# Hemisystems and Strongly Regular Graphs

Valentino Smaldore

# Università degli Studi di Padova Combinatorial Designs and Codes

joint works with V. Pallozzi Lavorante and F. Romaniello

July 9, 2024







▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲目▼

## Hemisystems on $H(3, q^2)$ *m*-regular systems

 $\mathcal{P}_{d,e}$ :=polar space of rank (vector dimension of a maximal subspace) d, and e as follows:

 $\mathcal{M}_{\mathcal{P}_{d,e}}$  will denote the set of generators of the polar space  $\mathcal{P}_{d,e}$ , while  $|\mathcal{M}_{\mathcal{P}_{d-1,e}}|$  will denote the number of generators passing through a point.

### Definition

A (non-trivial) m-regular system on a polar space  $\mathcal{P}_{d,e}$  is a set  $\mathcal{R}$  of generators such that every point of  $\mathcal{P}_{d,e}$  lies on exactly m generators in  $\mathcal{R}$ ,  $0 < m < |\mathcal{M}_{\mathcal{P}_{d-1,e}}|$ .

# Hemisystems on $H(3, q^2)$ Segre's Theorem

*m*-regular systems were introduced on Hermitian varieties by Beniamino Segre in *Forme e geometrie hermitiane, con particolare riguardo al caso finito*. In that article Segre proved the following theorem on Hermitian surfaces  $H(3, q^2)$ , whose generators are lines, and each point lies on n = q + 1 of them.

### Theorem (**Segre's Theorem**, 1965)

Let  $\mathcal{H} = H(3, q^2)$  be an Hermitian surface. m-regular systems do not exist for q even. If q is odd, all the m-regular systems on  $\mathcal{H}$  are hemistystems, i.e.  $m = \frac{n}{2} = \frac{q+1}{2}$ .

Two-weight codes

## Hemisystems on $H(3, q^2)$ Segre's hemisystem on H(3, 9)

$$q = 3$$
  
 $|H(3,9)| = 280$   
 $|\mathcal{M}_{H(3,9)}| = 112.$ 

### Proposition (B. Segre, 1965)

There exists a hemisystem, unique up to isomorphism, of 56 generator lines on the Hermitian surface H(3,9).

・ロト・西ト・モン・ビー もくの

Table of contents

Strongly regular graphs

Two-weight codes

## Hemisystems on $H(3, q^2)$ Thas' conjecture



・ロト・日本・日本・日本・日本・日本

# Hemisystems on $H(3, q^2)$ Results for q > 3

- Hemisystems on the Hermitian surface,
   A. Cossidente, T. Penttila, Journal of the London Mathematical Society, 72(2), pp. 731-741, 2005.
- Every flock generalized quadrangle has a hemisystem,
   J. Bamberg, M. Giudici, G.F. Royle, Bulletin of the London Mathematical Society, 42 pp. 795–810, 2010.
- Hemisystems of small flock generalized quadrangles, J. Bamberg, M. Giudici, G.F. Royle, Designs Codes and Cryptography, 67, pp. 137–157, 2013.
- A new infinite family of hemisystems of the Hermitian surface, J. Bamberg, M. Lee, K. Momihara, Q. Xiang, Combinatorica, 38, pp. 43-66, 2018.

## New hemisystem of the Hermitian surface Korchmáros-Nagy-Speziali construction

## Theorem (G. Korchmáros, G. Nagy, P. Speziali, 2019)

Let p be a prime number where  $p = 1 + 16a^2$ , with an integer a. Then there exist an hemisystem in the Hermitian surface  $H(3, p^2)$  of  $PG(3, p^2)$ .

### Theorem (V. Pallozzi Lavorante, V.S., 2023)

The previous theorem holds also when  $p = 1 + 4a^2$ .

ロマネロマネートを見ている。

Table of contents

イロン イヨン イヨン イヨン

## The new hemisystem Maximal curves

# $\mathcal{X}$ :=projective algebraic curve of $PG(3, q^2)$ .

Theorem (Hasse-Weil bound)

 $|N_{q^2}(\mathcal{X}) - q^2 - 1| \leq 2\mathfrak{g}q$ , where  $\mathfrak{g}$  is the genus of  $\mathcal{X}$ .

### Definition

A curve  $\mathcal{X}$  is maximal if its number of points  $N_{q^2}(\mathcal{X})$  attains the Hasse-Weil upper bound.

## The new hemisystem Sufficient conditions

 $\mathcal{X}$  maximal curve naturally embedded in  $H(3, q^2)$ .

 $\forall P \in H(3, q^2) \setminus \mathcal{X}$ , let  $n_P$  be the number of generators on P meeting  $\mathcal{X}$ .

#### Definition

The set of generators  $\mathcal{M}$  is an half-hemisystem on  $\mathcal{X}$  if:

(A) On each 
$$Q \in \mathcal{X}$$
 there are exactly  $\frac{q+1}{2}$  generators from  $\mathcal{M}$ .

(B) For any point  $P \in H(3, q^2) \setminus \mathcal{X}$ ,  $\mathcal{M}$  has as many as  $\frac{n_P}{2}$  generators on P meeting  $\mathcal{X}$ .

 ${\mathcal H}$  set of all imaginary chords of  ${\mathcal X}.$ 

#### Theorem

 $\mathcal{M} \cup \mathcal{H}$  is an hemisystem of  $H(3, q^2)$ .

< ロ > < 回 > < 回 > < 回 > <</p>

## The new hemisystem Fuhrmann-Torres curve

$$\begin{aligned} \mathcal{X}^+ &:= Y^q - YZ^{q-1} = X^{\frac{q+1}{2}}Z^{\frac{q-1}{2}}. \\ \mathcal{X}^+ &:= \{(1, u, v, v^2) | u^{\frac{q+1}{2}} = v^q - v, u, v \in \mathbb{F}_{q^2}\} \cup \{(0, 0, 0, 1)\}. \end{aligned}$$

### Proposition

•  $\mathcal{X}^+$  has genus  $\mathfrak{g}(\mathcal{X}^+) = \frac{1}{4}(q-1)^2$ ;

• 
$$N_{q^2}(\mathcal{X}^+) = \frac{1}{2}(q^3 + q) + 1$$

Aut(X<sup>+</sup>) has an index 2 subgroup isomorphic to PSL(2, q) × C<sub>q+1</sub>.

イロト イヨト イヨト イヨト

# The new hemisystem

- $\mathfrak{G}:=$  subgroup of PGU(4, q) preserving  $\mathcal{X}$ ;
- $Z(\mathfrak{G}) = C_{\frac{q+1}{2}};$
- $\mathfrak{G}/C_{\frac{q+1}{2}} \cong PGL(2,q);$
- $\mathfrak{H}:=$  subgroup of  $\mathfrak{G}$  of index 2,  $\mathfrak{H}\cong PSL(2,q)\times C_{\frac{q+1}{2}}$ ;

 $\mathfrak{G}$  fixes  $X_{\infty}$  and preserves the plane  $\Pi$  of equation X = 0;  $\mathcal{X} = \Delta \cup \Omega$  with  $\Omega = \mathcal{X} \cap \Pi$ .

- Take a point P<sub>1</sub> ∈ Δ, together with a generator ℓ<sub>1</sub> on P<sub>1</sub>; then the orbit M<sub>1</sub> of ℓ<sub>1</sub> (under the action of 𝔅) has size ½(q+1)(q<sup>3</sup> - q);
- Take a point P<sub>2</sub> ∈ Ω, together with a generator ℓ<sub>2</sub> on P<sub>2</sub>; then the orbit M<sub>2</sub> of ℓ<sub>2</sub> has size <sup>1</sup>/<sub>2</sub>(q + 1)<sup>2</sup>.

$$\mathcal{M}=\mathcal{M}_1\cup\mathcal{M}_2$$

While  $\mathcal{X}$  is the normal rational curve we get the Cossidente-Penttila hemisystem,  $\mathfrak{G} := PGL(2, q^2)$ ,  $\mathfrak{H} := PSL(2, q^2)$ .

# Strongly regular graphs Definitions

### Definition

A graph G is a pair (V(G), E(G)) where

- V = V(G) is a non-empty set of element called vertices
- E = E(G) is the set of edges, together with an incidence function φ : E → V × V: if φ(e) = {u, v} we say that e joins u and v, and those are called adjacent vertices or neighbours.

### Definition

A strongly regular graph with parameters  $(v, k, \lambda, \mu)$  is a graph with v vertices, each vertex lies on k edges, any two adjacent vertices have  $\lambda$  common neighbours and any two non-adjacent vertices have  $\mu$  common neighbours.

Two-weight codes

# $\begin{array}{l} \mbox{Strongly regular graphs} \\ \mbox{Strongly regular graph on the lines of } \mathcal{E} \end{array}$

$$V(\Gamma) := \mathcal{E}.$$
  
$$E(\Gamma) := \{(\ell, r) | \ell \cap r \neq \emptyset\}.$$

#### Proposition

$$\Gamma$$
 is an  $srg\left(rac{(q^3+1)(q+1)}{2}, rac{(q^2+1)(q-1)}{2}, rac{q-3}{2}, rac{(q-1)^2}{2}
ight)$ 

While q = 5 we get the Cossidente-Penttila strongly regular graph, G = srg(378, 52, 1, 8).

#### ▲□ > ▲□ > ▲目 > ▲目 > ▲目 > ● ●

# Strongly regular graphs Strongly regular graph on the lines of ${\ensuremath{\mathcal E}}$

#### Lemma

Let  $\mathcal{E}$  be an hemisystem of the Hermitian surface  $H(3, q^2)$ , q > 3. Then the automorphism group of the graph  $\Gamma_{\mathcal{E}}$  is isomorphic to the automorphism group of  $\mathcal{E}$ .

### Proof.

Trivially  $Aut(\mathcal{E}) \leq Aut(\Gamma_{\mathcal{E}})$ . Since  $H(3, q^2)$  does not contain triangles, thus maximal cliques of the graphs are made of the  $\frac{q+1}{2}$  lines through a point, permuted by the graph automorphisms.

#### Theorem

The isomorphism classes of hemisystems of  $H(3, q^2)$  are in 1-to-1 correspondence with the isomorphism classes of related srg's.

ヘロト ヘロト ヘビト

# Strongly regular graphs Case q = 3

While q = 3 the Cossidente-Penttila strongly regular graph has parameters (56, 10, 0, 2). The srg(56, 10, 0, 2) is usually called *Gewirtz graph*.

Proposition (A. E. Brouwer, W. Haemers, 1993)

The Gewirtz graph is defined by its spectrum.

Table of contents

The new hemisystem

Strongly regular graphs

Two-weight codes

# Strongly regular graphs Case q = 3



The Gewirtz graph splits into two copies of the Coxeter graph G, a cubic graph with 28 vertices, 42 edges, and  $Aut(G) \cong PGL(2,7)$ .

Two-weight codes

# Strongly regular graphs Case q = 3



◆□ > ◆□ > ◆三 > ◆三 > ● ● ●

Two-weight codes

# Strongly regular graphs Case q = 3

## Proposition

Both Segre's hemisystem and Gewirtz graph are unique up to isomorphisms.

Theorem (V. Pallozzi Lavorante, F. Romaniello, V. S.)

 $Aut(\Gamma_{\mathcal{E}}) \cong Aut(\mathcal{E}) \rtimes \langle \varphi \rangle \cong PSL(3,4).V$ 

・ロト・日本・日本・日本・日本・日本・日本

## Strongly regular graphs Plücker coordinates and Klein Quadric

#### Definition

Take  $u = (u_0, u_1, u_2, u_3)$ ,  $v = (v_0, v_1, v_2, v_3) \in PG(3, q)$ . The line  $\langle u, v \rangle$  has Plücker coordinates  $(p_{01}, p_{02}, p_{03}, p_{12}, p_{13}, p_{23})$  where

$$p_{ij} = \left| \begin{array}{cc} u_i & u_j \\ v_i & v_j \end{array} \right| = u_i v_j - u_j v_i.$$

The Klein correspondence  $\mathcal{K}$  maps lines of PG(3, q) in points of the Klein Quadric  $Q^+(5, q) := p_{01}p_{23} - p_{02}p_{13} + p_{03}p_{12} = 0$ .

| Lines       | Points                                                        |
|-------------|---------------------------------------------------------------|
| PG(3,q)     | Klein Quadric $Q^+(5,q)\subseteq PG(5,q)$                     |
| $H(3, q^2)$ | $Q^-(5,q)$ in a Baer subgeometry $PG(5,q)\subseteq PG(5,q^2)$ |
| Hemisystem  | $(rac{q+1}{2})$ -ovoid of $Q^-(5,q)$                         |

▲□ > ▲□ > ▲目 > ▲目 > ▲目 > ● ●

Two-weight codes

æ

ヘロト 人間 とくほど 人間とう

## Strongly regular graphs Linear Representation



$$X_{\infty} := PG(5,q)$$

$$V(\Gamma) := PG(6,q) \setminus X_{\infty} \cong AG(6,q).$$
  
 $E(\Gamma) := \{(x,y) | \{ \langle x,y \rangle \cap X_{\infty} \} \in \mathcal{O} \}.$ 

## Proposition

$$\Gamma$$
 is an  $srg(q^6, \frac{1}{2}(q^3+1)(q^2-1), \frac{1}{4}(q^4-5), \frac{1}{4}(q^4-1)).$ 

# Two-weight codes $[n, k]_q$ -linear codes

#### Definition

An  $[n, k]_q$ -linear code C is a subspace of  $\mathbb{F}_q^n$  of dimension k. The elements of C are said codewords.

#### Definition

- The Hamming distance between two codewords x = (x<sub>1</sub>, x<sub>2</sub>,..., x<sub>n</sub>) and y = (y<sub>1</sub>, y<sub>2</sub>,..., y<sub>n</sub>) is the number of entries in which x and y differ: d(x, y) = |{i|x<sub>i</sub> ≠ y<sub>i</sub>}|.
- The minimum distance of a code C is
   d = d(C) = min{d(x, y)|x, y ∈ C, x ≠ y}.

In this case we say C is a  $[n, k, d]_q$ -linear code.

#### Theorem

Let C be a  $[n, k, d]_q$ -linear code. Then, C can correct  $\lfloor \frac{d-1}{2} \rfloor$  errors. If is used for detection, C can detect d - 1 errors.

# Two-weight codes

## Definition

Let C be a  $[n, k, d]_q$ -linear code.

- The Hamming weight of a codeword c is the number of non-zero entries of c, i.e. w(c) = d(c,0).
- The minimum weight of a code C is  $w(C) = min\{w(c)|c \in C, c \neq 0\}.$

#### Proposition

Let 
$$C$$
 be a  $[n, k]_q$ -linear code, then  $d(C) = w(C)$ .

## The minimum distance can be found studying weights!!

# Two-weight codes

$$\begin{split} \Omega &\subseteq \mathbb{F}_q^k, \text{ with } \Omega = -\Omega \text{ and } 0 \notin \Omega, \text{ define the graph } G(\Omega):\\ V(G(\Omega)) &:= \mathbb{F}_q^k.\\ E(G(\Omega)) &:= \{(x, y) | x - y \in \Omega\}.\\ PG(k-1, q) &\supseteq \Sigma &:= \{\langle \mathbf{v} \rangle : \mathbf{v} \in \Omega\}. \end{split}$$

#### Theorem (R. Calderbank, W. M. Kantor, 1986)

If  $\Sigma = \{ \langle \mathbf{v}_i \rangle : i = 1, ..., n \}$  is a proper subset of PG(k - 1, q) that spans PG(k - 1, q), then the following are equivalent:

- (i)  $G(\Omega)$  is a strongly regular graph;
- (ii)  $\Sigma$  is a projective  $(n, k, n w_1, n w_2)$ -set for some  $w_1$  and  $w_2$ ;
- (iii) the linear code  $C = \{(\mathbf{x} \cdot \mathbf{v}_1, \mathbf{x} \cdot \mathbf{v}_2, \dots, \mathbf{x} \cdot \mathbf{v}_n) : \mathbf{x} \in \mathbb{F}_q^k\}$  (here  $\mathbf{x} \cdot \mathbf{v}$  is the classical scalar product) is an  $[n, k]_q$ -linear two-weight code with weights  $w_1$  and  $w_2$ .

## Two-weight codes New results

#### Proposition

The  $(\frac{q+1}{2})$ -ovoid  $\mathcal{O}$  is a projective  $(\frac{1}{2}(q^3+1)(q+1), 6, \frac{1}{2}(q^2+1)(q+1), \frac{1}{2}(q^3-q^2+q+1))$ -set, which gives the  $[\frac{1}{2}(q^3+1)(q+1), 6, \frac{1}{2}q^2(q^2-1)]_q$ -linear two-weight code with weights  $w_1 = \frac{1}{2}q^2(q^2-1)$  and  $w_2 = \frac{1}{2}q^2(q^2+1)$ .

#### Corollary

There exists a  $[375, 6, 300]_5$ -linear two-weight code with weights  $w_1 = 300$  and  $w_2 = 325$ .

#### Problem

Find if the two-weight codes arising from non-isomorphic hemisystems are equivalent or not.



▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへ⊙