
Hadamard matrices and spherical designs

Patrick Solé
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CNRS/I2M, Marseilles

Seville, Spain



Classical Bent Sequences

A Boolean function f of arity h is any map from Fh
2 to F2. The

sequence of f is defined by F (x) = (−1)f (x). The
Walsh-Hadamard transform of f is defined as

f̂ (y) =
∑
x∈Fh

2

(−1)〈x ,y〉+f (x).

A Boolean function f is said to be bent iff its Walsh-Hadamard
transform takes its values in {±2h/2}. Such functions can only
exist if h is even. Then F is said to be a bent sequence.



Sylvester matrix

Thus in term of vectors the Walsh-Hadamard transform is

f̂ = SF ,

where Sxy = (−1)<x ,y> is the Sylvester matrix of size 2h by 2h.

Here x , y ∈ Fh
2 and < x , y >=

h∑
i=1

xiyi .

A recursive construction is possible.



Applications of Bent Sequences

covering radius of first order Reed-Muller code

building blocks of stream ciphers

strongly regular graphs

difference sets in elementary abelian groups



Self-dual Classical Bent Sequences

The dual of a bent function f is defined by its sequence f̂ /2h/2.
A bent function is said to be self-dual if it equals its dual.
Their sequences are eigenvectors for the Sylvester matrix attached
to the eigenvalue 2h/2.

SF = 2h/2F .

Self-dual bent functions for h = 2, 4 were classified under the
action of the extended orthogonal group in
C. Carlet, L. E. Danielsen, M. G. Parker, and P. Solé, “Self-dual
bent functions,” Int. J. Inf. Coding Theory , (2010), 384–399.



Hadamard Bent Sequences

A new notion of bent sequence was introduced in
P. Solé, W. Cheng, S. Guilley, and O. Rioul, “Bent sequences over
Hadamard codes for physically unclonable functions,” in
IEEE International Symposium on Information Theory, Melbourne,
Australia, July 12–20, 2021.
as a solution in X ,Y to the system

HX = Y ,

where H is a Hadamard matrix of order v ,
normalized to H = H/

√
v and X ,Y ∈ {±1}v .

A matrix H with entries ∈ {±1} is a Hadamard matrix of order v
if

HHt = vIv .



Hadamard codes

We consider codes over the alphabet A = {±1}.
If H is a Hadamard matrix of order v , we construct a code C of
length v and size 2v by taking the columns of H and their
opposites. Let d(., .) denote the Hamming distance on A. The
covering radius of a code C of length v over A is defined by the
formula

r(C ) = max
y∈Av

min
x∈C

d(x , y).

Let v be an even perfect square, and let H be a Hadamard
matrix of order v , with the associated Hadamard code C . The
vector X ∈ Av is a bent sequence attached to H iff

min
Y∈C

d(X ,Y ) = r(C ) =
v −
√

v

2
.



self-dual Hadamard Bent Sequences

The dual sequence of X is defined by Y = HX .
Because HHt = vIv , we see that the vector Y is itself a bent
sequence attached to Ht .
If Y = X , then X is a self-dual bent sequence attached to H.
For a given H, there are many bent sequences.
Self-dual bent sequences are fewer and easy to construct.
Given a bent sequence X for some Hadamard matrix H this matrix
can be tweaked to make X self-dual bent.



Hadamard Matrices: History

My grandgrandgrandadvisor invented Hadamard matrices in 1893
as a solution of an extremal problem for determinants.

(Hadamard −→ Fréchet −→ Fortet −→Cohen −→ S.)



Sylvester construction

The unique Hadamard matrix of order 2 is H1 =

(
1 1
1 −1

)
The Kronecker product preserves the Hadamard property. By

induction the matrix Hm+1 =

(
Hm Hm

Hm −Hm

)
is a Hadamard matrix.

Note that Hh = S , as defined before.

This construction is due to Sylvester a british algebraist

J. J. Sylvester, Thoughts on inverse orthogonal matrices, simultaneous

sign successions, and tessellated pavements in two or more colours, with

applications to Newton’s rule, ornamental tile-work, and the theory of

numbers, Philosophical Magazine 34 (1867), 461–475.



Hadamard Matrices: normalization

A Hadamard matrix is normalized if its top row and its leftmost
column consists only of ones.
Every Hadamard matrix can be cast in normalized form by a
succession of the three following operations

row permutation,

column permutation,

row or column negation,



Hadamard Matrices: regular

A Hadamard matrix of order v is regular if the sum of all its rows
and all its columns is a constant σ.
In that case, it is known that v = 4u2 with u a positive integer and
that σ = 2u or −2u
A direct connection between Hadamard bent sequences and regular
Hadamard matrices is as follows.

If H is a regular Hadamard matrix of order v = 4u2, with σ = 2u,
then j is a self-dual bent sequence for H where j is the all-one
vector of length v .
Many constructions are known for u = p, a prime satisfying some
extra arithmetic conditions.



Hadamard Matrices: Bush-type I

A regular Hadamard matrix of order v = 4u2 is said to be
Bush-type if it is blocked into 2u blocks of side 2u, denoted by
Hij , such that the diagonal blocks Hii are all-ones, and that the
off-diagonal blocks have row and column sums zero.

Motivation: finite projective planes.
K. A. Bush, Unbalanced Hadamard matrices and finite projective
planes of even order,J. Combin. Theory Ser. A11, (1971) 38–44



Hadamard Matrices: Bush-type II

Each Bush-type Hadamard matrix implies the existence of many
self-dual bent sequences.

If H is a Bush-type Hadamard matrix of order v = 4u2, then
there are at least 22u self-dual bent sequences for H.
The idea is to have a sequence equal to a constant on the blocks.



Existence conjecture

Hadhi Kharagani ’s conjecture:
Bush-type Hadamard matrices exist for all even perfect square
orders
=⇒ We conjecture: if v is an even perfect square, then there
exists a self-dual Hadamard bent sequence for some Hadamard
matrix of order v



Search Methods:Exhaustion

This method is only applicable for small v ’s.

(1) Construct H a Hadamard matrix of order v .

(2) For all X ∈ {±1}v compute Y = HX . If Y = X , then X is
self-dual bent sequence attached to H.

Complexity: Exponential in v since |{±1}v | = 2v .



Search Methods:Groebner bases

The system HX = X with X ∈ {±1}v can be thought of as the
real quadratic system HX = X , ∀i ∈ [1, v ], X 2

i = 1.

(i) Construct the ring P of polynomial functions in v variables
Xi , i = 1, . . . v .

(ii) Construct the linear constraints HX = X .

(iii) Construct the quadratic constraints ∀i ∈ [1, v ], X 2
i = 1

(iv) Compute a Groebner basis for the ideal I of P determined by
constraints (ii) and (iii).

(v) Compute the solutions as the zeros determined by I .

Complexity: As is well-known, the complexity of computing
Groebner bases can be doubly exponential in the number of
variables, that is v here.



Search Methods:Linear Algebra

(1) Construct H a Hadamard matrix of order v . Compute
H = 1√

v
H.

(2) Compute a basis of the eigenspace associated to the
eigenvalue 1 of H.

(3) Let B denote a matrix with rows such a basis of size k ≤ v .
Pick Bk a k-by-k submatrix of B that is invertible, by the
algorithm given below.

(4) For all Z ∈ {±1}k solve the system in C given by Z = CBk .

(5) Compute the remaining v − k entries of CB.

(6) If these entries are in {±1} declare CB a self-dual bent
sequence attached to H.

Complexity: Roughly of order v 32k . In this count v 3 is the
complexity of computing an echelonized basis of H −

√
vI . The

complexity of the invertible minor finding algorithm is of the same
order or less.



Hadamard Matrices: standard automorphism group

The class of Hadamard matrix of order v is preserved by the three
following operations:

row permutation,

column permutation,

row or column negation,

which form a group G (v) with structure (Sv o S2)2, where Sm

denotes the symmetric group on m letters.
We denote by S(v) the group of diagonal matrices of order v
with diagonal elements in {±1},
and by M(v) the matrix group generated by P(v), the group of
permutation matrices of order v , and S(v). The action of G (v)
on a Hadamard matrix H is of the form

H 7→ PHQ,

with P,Q ∈ M(v). The automorphism group Aut(H) of a
Hadamard matrix H is defined classically as the set of all pairs
(P,Q) ∈ G (v) such that PHQ = H.



Hadamard Matrices: strong automorphism group I

The strong automorphism group SAut(H) of H defined as the
set of P ∈ M(v) such that PH = HP.
Proposition: If X is self-dual bent sequence for H, and if

P ∈ M(v) is a strong automorphism of H, then PX is also
self-dual bent sequence for H.
Given H the group SAut(H) can be determined by an efficient
graph theoretic algorithm.



Hadamard Matrices: strong automorphism group II

A partial characterization in the case of SAut(S) is as
follows.Consider the action of an extended affine transform
TA,b,d ,c on a Boolean function f , i.e.,

f (x) 7→ f (A−1x + A−1b) · (−1)〈d ,x〉 · c ,

where

A is an m-by-m invertible matrix over F2,

b, d ∈ Fm
2 ,

c ∈ {1,−1}.



The strong automorphism group of Sylvester matrices

An extended affine transform TA,b,d ,c is in SAut(Sv ) iff
At = A−1, b = d and wH(b) is even.
We call this subgroup of SAut(Sv ) the extended orthogonal group
In particular, the number of such transforms is |Om|2m where
Om = {A ∈ GL(m,F2) | AAt = I} is the orthogonal group .

|Om| = 2k
2
k−1∏
i=1

(22i − 1) if m = 2k,

|Om| = 2k
2

k∏
i=1

(22i − 1) if m = 2k + 1.

For the first few values of m, we get
1, 2, 8, 48, 768, 23040, 1474560, 185794560.



Butson Hadamard matrices: definition

A complex Hadamard matrix of order n is an n × n matrix H
with entries in the complex unit satisfying the equation

HH∗ = nI ,

where the ∗ denotes the transpose conjugate. If all of its elements
are in

Ωq = {z ∈ C | zq = 1} ,

for some integer q, then H is said to be Butson type, and we
write H ∈ BH(n, q).

A matrix H ∈ BH(n, q) is in dephased form when both first row
and first columns only contain ones.(Cf. normalized for BH(n, 2))

A. T. Butson, Generalized Hadamard matrices, Proc. Am. Math.
Soc. 13, 894-898 (1962).



Butson Hadamard matrices: bent sequences

Given H ∈ BH(n, q) the sequence X ∈ Ωn
q is a bent sequence if

there is Y ∈ Ωn
q such that HX = λY for some λ ∈ Z[ζq].

The notion of self-dual bent sequence can be extended to that
setting: Y = X
Further extension:

For any k coprime with q we define the multiplier
µk : Ωq −→ Ωq by the rule µk(z) = zk .
A self-dual bent sequence attached to H ∈ BH(n, q) is X ∈ Ωn

q

such that HX = λµk(X ).
When k = 1, this is the definition of self-dual bent sequence in

Shi et al. DCC 2023.
When k = q − 1, this is the definition of self-dual bent sequence

in Armario et al. Riccota conference 2023.



Existence conditions for bent sequences

If H in BH(n, q) , such that HX = λX with λ ∈ Z[ζq], with
X ∈ Ωn

q,

⇒

there are q integers 0 ≤ yr ≤ n such that n =
∑q−1

r=0 yr
( a “composition” of n) and such that

n =

(
q−1∑
r=0

yrcr

)2

+

(
q−1∑
r=0

yr sr

)2

where ζrq = cr + isr and i = ζ4.
Example: If n = 6, q = 3 there are 28 compositions. None of

them satisfy this equation. ⇒ no matrix in BH(6, 3) has such a λ.



General construction I: Kronecker product

It is well-known that the Kronecker product preserves the
Hadamard property.

This carries over to Hadamard bent sequences.

Let H ∈ BH(n, q) (resp. K ∈ BH(m, q)) affording a self dual bent
sequence X (resp. Y ) for the multiplier µk .
Then X ⊗ Y is a self-dual bent sequence with multiplier µk , for
H ⊗ K ∈ BH(mn, q).



General construction II: Fourier transforms

Define a “Sylvester-like” Butson Hadamard matrix H by the rule

Hxy = ζx ·yq .

Application of orthogonality of group characters for (Zq,+).

Write X = (ζ
f (x)
q )x∈Zn

q
. X is self-dual bent for H iff f is a

generalized bent function à la Kumar-Scholtz-Welch.
Consider the generalized Maiorana-McFarland f of the kind

f (x , y) = x · φ(y), where φ is a permutation of Zn/2
q .

We give some conditions on k for f to be self-dual bent wrt H∗.
Generalizations to more complicated matrices with

H(x1,x2),(y1,y2) = ζ
(x1−y1)·(x2−y2)
q



Butson Hadamard matrices: codes over rings

A Butson matrix H ∈ BH(n, q) is conveniently represented in
logarithmic form.
If H =

[
ζ
ϕi,j
q

]n
i ,j=1

define L(H) = [ϕi ,j mod q]ni ,j=1 .
Denote by FH the Zq-code of length n consisting of the rows of
L(H), and by

CH = ∪α∈Zq(FH + α1)

where 1 denotes the all-one vector.
The code CH ⊆ Zn

q is called a Butson Hadamard code, and was
introduced in

J. A. Armario, I. Bailera, R. Egan, Butson full propelinear codes,
Designs, Codes and Cryptography, 2023, 91(2): 333–351.



Butson Hadamard codes: chinese Euclidean distance

The Chinese Euclidean weight wCE (x) of a vector x ∈ Zn
q is

n∑
i=1

[
2− 2 cos(

2πxi
q

)

]
,

and the Chinese Euclidean distance between the codewords u
and v ∈ Zn

q is defined as

dCE (u, v) = wCE (u − v).

This distance coincide with the Lee distance for q = 4, but not in
general.
P. Chella Pandian, On the covering radius of codes over Z6,
International Journal on Information Theory, 2016, 5(2): 01–09.



Butson Hadamard codes: covering radius

If there is a bent sequence X for H ∈ BH(n, q), then the covering
radius for the chinese Euclidean distance of its attached Zq-code
CH is bounded below as

rCE (CH) ≥ 2n − 2
√

n.

This bound is tight for many values of n when q = 4, 6, 8.



Butson Hadamard codes: Euclidean distance distribution

The Chinese Euclidean distances of CH are{
dE (x , y) | x 6= y , x , y ∈ wCH

}
=

{2n} ∪
{

2n(1− cos
2πt

q
) | t = 1, 2, . . . ,

⌊q

2

⌋}
.

The proof follows simply by the Hadamard property and properties
of roots of unity



Advertisement



Spherical codes: general

The unit sphere Υd in Euclidean d-space Rd is the set of all
unit norm vectors:

Υd ,
{

x = (x1, x2, . . . , xd) ∈ Rd : ‖x‖ = 1
}

A spherical code in dimension d is a finite set X ⊆ Υd . Its
minimum distance for the squared Euclidean distance is denoted by
ρ. Its parameters are denoted compactly by (d , ρ, |X |). The
function Ad(ρ) can then be defined as

Ad(ρ) = max{|X | | X spherical code of parameters (d , ρ, |X |)}.

T. Ericson, V. Zinoviev, Codes on Euclidean spheres, North
Holland, 2001.



Spherical codes: getting real

The map ψ : C −→ R2, x + iy 7−→ (x , y) is an isometry from
(Cn, dE ) to

(
R2n, δ

)
, where

δ(U,V ) = ‖U − V ‖2 ,

for all U,V ∈ R2n. Note that

(ψ(a), ψ(b)) = <
(
〈a, b〉

)
,

where a and b ∈ Cn, and (, ) denotes the standard inner product in
R2n.

For normalization purposes, we will let φ(z) = ψ(z)√
n
, for all z ∈ Cn.



Spherical codes: Hadamard matrices I

The spherical code φ(ζCH
q ) ⊆ Υ2n ⊆ R2n has a size of nq and a

distance of

ρ =
dCE

n
= 2(1− cos

2π

q
).

This is an easy consequence of the Hadamard property.



Spherical codes: Hadamard matrices II

If H ∈ BH(n, 4), then the spherical code φ(ζCH
q ) is optimal in

dimension 2n.

This is a consequence of Levenshtein bound on spherical
codes: Let X be a spherical code with parameters (d , ρ, |X |) and
let s = 1− ρ

2 . Then the size |X | is bounded above for
s ∈ [0, 1

(
√
d+3+1)

), as

|X | ≤ L3(s) =
d(2 + (d + 1)s)(1− s)

1− ds2
,

V. I. Levenshtein, Designs as maximum codes in polynomial metric
spaces, Acta Appl. Math. 25, (1982): 1–82



Spherical designs: general

A spherical design of strength t, is a finite set X of N points on
the d-dimensional unit d-sphere Sd such that for every polynomial
of degree at most t we have

1

N

∑
x∈X

f (x) =

∫
s∈Sd

f (s).

Introduced in Delsarte, P.; Goethals, J. M.; Seidel, J. J. (1977),
”Spherical codes and designs”, Geometriae Dedicata, 6 (3):
363–388. A picture of Jaap Seidel, the father of the “Benelux
school of combinatorics.”



Spherical designs: motivation

Approximation of functions (cubature formulas)

Statistics of experimental design

Algebraic Combinatorics (eigenspaces of association schemes)

Euclidean lattices (modular forms analogue of
Assmus-Mattson theorem)



Spherical designs: covering radius

Let Υd denote the unit sphere of Rd . The covering radius of a
spherical code X ∈ Υd is

ρ = max
x∈Ωd

min
y∈X

dE (x , y).

Upper bounds of increasing precision when the strength grows were
derived using linear programming and orthogonal polynomials in

G. Fazekas, V. I. Levenshtein, On upper bounds for code distance
and covering radius of designs in polynomial metric spaces, Journal
of Combinatorial Theory, Series A, 1995, 70(2): 267-288.



Spherical designs: harmonic characterization

Let P(Rn)=real polynomials in n variables.

Harm(Rn) := {f ∈ P(Rn) | ∆f = 0},

where ∆ is the Laplacian operator.
Homl(Rn) := the subspace of spanned by all the homogeneous
polynomials of degree l .
Harml(Rn) := Harm(Rn) ∩ Homl(Rn).
The spherical code X is a t-designs iff ∀φ ∈ Harml for
l = 1, 2, · · · , t we have ∑

x∈X
φ(x) = 0

Eiichi Bannai, Etsuko Bannai / European Journal of Combinatorics
30 (2009) 1392–1425



Spherical designs: small strength

A spherical code X is a 1-design if its center of mass is the origin
or, more concretely, for all coordinate indices i satisfy∑

x∈X xi = 0. It is antipodal if X = −X .
A spherical code X is a 2-design if it is a 1-design, and if,

furthermore, for all pairs i 6= j of coordinate indices the following
two relations hold.∑

x∈X
(x2

i − x2
j ) = 0,

∑
x∈X

xixj = 0.



Spherical designs: Butson matrices

Using the Hadamard property of Butson matrices we prove the
following two statements.

If H is dephased, then φ(ζCH
q ) is a 1-design and its covering radius

is at most
√

2.

If H ∈ BH(n, q) is dephased, then φ(ζCH
q ) is a 2-design and its

covering radius is at most
√

2(1− 1
2n ).

This implies that the chinese euclidean distance covering radius of
CH is

rCE (CH) ≤ 2n −
√

2n



Conclusion and Open Problems

Which bound is closer to the true value for n→∞?

2n − 2
√

n ≤ rCE (CH) ≤ 2n −
√

2n

for q = 4, 6, 8 the lower bound is met for many matrices

How to improve the upper bound?



Work in progress: weighing matrices:

weighing matrices:
WW ∗ = kIv

with k ≤ v .

trouble with zero entries of W (phase = −∞ ?)

no connection with codes over a finite alphabet. :=((

need to have nonzero bent sequences

geometric algorithm to determine the covering radius (
Delaunay diagram on the sphere, joint work with Mathieu
Dutour)

again the spherical design upper bound is not very tight



The last slide

Thanks for your attention!!!

Gracias por su atención !!!


