Some constructions of strongly regular graphs and digraphs

Andrea Švob (asvob@math.uniri.hr)

Faculty of Mathematics, University of Rijeka, Croatia

Joint work with Dean Crnković and Francesco Pavese.
Combinatorial Designs and Codes - CODESCO'24, 8-14 July 2024
This work has been supported by Croatian Science Foundation under the projects 4571 and 5713.

The outline of the talk:

(1) Introduction and motivation
(2) Main construction
(3) Results

A finite incidence structure consists of a finite set \mathcal{V}, called points, a set \mathcal{B} of subsets of \mathcal{V}, called blocks, and the incidence relation \in (containment) between points and blocks.

An incident point-block pair is called a flag, and a non-incident point-block pair is called an antiflag.

A tactical configuration with parameters (v, b, k, r) is a finite incidence structure $(\mathcal{V}, \mathcal{B})$ with $|\mathcal{V}|=v,|\mathcal{B}|=b$ such that every block contains k points and every point belongs to exactly r blocks.

Example: a $1-(v, k, \lambda)$ design with b blocks is a tactical configuration with parameters $(v, b, k, r=\lambda)$.

- R. C. Bose, S. S. Shrikhande, N. M. Singhi, Edge regular multigraphs and partial geometric designs, Proc. Internat. Colloq. Combin. Theory, 17 (1976), 49-81.
- A. Neumaier, $t \frac{1}{2}$-designs, J. Combin. Theory, Ser. A, 28 (1980), 226-248.

A partial geometric design or a $1 \frac{1}{2}$-design with parameters $(v, b, k, r ; \alpha, \beta)$ is a tactical configuration $(\mathcal{V}, \mathcal{B})$ with parameters (v, b, k, r) such that for every point $x \in \mathcal{V}$ and every block $B \in \mathcal{B}$, the number of flags (y, C) such that $y \in B \backslash\{x\}, x \in C \neq B$ equals α or β, according as $x \notin B$ or $x \in B$.

- Examples: 2-designs, partial geometries, complete bipartite graphs,...
- Remark: $t \frac{1}{2}$-design, for $t \geq 4$ is $(t+1)$-design.
- R. C. Bose, Strongly regular graphs, partial geometries and partially balanced designs. Pacific J. Math. 13 (1963), 389-419.
A partial geometry with parameters s, t, α, or shorty, $p g(s, t, \alpha)$, is a pair (P, L) of a set P of points and a set L of lines, with an incidence relation between points and lines, satisfying the following axioms:
(1) A pair of distinct points is not incident with more than one line.
(2) Every line is incident with exactly $s+1$ points $(s \geq 1)$.
(3) Every point is incident with exactly $t+1$ lines $(t \geq 1)$.
(9) For every point p not incident with a line I, there are exactly α lines ($\alpha \geq 1$) which are incident with p, and also incident with some point incident with $/$.

A partial geometry $\operatorname{pg}(s, t, \alpha)$ is a $1 \frac{1}{2}$-design with parameters

$$
\left(v, b, k, r ; \alpha^{\prime}, \beta\right)=((s+1) c,(t+1) c, s+1, t+1 ; \alpha, r+k-1),
$$

where $c=1+\frac{s \cdot t}{\alpha}$.

- D. Crnković, A. Švob, V. D. Tonchev, Strongly regular graphs with parameters ($81,30,9,12$) and a new partial geometry, J. Algebraic Combin. 53 (2021), 253-261.

A $\operatorname{pg}(5,5,2)$ gives rise to $1 \frac{1}{2}$-design with parameters $(81,81,6,6 ; 2,11)$.

- W. G. Bridges, M. S. Shrikhande, Special partially balanced incomplete block designs and associated graphs, Discrete Math., 9 (1974), 1-18.

A special partially balanced incomplete block design (SPBIBD) with parameters $\left(v, b, k, r, \lambda_{1}, \lambda_{2}\right)$ of type (α_{1}, α_{2}), with $v, b, r, k \geq 2$, $\lambda_{1}, \lambda_{2}, \alpha_{1}, \alpha_{2} \geq 0, \lambda_{1} \neq \lambda_{2}$ and $r<b$, is a tactical configuration with parameters (v, b, k, r) such that
(i) Two distinct points are either in exactly λ_{1} (when they are λ_{1}-associated) or in exactly λ_{2} common blocks (when they are λ_{2}-associated).
(ii) A point x is λ_{1}-associated to exactly α_{1} points of a block B if $x \in B$, and to α_{2} points of B if $x \notin B$.

A SPBIBD is called quasi-symmetric if any two distinct blocks have either μ_{1} or $\mu_{2}, \mu_{1} \neq \mu_{2}$, points in common.

A strongly regular graph (SRG) 「 with parameters (v, k, λ, μ) is a (connected, simple, undirected and loopless) k-regular graph with v vertices such that any two adjacent vertices have λ common neighbours and any two non-adjacent vertices have μ common neighbours.

Remark: If Γ is a strongly regular graph, then $V(\Gamma)$ will denote the set of its vertices.

A special class of SRGs

Let G be a group of permutations acting on a set Ω.
The rank of the action is the number of orbits of the subgroup G_{x} fixing $x \in \Omega$ on Ω.

The orbits of G on $\Omega \times \Omega$ are called orbitals and they are symmetric if for all $x, y \in \Omega$ the pairs (x, y) and (y, x) belong to the same orbital.
Let G be transitive of rank three. Then its orbitals, say $I=\{(x, x) \mid x \in \Omega\}, R, S$, are symmetric if and only if G has even order. In this case (Ω, R) and (Ω, S) form a pair of complementary strongly regular graphs, called rank three strongly regular graph.

In particular, they are connected if and only if G is primitive and the group G acts transitively on ordered pairs of adjacent vertices and on ordered pairs of non-adjacent vertices of each of these graphs.

- A. Duval, A directed graph version of strongly regular graphs, J. Combin. Theory, Ser. A, 47 (1988), 71-100.

A directed strongly regular graph with parameters (v, k, t, λ, μ) is a directed graph on v vertices without loops such that
(i) every vertex has in-degree and out-degree k,
(ii) every vertex x has t out-neighbours that are also in-neighbours of x,
(iii) the number of directed paths of length 2 from a vertex x to another vertex y is λ if there is an edge from x to y, and is μ if there is no edge from x to y.

- A. E. Brouwer, O. Olmez, S. Y. Song, Directed strongly regular graphs from $1 \frac{1}{2}$-designs, European J. Combin., 33 (2012), 1174-1177.

Directed strongly regular graphs can be constructed from partial geometric designs.

A partial geometric design with parameters $(v, b, k, r ; \alpha, \beta)$ gives rise to two distinct DSRGs having parameters:

$$
\begin{array}{r}
(b(v-k), r(v-k), k r-\alpha, k r-(k+r-1+\beta), k r-\alpha), \\
(v r, r k-1, \beta+r+k-2, \beta+r+k-3, \alpha) .
\end{array}
$$

We will consider proper partial geometric design, i.e., the design for which $\alpha>0,3 \leq k \leq v-3$ and $3 \leq r \leq b-3$.

The $\operatorname{pg}(5,5,2)$ gives rise to $1 \frac{1}{2}$-design with parameters $(81,81,6,6 ; 2,11)$.
The $1 \frac{1}{2}$-design with parameters $(81,81,6,6 ; 2,11)$ gives rise to DSRGs:

$$
(6075,450,34,14,34),(486,35,21,20,2) .
$$

Main idea

- We show that a SRG that has a "nice family" of subsets i.e. intriguing sets gives rise to SPBIBD.
- SPBIBDs form particular class of partial geometric designs.
- A partial geometric design with parameters gives rise to DSRGs.
- We apply the construction on rank three SRGs on at most 45 vertices.

SRGs

Let Γ be a strongly regular graph with parameters (v, k, λ, μ), and A be the adjacency matrix of Γ.

- The matrix A satisfies the equation $A^{2}=k I+\lambda A+\mu(J-I-A)$, where I denotes the identity matrix of order v and J the all-ones matrix of order v.
- if A is a $v \times v$ matrix and there exist non-negative integers k, λ, μ such that $A^{2}=k I+\lambda A+\mu(J-I-A)=(\lambda-\mu) A+(k-\mu) I+\mu J$, then A can be seen as the adjacency matrix of a strongly regular graph.
- The matrix A has three distinct eigenvalues: $\theta_{0}>\theta_{1}>\theta_{2}$, where

$$
\begin{aligned}
& \theta_{0}=k, \theta_{1}=\left(\lambda-\mu+\sqrt{(\lambda-\mu)^{2}+4(k-\mu)}\right) / 2 \text { and } \\
& \theta_{2}=\left(\lambda-\mu-\sqrt{(\lambda-\mu)^{2}+4(k-\mu)}\right) / 2 .
\end{aligned}
$$

- The matrices $A_{0}:=I, A_{1}:=A, A_{2}:=J-I-A$ are symmetric and they pairwise commute.
- $A_{i} A_{j}=\sum_{k=0}^{2} p_{i j}^{k} A_{k}$, where $p_{0 j}^{k}=\delta_{j, k}, p_{11}^{0}=k, p_{11}^{1}=\lambda, p_{11}^{2}=\mu, p_{12}^{0}=0, p_{12}^{1}=k-\lambda-1, p_{12}^{2}=$ $k-\mu, p_{22}^{0}=v-k-1, p_{22}^{1}=v-2 k+\lambda, p_{22}^{2}=v-2 k+\mu-2$.
- The matrices A_{0}, A_{1}, A_{2} are linearly independent, they generate a commutative 3 -dimensional algebra \mathcal{A} consisting of real symmetric matrices, called Bose-Mesner algebra of Γ.
- \mathcal{A} admits a basis $\left\{E_{0}, E_{1}, E_{2}\right\}$, of so called minimal idempotents, where $E_{i} E_{j}=\delta_{i, j} E_{i}$ and $E_{0}+E_{1}+E_{2}=l$.

$$
\begin{aligned}
& E_{0}=\frac{1}{v} J \\
& E_{1}=\frac{1}{\theta_{1}-\theta_{2}}\left(A-\theta_{2} I-\frac{k-\theta_{2}}{v} J\right) \\
& E_{2}=\frac{1}{\theta_{2}-\theta_{1}}\left(A-\theta_{1} I-\frac{k-\theta_{1}}{v} J\right)
\end{aligned}
$$

- P. Delsarte, An algebraic approach to the association schemes of coding theory, Philips Res. Rep. Suppl., No. 10 (1973), 97 pp.

A subset \mathcal{I} of vertices of strongly regular graph $\Gamma, 0<|\mathcal{I}|<v$, is said to be intriguing with parameters $\left(h_{1}, h_{2}\right)$ if there exist constants h_{1} and h_{2} such that every vertex of \mathcal{I} is adjacent to precisely h_{1} vertices of \mathcal{I} and every vertex of $V(\Gamma) \backslash \mathcal{I}$ is adjacent to precisely h_{2} vertices of \mathcal{I}.

- J. Bamberg, F. De Clerck, N. Durante, Intriguing sets in partial quadrangles, J. Combin. Des., 19 (2011), 217-245.
- B. De Bruyn, H. Suzuki, Intriguing sets of vertices of regular graphs, Graphs Combin., 26 (2010), 629-646.
- B. De Bruyn, Intriguing sets of points of $\mathcal{Q}(2 n, 2) \backslash \mathcal{Q}^{+}(2 n-1,2)$, Graphs Combin., 28 (2012), no. 6, 791-805.

If \mathcal{I} is intriguing with parameters $\left(h_{1}, h_{2}\right)$, then $\left(h_{1}-h_{2}-k\right) \boldsymbol{j}_{\mathcal{I}}+h_{2} \boldsymbol{j}$ is an eigenvector of the adjacency matrix A with the eigenvalue $h_{1}-h_{2}$.

Here and in the sequel \boldsymbol{j} denotes the $v \times 1$ all-ones vector, $\mathbf{0}$ the $v \times 1$ all-zeros vector and $\boldsymbol{j}_{\mathcal{I}}$ the $v \times 1$ characteristic vector of \mathcal{I}.

Hence, either $h_{1}-h_{2}$ is θ_{1} and \mathcal{I} is said to be a positive intriguing set or $h_{1}-h_{2}$ is θ_{2} and \mathcal{I} is said to be a negative intriguing set.

For an intriguing set \mathcal{I}, we have that $|\mathcal{I}|=\frac{h_{2} v}{k-\theta_{i}}$, where i equals 1 or 2 according as \mathcal{I} is positive or negative, respectively.

Note that the complement of an intriguing set is an intriguing set of the same type; the union of two disjoint intriguing sets of the same type is an intriguing set of the same type; if A and B are intriguing sets of the same type and $A \subseteq B$, then $B \backslash A$ is an intriguing set of the same type.

Moreover, if Γ^{c} denotes the complement of Γ and \mathcal{I} is a (positive or negative) intriguing set of Γ, then \mathcal{I} is a (negative or positive) intriguing set of Γ^{c}.

Proposition

A self-complementary strongly regular graph has a positive intriguing set of size x if and only if it has a negative intriguing set of size x.

An equivalent definition of an intriguing set is the following:

Definition

\mathcal{I} is a positive intriguing set of Γ if $E_{2} \boldsymbol{j}_{\mathcal{I}}=\mathbf{0}$, and \mathcal{I} is a negative intriguing set of Γ if $E_{1} \boldsymbol{j}_{\mathcal{I}}=\mathbf{0}$.

Remark:

Since both h_{1}, h_{2} are non-negative integers, the definition of an intriguing set does not make sense if Γ is a conference graph with non-integral eigenvalues.

SPBIBDs

Let \mathcal{D} be a SPBIBD with parameters $\left(v, b, k, r, \lambda_{1}, \lambda_{2}\right)$ of type $\left(\alpha_{1}, \alpha_{2}\right)$.
Let $\Gamma_{\mathcal{D}}$ be the graph having as vertices the points of \mathcal{D}, where two distinct vertices are adjacent whenever the corresponding points of \mathcal{D} are λ_{1}-associated.

- W. G. Bridges, M. S. Shrikhande, Special partially balanced incomplete block designs and associated graphs, Discrete Math., 9 (1974), 1-18.

Lemma
The graph $\Gamma_{\mathcal{D}}$ is strongly regular.

Lemma
The block graph of a quasi-symmetric SPBIBD is strongly regular.

- SPBIBDs form a particular class of partial geometric designs.

Lemma

A SPBIBD with parameters $\left(v, b, k, r, \lambda_{1}, \lambda_{2}\right)$ of type $\left(\alpha_{1}, \alpha_{2}\right)$ is a partial geometric design with parameters $\left(v, b, k, r ; \alpha_{2}\left(\lambda_{1}-\lambda_{2}\right)+k \lambda_{2}, \alpha_{1}\left(\lambda_{1}-\lambda_{2}\right)+(k-1)\left(\lambda_{2}-1\right)\right)$.

The converse situation:

- R. C. Bose, S. S. Shrikhande, N. M. Singhi, Edge regular multigraphs and partial geometric designs, Proc. Internat. Colloq. Combin. Theory, 17 (1976), 49-81.
- E. R. van Dam, E. Spence, Combinatorial designs with two singular values. II. Partial geometric designs, Linear Algebra Appl., 396 (2005), 303-316.

Proof:

Let x be a point and B a block. We count the number N of flags (y, C) such that $x \in C, y \in B$, with $y \neq x$ and $C \neq B$.

Assume first that $x \notin B$. Let $y \in B$ such that there are exactly λ_{1} blocks containing both x, y; then y can be chosen in α_{2} ways. The remaining $k-\alpha_{2}$ elements of B are λ_{2}-associated with x. Hence
$N=\lambda_{1} \alpha_{2}+\left(k-\alpha_{2}\right) \lambda_{2}=k \lambda_{2}+\alpha_{2}\left(\lambda_{1}-\lambda_{2}\right)$.
Assume that $x \in B$. Let $y \in B$ such that there are exactly $\lambda_{1}-1$ blocks distinct from B and containing both x, y; then y can be chosen in α_{1} ways. The remaining $k-\alpha_{1}-1$ elements of B are λ_{2}-associated with x. Then $N=\left(\lambda_{1}-1\right) \alpha_{1}+\left(k-\alpha_{1}-1\right)\left(\lambda_{2}-1\right)=\alpha_{1}\left(\lambda_{1}-\lambda_{2}\right)+(k-1)\left(\lambda_{2}-1\right)$.

Main construction

- D. Crnković, F. Pavese, A. Švob, Intriguing sets of strongly regular graphs and their related structures, Contrib. Discrete Math. 18 (2023), 66-89.
- SRG \rightarrow Intriguing set \rightarrow SPBIBD \rightarrow partial geometric design \rightarrow DSRG

Theorem

Let Γ be a strongly regular graph and let \mathcal{F} be a family of subsets of $V(\Gamma)$ such that

1) all elements of \mathcal{F} have that same number z of elements, $0<z<|V(\Gamma)| ;$
2) there exist constants $\lambda_{i}, 0 \leq i \leq 2$, such that $\forall x, y \in V(\Gamma)$,

$$
d(x, y)=i, \text { then } \lambda_{i}=|\{\mathcal{I} \in \mathcal{F} \mid\{x, y\} \subset \mathcal{I}\}| .
$$

Then $(V(\Gamma), \mathcal{F})$ is a SPBIBD with parameter $\left(|V(\Gamma)|,|\mathcal{F}|, z, \lambda_{0}, \lambda_{1}, \lambda_{2}\right)$ of type $\left(\theta_{i}+\frac{k-\theta_{i}}{|V(\Gamma)|} z, \frac{k-\theta_{i}}{|V(\Gamma)|} z\right)$ if and only if \mathcal{F} consists of intriguing sets of Γ with parameters $\left(\theta_{i}+\frac{k-\theta_{i}}{|V(\Gamma)|} z, \frac{k-\theta_{i}}{|V(\Gamma)|} z\right)$.

Theorem

Let Γ be a strongly regular graph admitting a rank three automorphism group G and let $\mathcal{I} \neq V(\Gamma)$ be a non-empty subset of vertices of Γ. Then $\left(V(\Gamma), \mathcal{I}^{G}\right)$ is a SPBIBD with parameters $\left(|V(\Gamma)|, b, k, r, r_{1}, r_{2}\right)$ of type $\left(\theta_{i}+h_{2}, h_{2}\right)$, with $b=|G| /\left|G_{\mathcal{I}}\right|, k=|\mathcal{I}|$, if and only if \mathcal{I} is an intriguing set of Γ with parameters $\left(\theta_{i}+h_{2}, h_{2}\right)$.

Proof:

The group G has three orbits on $V(\Gamma) \times V(\Gamma)$, namely I, R, S, where $x, y \in V(\Gamma), x \neq y$, are adjacent if and only if $(x, y) \in R$.

Let $\mathcal{I} \neq V(\Gamma)$ be a non-empty subset of vertices of Γ, hence $0<|\mathcal{I}|=k<|V(\Gamma)|$, and let $b=|G| /\left|G_{\mathcal{I}}\right|$. Then each of the incidence structures $\left(I, \mathcal{I}^{G}\right),\left(R, \mathcal{I}^{G}\right)$ and $\left(S, \mathcal{I}^{G}\right)$ is a tactical configuration.

Therefore, through a vertex of Γ there pass a constant number of elements of \mathcal{I}^{G}, say r, and through two distinct vertices x, y of Γ there pass either r_{1} or r_{2} elements of \mathcal{I}^{G}, according as x is adjacent to y or not. The result follows from Theorem.

Results

We consider a primitive rank three group G of even order and the strongly regular graph 「 obtained from one of its orbitals.

If Γ has at most 40 vertices, we completely classify its intriguing sets and compute the corresponding DSRGs.

Some partial results are obtained for Γ having 45 vertices. Most of them have a large number of vertices.

The Paley graph SRG(25, 12, 5, 6)

There are three rank three groups: $5^{2}: Q(12), 5^{2}: 12$, $3^{2}: D(8)=\operatorname{Aut}(\Gamma)$.

The eigenvalues of Γ are 2 and -3 , and Γ has one positive and one negative intriguing set of size 5 , both stabilized by a subgroup of $\operatorname{Aut}(\Gamma)$ of order 40.

There are also two positive and two negative intriguing sets of size 10 , invariant under a subgroup of $\operatorname{Aut}(\Gamma)$ of order 6 and 20, respectively.

The corresponding DSRGs have parameters
$(300,60,13,8,13),(1500,600,260,210,260),(1000,399,189,188,140)$,
$(450,180,78,63,78),(300,119,56,55,42)$.

SRG(36, 14, 4, 6)

In this case $G=\operatorname{P\Gamma U}(3,9)=\operatorname{Aut}(\Gamma)$ and $\theta_{1}=2, \theta_{2}=-4$.
Concerning positive intriguing sets, there is one example of size 6 left invariant a group of order 96 , four types of size 12 fixed by a group of order $6,16,24$ and 192, respectively, and eight examples of size 18, four of which are fixed by a group of order 6 , two by a group of order 12 and the remaining two by a group of order 24 and 216, respectively.

The corresponding DSRGs have parameters
(3780, 630, 110, 80, 110), ($756,125,45,44,16$), (48384, 16128, 5632, 4864, 5632),
(24192, 8063, 3199, 3198, 2432), (18144, 6048, 2112, 1824, 2112),
(36288, 18144, 9504, 8640, 9504), (36288, 18143, 9503, 9502, 8640),
(18144, 9072, 4752, 4320, 4752), (18144, 9071, 4751, 4750, 4320),
(12096, 4032, 1408, 1216, 1408), (9072, 3023, 1199, 1198, 912), (6048, 2015, 799, 798, 608),
(1512, 504, 176, 152, 176), (9072, 4536, 2376, 2160, 2376), (756, 251, 99, 98, 76),
(9072, 4535, 2375, 2374, 2160), (1008, 504, 264, 240, 264), (1008, 503, 263, 262, 240).

As for negative intriguing sets there is one example of size 12 , admitting an automorphism group of order 192 and one example of size 18 fixed by a group of order 108.

The related DSRGs have parameters
$(1512,504,180,144,180),(756,251,107,106,72)$,
$(2016,1008,540,468,540),(2016,1007,539,538,468)$.

- A. E. Brouwer, D. Crnković, A. Švob, A construction of directed strongly regular graphs with parameters ($63,11,8,1,2$), Discrete Math. 347 (2024), 114146, 3 pages.

Theorem [D. Crnković, V. Mikulić Crnković, AŠ, 2014]
Let G be a finite permutation group acting transitively on the sets Ω_{1} and Ω_{2} of size m and n, respectively. Let $\alpha \in \Omega_{1}$ and $\Delta_{2}=\bigcup_{i=1}^{s} \delta_{i} G_{\alpha}$, where $G_{\alpha}=\{g \in G \mid \alpha g=\alpha\}$ is the stabilizer of α and $\delta_{1}, \ldots, \delta_{s} \in \Omega_{2}$ are representatives of distinct G_{α}-orbits on Ω_{2}. If $\Delta_{2} \neq \Omega_{2}$ and

$$
\mathcal{B}=\left\{\Delta_{2} g: g \in G\right\},
$$

then $\mathcal{D}\left(G, \alpha, \delta_{1}, \ldots, \delta_{s}\right)=\left(\Omega_{2}, \mathcal{B}\right)$ is a $1-\left(n,\left|\Delta_{2}\right|, \frac{\left|G_{\alpha}\right|}{\left|G_{\Delta_{2}}\right|} \sum_{i=1}^{s}\left|\alpha G_{\delta_{i}}\right|\right)$ design with $\frac{m \cdot\left|G_{\alpha}\right|}{\left|G_{\Delta_{2}}\right|}$ blocks. The group $H \cong G / \bigcap_{x \in \Omega_{2}} G_{x}$ acts as an automorphism group on $\left(\Omega_{2}, \mathcal{B}\right)$, transitively on points and blocks of the design.
If $\Delta_{2}=\Omega_{2}$ then the set \mathcal{B} consists of one block, and $\mathcal{D}\left(G, \alpha, \delta_{1}, \ldots, \delta_{s}\right)$ is a design with parameters $1-(n, n, 1)$.

The construction described in Theorem gives us all simple designs on which the group G acts transitively on the points and blocks, i.e. if G acts transitively on the points and blocks of a simple 1-design \mathcal{D}, then \mathcal{D} can be obtained as described in Theorem.

Note that the construction from Theorem gives us 1-designs, and the incidence matrices of some of these 1-designs may be the adjacency matrices of directed strongly regular graphs.

Since the construction given in Theorem gives all designs having G as an automorphism group acting transitively on points and blocks, it gives us also all directed strongly regular graphs admitting a transitive action of the set of vertices.

Clearly, the adjacency matrix of a directed strongly regular graph with parameters (n, k, t, λ, μ) is the incidence matrix of a 1-(n, k, k) design. In that way, the neighbourhoods of a directed strongly regular graph correspond to the blocks of a design, where the neighbourhood of a vertex x is the set of all vertices y such that there is an arc $x \rightarrow y$.

The linear group $\operatorname{PSL}(2,8)$ is the simple group of order 504 and up to conjugation it has exactly one subgroup of order 8 , which is isomorphic to the elementary abelian group E_{8}.

By taking $G=P S L(2,8)$ and $G_{\alpha}=E_{8}$, we constructed two non-isomorphic directed strongly regular graphs with parameters ($63,11,8,1,2$), both having $\operatorname{PSL}(2,8): Z_{3}$ as the full automorphism group.

Theorem [A. E. Brouwer, D. Crnković, AŠ, 2024]
Up to isomorphism, there are exactly two directed strongly regular graphs with parameters $(63,11,8,1,2)$ on which the linear group $\operatorname{PSL}(2,8)$ acts transitively. These directed strongly regular graphs have $\operatorname{PSL}(2,8): Z_{3}$ as the full automorphism group.

Muchas gracias por su atención!

