1}{2}\left(q^{3}+q\right)+1$;
- Aut $\left(\mathcal{X}^{+}\right)$has an index 2 subgroup isomorphic to $\operatorname{PSL}(2, q) \times C_{\frac{q+1}{2}}$.

The new hemisystem

- $\mathfrak{G}:=$ subgroup of $\operatorname{PGU}(4, q)$ preserving \mathcal{X};
- $Z(\mathfrak{G})=C_{\frac{q+1}{2}}$;
- $\mathfrak{G} / C_{\frac{q+1}{2}} \cong P G L(2, q)$;
- \mathfrak{H} :=subgroup of \mathfrak{G} of index $2, \mathfrak{H} \cong \operatorname{PSL}(2, q) \times C_{\frac{q+1}{2}}$;
\mathfrak{G} fixes X_{∞} and preserves the plane Π of equation $X=0$;
$\mathcal{X}=\Delta \cup \Omega$ with $\Omega=\mathcal{X} \cap \Pi$.
- Take a point $P_{1} \in \Delta$, together with a generator ℓ_{1} on P_{1}; then the orbit \mathcal{M}_{1} of ℓ_{1} (under the action of \mathfrak{H}) has size $\frac{1}{2}(q+1)\left(q^{3}-q\right)$;
- Take a point $P_{2} \in \Omega$, together with a generator ℓ_{2} on P_{2}; then the orbit \mathcal{M}_{2} of ℓ_{2} has size $\frac{1}{2}(q+1)^{2}$.

$$
\mathcal{M}=\mathcal{M}_{1} \cup \mathcal{M}_{2}
$$

While \mathcal{X} is the normal rational curve we get the Cossidente-Penttila hemisystem, $\mathfrak{G}:=\operatorname{PGL}\left(2, q^{2}\right), \mathfrak{H}:=\operatorname{PSL}\left(2, q^{2}\right)$.

Strongly regular graphs

Definitions

Definition

A graph G is a pair $(V(G), E(G))$ where

- $V=V(G)$ is a non-empty set of element called vertices
- $E=E(G)$ is the set of edges, together with an incidence function $\phi: E \rightarrow V \times V$: if $\phi(e)=\{u, v\}$ we say that e joins u and v, and those are called adjacent vertices or neighbours.

Definition

A strongly regular graph with parameters (v, k, λ, μ) is a graph with v vertices, each vertex lies on k edges, any two adjacent vertices have λ common neighbours and any two non-adjacent vertices have μ common neighbours.

Strongly regular graphs

Strongly regular graph on the lines of \mathcal{E}

$$
\begin{aligned}
& V(\Gamma):=\mathcal{E} . \\
& E(\Gamma):=\{(\ell, r) \mid \ell \cap r \neq \emptyset\} .
\end{aligned}
$$

Proposition
Γ is an $\operatorname{srg}\left(\frac{\left(q^{3}+1\right)(q+1)}{2}, \frac{\left(q^{2}+1\right)(q-1)}{2}, \frac{q-3}{2}, \frac{(q-1)^{2}}{2}\right)$.
While $q=5$ we get the Cossidente-Penttila strongly regular graph, $G=\operatorname{srg}(378,52,1,8)$.

Strongly regular graphs

Strongly regular graph on the lines of \mathcal{E}

Lemma

Let \mathcal{E} be an hemisystem of the Hermitian surface $H\left(3, q^{2}\right), q>3$. Then the automorphism group of the graph $\Gamma_{\mathcal{E}}$ is isomorphic to the automorphism group of \mathcal{E}.

Proof.

Trivially $\operatorname{Aut}(\mathcal{E}) \leq \operatorname{Aut}\left(\Gamma_{\mathcal{E}}\right)$. Since $H\left(3, q^{2}\right)$ does not contain triangles, thus maximal cliques of the graphs are made of the $\frac{q+1}{2}$ lines through a point, permuted by the graph automorphisms.

Theorem

The isomorphism classes of hemisystems of $H\left(3, q^{2}\right)$ are in 1-to-1 correspondence with the isomorphism classes of related srg 's.

Strongly regular graphs

 Case $q=3$While $q=3$ the Cossidente-Penttila strongly regular graph has parameters $(56,10,0,2)$. The $\operatorname{srg}(56,10,0,2)$ is usually called Gewirtz graph.

Proposition (A. E. Brouwer, W. Haemers, 1993)
The Gewirtz graph is defined by its spectrum.

Strongly regular graphs

Case $q=3$

The Gewirtz graph splits into two copies of the Coxeter graph G ，a cubic graph with 28 vertices， 42 edges，and $\operatorname{Aut}(G) \cong \operatorname{PGL}(2,7)$ ．

Strongly regular graphs

Case $q=3$

Strongly regular graphs

Case $q=3$

Proposition

Both Segre's hemisystem and Gewirtz graph are unique up to isomorphisms.

Theorem (V. Pallozzi Lavorante, F. Romaniello, V. S.)

$$
\operatorname{Aut}\left(\Gamma_{\mathcal{E}}\right) \cong \operatorname{Aut}(\mathcal{E}) \rtimes\langle\varphi\rangle \cong \operatorname{PSL}(3,4) . V
$$

Strongly regular graphs
 Plücker coordinates and Klein Quadric

Definition

Take $u=\left(u_{0}, u_{1}, u_{2}, u_{3}\right), v=\left(v_{0}, v_{1}, v_{2}, v_{3}\right) \in P G(3, q)$. The line $\langle u, v\rangle$ has Plücker coordinates $\left(p_{01}, p_{02}, p_{03}, p_{12}, p_{13}, p_{23}\right)$ where

$$
p_{i j}=\left|\begin{array}{cc}
u_{i} & u_{j} \\
v_{i} & v_{j}
\end{array}\right|=u_{i} v_{j}-u_{j} v_{i} .
$$

The Klein correspondence \mathcal{K} maps lines of $P G(3, q)$ in points of the Klein Quadric $Q^{+}(5, q):=p_{01} p_{23}-p_{02} p_{13}+p_{03} p_{12}=0$.

Lines	Points
$P G(3, q)$	Klein Quadric $Q^{+}(5, q) \subseteq P G(5, q)$
$H\left(3, q^{2}\right)$	$Q^{-}(5, q)$ in a Baer subgeometry $P G(5, q) \subseteq P G\left(5, q^{2}\right)$
Hemisystem	$\left(\frac{q+1}{2}\right)$-ovoid of $Q^{-}(5, q)$

Strongly regular graphs

Linear Representation

$V(\Gamma):=P G(6, q) \backslash X_{\infty} \cong A G(6, q)$.
$E(\Gamma):=\left\{(x, y) \mid\left\{\langle x, y\rangle \cap X_{\infty}\right\} \in \mathcal{O}\right\}$.

Proposition

Γ is an $\operatorname{srg}\left(q^{6}, \frac{1}{2}\left(q^{3}+1\right)\left(q^{2}-1\right), \frac{1}{4}\left(q^{4}-5\right), \frac{1}{4}\left(q^{4}-1\right)\right)$.

Two-weight codes

 $[n, k]_{q}$-linear codes
Definition

An $[n, k]_{q}$-linear code \mathcal{C} is a subspace of \mathbb{F}_{q}^{n} of dimension k.
The elements of \mathcal{C} are said codewords.

Definition

- The Hamming distance between two codewords $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ is the number of entries in which x and y differ: $d(x, y)=\left|\left\{i \mid x_{i} \neq y_{i}\right\}\right|$.
- The minimum distance of a code \mathcal{C} is $d=d(\mathcal{C})=\min \{d(x, y) \mid x, y \in \mathcal{C}, x \neq y\}$.

In this case we say \mathcal{C} is a $[n, k, d]_{q}$-linear code.

Theorem

Let \mathcal{C} be a $[n, k, d]_{q}$-linear code. Then, \mathcal{C} can correct $\left\lfloor\frac{d-1}{2}\right\rfloor$ errors. If is used for detection, \mathcal{C} can detect $d-1$ errors.

Two-weight codes

Hamming weight

Definition

Let \mathcal{C} be a $[n, k, d]_{q}$-linear code.

- The Hamming weight of a codeword c is the number of non-zero entries of c, i.e. $w(c)=d(c, 0)$.
- The minimum weight of a code \mathcal{C} is $w(\mathcal{C})=\min \{w(c) \mid c \in \mathcal{C}, c \neq 0\}$.

Proposition

Let \mathcal{C} be a $[n, k]_{q}$-linear code, then $d(\mathcal{C})=w(\mathcal{C})$.
The minimum distance can be found studying weights!!

Two-weight codes

$\Omega \subseteq \mathbb{F}_{q}^{k}$, with $\Omega=-\Omega$ and $0 \notin \Omega$, define the graph $G(\Omega)$:
$V(G(\Omega)):=\mathbb{F}_{q}^{k}$.
$E(G(\Omega)):=\{(x, y) \mid x-y \in \Omega\}$.
$P G(k-1, q) \supseteq \Sigma:=\{\langle\mathbf{v}\rangle: \mathbf{v} \in \Omega\}$.

Theorem (R. Calderbank, W. M. Kantor, 1986)

If $\Sigma=\left\{\left\langle\mathbf{v}_{\mathbf{i}}\right\rangle: i=1, \ldots, n\right\}$ is a proper subset of $P G(k-1, q)$ that spans $P G(k-1, q)$, then the following are equivalent:
(i) $G(\Omega)$ is a strongly regular graph;
(ii) Σ is a projective $\left(n, k, n-w_{1}, n-w_{2}\right)$-set for some w_{1} and w_{2};
(iii) the linear code $C=\left\{\left(\mathbf{x} \cdot \mathbf{v}_{\mathbf{1}}, \mathbf{x} \cdot \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{x} \cdot \mathbf{v}_{\mathbf{n}}\right): \mathbf{x} \in \mathbb{F}_{q}^{k}\right\}$ (here $\mathbf{x} \cdot \mathbf{v}$ is the classical scalar product) is an $[n, k]_{q}$-linear two-weight code with weights w_{1} and w_{2}.

Two-weight codes

New results

Proposition

The $\left(\frac{q+1}{2}\right)$-ovoid \mathcal{O} is a projective
$\left(\frac{1}{2}\left(q^{3}+1\right)(q+1), 6, \frac{1}{2}\left(q^{2}+1\right)(q+1), \frac{1}{2}\left(q^{3}-q^{2}+q+1\right)\right)$-set, which gives the $\left[\frac{1}{2}\left(q^{3}+1\right)(q+1), 6, \frac{1}{2} q^{2}\left(q^{2}-1\right)\right]_{q}$-linear two-weight code with weights $w_{1}=\frac{1}{2} q^{2}\left(q^{2}-1\right)$ and $w_{2}=\frac{1}{2} q^{2}\left(q^{2}+1\right)$.

Corollary

There exists a $[375,6,300]_{5}$-linear two-weight code with weights $w_{1}=300$ and $w_{2}=325$.

Problem

Find if the two-weight codes arising from non-isomorphic hemisystems are equivalent or not.

