Optimizing Alphabet Reduction Pairs of Arrays CODESCO'24

Jean-François Culus¹ Sophie Toulouse²

¹MEMIAD, Université des Antilles and CReC Saint-Cyr, France

²LIPN – Institut Galilée, Université Paris 13, France

Sevilla, July 11, 2024

Object: a pair (Q, P) of arrays with q columns on symbol set $\Sigma_q := \{0, \ldots, q-1\}$ Constraints:

Image: Image:

Object: a pair (Q, P) of arrays with q columns on symbol set $\Sigma_q := \{0, \ldots, q-1\}$

Constraints:

• (Γ_Q) $(0, 1, \dots, q-1)$ occurs at least once in Q

Image: Image:

Object: a pair (Q, P) of arrays with q columns on symbol set $\Sigma_q := \{0, \dots, q-1\}$

Constraints:

- (Γ_Q) $(0, 1, \dots, q-1)$ occurs at least once in Q
- (Γ_P) each row of P involves at most p < q symbols of Σ_q

Object: a pair (Q, P) of arrays with q columns on symbol set $\Sigma_q := \{0, \ldots, q-1\}$

Constraints:

- (Γ_Q) $(0, 1, \ldots, q-1)$ occurs at least once in Q
- (Γ_P) each row of P involves at most p < q symbols of Σ_q
- $(k_{=}) Q$ and P are "k-wise equivalent" := for all $J = (j_1, \ldots, j_k) \in \Sigma_q^k$, subarrays Q^J and P^J are the same collection of rows

(NB by $(k_{=})$, the number of rows in P is the same as in Q.)

Parameters:

- q the alphabet size
- p a positive number $\leq q$
- $k \in \{1, \dots, p\}$ the strength

Q^0	Q^1	Q^2	Q^3	Q^4	P^0	P^1	P^2	P^3	P^4
0	0	1	3	4	0	0	1	0	3
0	0	2	0	4	0	0	2	3	4
0	0	2	3	3	0	0	2	3	4
0	1	1	0	4	0	1	1	3	4
0	1	1	3	3	0	1	1	3	4
0	1	2	0	3	0	1	2	0	4
0	1	2	3	4	0	1	2	0	4
0	1	2	3	4	0	1	2	3	3
0	1	2	3	4	0	1	2	3	3
4	0	1	0	3	4	0	1	0	4
4	0	1	0	3	4	0	1	3	3
4	0	2	3	4	4	0	2	0	3
4	1	1	3	4	4	1	1	0	3
4	1	2	0	4	4	1	2	3	4
4	1	2	3	3	4	1	2	3	4

 $(Q, P) \in \Gamma(5, 4, 3)$?

 (Γ_Q) : (0, 1, 2, 3, 4) occurs 3 > 1 times in Q

$$(\Gamma_P)$$
: P_1 uses the 3 < 4 symbols 0, 1, 3, P_2 uses the 4 \leq 4 symbols 0, 2, 3, 4, ...

э

Q^0	Q^1	Q^2	Q^3	Q^4	P^0	P^1	P^2	Р ³	P ⁴
0	0	1	3	4	0	0	1	0	3
0	0	2	0	4	0	0	2	3	4
0	0	2	3	3	0	0	2	3	4
0	1	1	0	4	0	1	1	3	4
0	1	1	3	3	0	1	1	3	4
0	1	2	0	3	0	1	2	0	4
0	1	2	3	4	0	1	2	0	4
0	1	2	3	4	0	1	2	3	3
0	1	2	3	4	0	1	2	3	3
4	0	1	0	3	4	0	1	0	4
4	0	1	0	3	4	0	1	3	3
4	0	2	3	4	4	0	2	0	3
4	1	1	3	4	4	1	1	0	3
4	1	2	0	4	4	1	2	3	4
4	1	2	3	3	4	1	2	3	4

 $(Q, P) \in \Gamma(5, 4, 3)$?

 (Γ_Q) : (0, 1, 2, 3, 4) occurs 3 > 1 times in Q

$$(\Gamma_P)$$
: P_1 uses the 3 < 4 symbols 0, 1, 3,
 P_2 uses the 4 \leq 4 symbols 0, 2, 3, 4, ...

(k₌): for $J = \{2, 3, 4\}$ and w = (1, 3, 4), w occurs as many times in P^J as in Q^J ;

Q^0	Q^1	Q^2	Q^3	Q^4	P^0	P^1	P^2	P ³	P ⁴
0	0	1	3	4	0	0	1	0	3
0	0	2	0	4	0	0	2	3	4
0	0	2	3	3	0	0	2	3	4
0	1	1	0	4	0	1	1	3	4
0	1	1	3	3	0	1	1	3	4
0	1	2	0	3	0	1	2	0	4
0	1	2	3	4	0	1	2	0	4
0	1	2	3	4	0	1	2	3	3
0	1	2	3	4	0	1	2	3	3
4	0	1	0	3	4	0	1	0	4 3
4	0	1	0	3	4	0	1	3	3
4	0	2	3	4	4	0	2	0	3
4	1	1	3	4	4	1	1	0	3
4	1	2	0	4	4	1	2	3	4
4	1	2	3	3	4	1	2	3	4

 $(Q, P) \in \Gamma(5, 4, 3)$?

 (Γ_Q) : (0, 1, 2, 3, 4) occurs 3 > 1 times in Q

$$(\Gamma_P)$$
: P_1 uses the 3 < 4 symbols 0, 1, 3, P_2 uses the 4 \leq 4 symbols 0, 2, 3, 4, ...

$$(k_{=})$$
:
for $J = \{2, 3, 4\}$ and $w = (1, 3, 4)$,
w occurs as many times in P^{J} as in Q^{J} ;
for $J = \{2, 3, 4\}$ and $w = (2, 0, 4)$,
w occurs as many times in P^{J} as in Q^{J} ;

3

Connection to CSPs with bounded constraint arity [CT18]

Motivation: reducing an instance I of a k CSP over Σ_q to k CSPs over Σ_p

- we use Q to model solutions of the initial instance I of a k CSP over Σ_q in particular: (0, 1, ..., q - 1) models an optimum solution of I
- we use P to model solutions of k CSPs over Σ_p

We define:

- $R^*(Q, P)$: the number of times $(0, 1, \ldots, q-1)$ occurs in Q
- R(Q, P): the number of rows in P (or, by $(k_{=})$, in Q)
- $\Gamma(q, p, k)$: the set of the ARPAs with parameters (q, p, k)
- $\gamma(q, p, k)$: the greatest ratio $R^*(Q, P)/R(Q, P)$ over $\Gamma(q, p, k)$

Back to CSPs:

- $\gamma(q, p, k)$ is a lower bound for the best approximation ratio reached on *I* by a solution whose coordinates take at most *p* distinct values
- it also is a lower bound for the expansion of the reduction

イロト イポト イヨト イヨト

Q^0	Q^1	Q^2	Q^3	Q^4	P^0	P^1	P^2	P^3	P^4
0	0	1	3	4	0	0	1	0	3
0	0	2	0	4	0	0	2	3	4
0	0	2	3	3	0	0	2	3	4
0	1	1	0	4	0	1	1	3	4
0	1	1	3	3	0	1	1	3	4
0	1	2	0	3	0	1	2	0	4
0	1	2	3	4	0	1	2	0	4
0	1	2	3	4	0	1	2	3	3
0	1	2	3	4	0	1	2	3	3
4	0	1	0	3	4	0	1	0	4
4	0	1	0	3	4	0	1	3	3
4	0	2	3	4	4	0	2	0	3
4	1	1	3	4	4	1	1	0	3
4	1	2	0	4	4	1	2	3	4
4	1	2	3	3	4	1	2	3	4

 $(Q, P) \in \Gamma(5, 4, 3)$

$$egin{array}{rl} R^*(Q,P) &= 3 \ R(Q,P) &= 15 \ R^*(Q,P)/R(Q,P) &= 3/15 \ \Rightarrow \gamma(5,4,3) &\geq 1/5 \end{array}$$

3

Q^0	Q^1	Q^2	Q ³	Q^4	F	0	P^1	P^2	P ³	P^4		
0	0	1	3	4	()	0	1	0	3		
0	0	2	0	4	()	0	2	3	4		
0	0	2	3	3	()	0	2	3	4		
0	1	1	0	4	()	1	1	3	4		
0	1	1	3	3	()	1	1	3	4	(Q, P)	$\in \Gamma(5,4,3)$
0	1	2	0	3	()	1	2	0	4		
0	1	2	3	4	()	1	2	0	4	$R^*(Q, P)$	= 3
0	1	2	3	4	()	1	2	3	3	R(Q, P)	= 15
0	1	2	3	4	()	1	2	3	3	$R^*(Q, P)/R(Q, P)$	= 3/15
4	0	1	0	3	4	1	0	1	0	4	$\Rightarrow \gamma(5,4,3)$	$\geq 1/5$
4	0	1	0	3	4	1	0	1	3	3		
4	0	2	3	4	4	1	0	2	0	3		
4	1	1	3	4	4	1	1	1	0	3		
4	1	2	0	4	4	1	1	2	3	4		
4	1	2	3	3	4	1	1	2	3	4		

 \rightarrow for 3 CSPs over $\Sigma_5,$ the best solutions among those whose coordinates take at most 4 distinct values are 1/5-approximate

э

Facts that are already known about ARPAs

Property 1

$$\gamma(q,q,k) = 1, \qquad q \ge k \ge 1 \qquad (1)$$

 $\gamma(q+1,p+1,k) \ge \gamma(q,p,k), \qquad q \ge p \ge k > 0 \qquad (2)$

Proof of (2).

Let $(Q, P) \in \Gamma(q, p, k)$. Consider e.g.:

(for the latter taking the addition modulo (q + 1))

J.-F. Culus and S. Toulouse

< □ > < 同 > < 回 > < 回 > < 回 >

6/31

Already known facts

We define:

$$T(q,k) := \sum_{i=0}^{k} {q \choose i} {q-1-i \choose k-i}, \qquad q > k \ge 0$$
(3)

Proposition 2 ([CT18])

For all integers k > 0 and q > k, there exists $(Q, P) \in \Gamma(q, k, k)$ such that $R^*(Q, P) = 1$ and R(Q, P) = (T(q, k) + 1)/2.

Proof (sketch).

Recursive construction starting with $P = Q = (0, 1, \dots, k - 1)$.

Consequence (combining Proposition 2 and (2)):

$$\gamma(q, p, k) \ge 2/(T(q - p + k, k) + 1), \qquad q > p \ge k \ge 1$$
 (4)

7/31

Illustration when (k, q) = (3, 5)

Q 0	Q^{1}	Q^2	Q 3	Q 4		Р 0	P^{1}	P 2	P ³	P 4
0	1	2 3	3	4	1	0	1	2 3	0	0
0	1		0	0		0	1		3	0
0	3	2	0	0		0	3	2	3	0
3	1	2 3	0	3		3	1	2	3	3
0	3		3	0		0	3	3	0	0
3	1	3	3	3 3		3	1	3	0	3 3 3
3	3	2	3	3		3	3	2	0	3
3	3	3	0	3		3	3	3	3	3
0	1	4	4	0		0	1	4	4	4
0	4	2	4	0		0	4	2	4	4
0	4	4	3	0		0	4	4	3	4
4	1	2	4	0		4	1	2	4	4
4	1	4	3	0		4	1	4	3	4
4	4	2	3	0		4	4	2	3	4
0	4	4	4	4		0	4	4	4	0
0	4	4	4	4		0	4	4	4	0
4	1	4	4	4		4	1	4	4	0
4	1	4	4	4		4	1	4	4	0
4	4	2	4	4		4	4	2	4	0
4	4	2	4	4		4	4	2	4	0
4	4	4	3	4		4	4	4	3	0
4	4	4	3	4		4	4	4	3	0
4	4	4	4	0		4	4	4	4	4
4	4	4	4	0		4	4	4	4	4
4	4	4	4	0	ļ	4	4	4	4	4

J.-F. Culus and S. Toulouse

Questions addressed

- **1** Is the bound of 2/(T(q,k)+1) for $\gamma(q,k,k)$ tight, q > k > 0?
- **2** Can we find better bounds for $\gamma(q, p, k)$, q > p > k > 0?

э

Can we simplify the problem?

Intuition behind $\gamma(q, p, k)$:

- We want to "cover" as many as possible occurrences of the word of q symbols (0,1,...,q-1) by as few as possible words of at most p symbols
- The most critical aspect of a coefficient in Q and P is whether it matches its column index or not

Can we simplify the problem?

$ \begin{array}{c} Q^{0} \\ 0 \\ $	Q^1	Q^2	Q ³ ? 3 ? 3 ? 3 ? 3	Q^4	P ⁰ 0 0 0	P^1	P^2		P^4
0	?	?	3	4	0	?	?	? 3	?
0	? ?	2	?	4	0	?		3	4
0	?	2	3	?	0	?	2 2	3	4
0	1	?	?	4	0	1	?	3	4
0	1	?	3	?	0	1	?	3	4
0	1	2	?	4 ? 4 ? 4 4 ? ? 4 4 4 ?	0 0 0	1	? ? 2	?	4
0	1	2	3	4	0	1		?	4
0	1	2		4	0	1	2 2 ? ? 2 ?	3	?
0	1	2	3	4	0	1	2	3	?
?	?	?	?	?	?	?	?	?	4
?	?	?	?	?	?	?	?	3	?
?	?	2	3	4	?	?	2	?	?
?	1	?	3	4	?	1	?	?	?
0 ? ? ? ? ? ?	1 ? ? 1 1	Q ² ? 2 ? ? 2 ? ? 2 2 ? ? ? 2 ? ? ? ? ? ?	3 ? ? 3 3 ? 3	4 ?	0 ? ? ? ? ? ?	? ? 1 1	2 2	3 3 ? ? 3 ? ? 3 ? ? 3 ? ? 3 ? ? 3 ? ? ? 3 ? ? ? 3 ?	P ⁴ ? 4 4 4 4 4 4 7 ? 4 ? ? 4 4
?	1	2	3	?	?	1	2	3	4

(Q, P) is a partially defined solution:

- the coefficients that coincide with their column index are fixed,
- the other coefficients (with value '?') still must be defined,
- Q and P are k-wise equivalent

Question: can we replace each symbol '?' by a value distinct from its column index in such a way that (Q, P) stills satisfies $(k_{=})$, but also (Γ_P) ?

Cover pairs of arrays: definition

⇒ new (Boolean) object: *cover pairs of arrays*

Object: a pair (N, D) of arrays with *n* columns on symbol set $\{0, 1\}$

Constraints:

- (Δ_N) the row of all-ones occurs at least once in N
- (Δ_D) each row of D has at most d < n non-zero coefficients
- $(k_{=})$ N and D are "k-wise equivalent" := for all $J = (j_1, \ldots, j_k) \in [n]^k$, subarrays D^J and N^J are the same collection of rows

Parameters:

- n the dimension
- d a positive number $\leq n$
- $k \in \{1, \ldots, d\}$ the strength

N1	N^2	N ³	N ⁴	N ⁵	D^1	D^2	D ³	D^4	D^5
1	0	0	1	1	1	0	0	0	0
1	0	1	0	1	1	0	1	1	1
1	0	1	1	0	1	0	1	1	1
1	1	0	0	1	1	1	0	1	1
1	1	0	1	0	1	1	0	1	1
1	1	1	0	0	1	1	1	0	1
1	1	1	1	1	1	1	1	0	1
1	1	1	1	1	1	1	1	1	0
1	1	1	1	1	1	1	1	1	0
0	0	0	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0	1	0
0	0	1	1	1	0	0	1	0	0
0	1	0	1	1	0	1	0	0	0
0	1	1	0	1	0	1	1	1	1
0	1	1	1	0	0	1	1	1	1

 $(1, 1, \ldots, 1)$ occurs 3 > 1 times in N

э

Optimal CPAs

Notations:

- $R^*(N, D)$: the number of times (1, 1, ..., 1) occurs in N
- R(N, D): the number of rows in D and N
- $\Delta(n, d, k)$: the set of the CPAs with paramaters (n, d, k)

Quantity of interest: $\delta(n, d, k)$: the greatest ratio $R^*(N, D)/R(N, D)$ over $\Delta(n, d, k)$ \rightarrow we call optimal the CPAs that achieve $\delta(n, d, k)$

Connection to optimal ARPAs:

- since CPAs model partially defined ARPAs, we have: $\delta(n, d, k) \geq \gamma(n, d, k)$
- $\blacksquare \rightarrow$ question: what about the reverse inequality?

Weight of a boolean word: the number of its non-zero coordinates

Definition 3 (Regular CPAs)

CPAs in which the words of a given weight all occur the same number of times, in the same array.

Regular CPAs

Illustration when (n, d, k) = (5, 4, 3)

N1	N ²	N ³	N ⁴	N ⁵		D^1	D^2	D ³	D^4	D^5
1	0	0	1	1	-	1	0	0	0	0
1	0	1	0	1		1	0	1	1	1
1	0	1	1	0		1	0	1	1	1
1	1	0	0	1		1	1	0	1	1
1	1	0	1	0		1	1	0	1	1
1	1	1	0	0		1	1	1	0	1
1	1	1	1	1		1	1	1	0	1
1	1	1	1	1		1	1	1	1	0
1	1	1	1	1		1	1	1	1	0
0	0	0	0	0		0	0	0	0	1
0	0	0	0	0		0	0	0	1	0
0	0	1	1	1		0	0	1	0	0
0	1	0	1	1		0	1	0	0	0
0	1	1	0	1		0	1	1	1	1
0	1	1	1	0		0	1	1	1	1

the words of weight 3 occur once in Nthe word of weight 5 occurs 3 times in Nthe word of weight 0 occurs twice in N

the words of weight 1 occur once in D the words of weight 4 occur twice in D

Property

Property 4

Among the CPAs (N, D) that realize $\delta(n, d, k)$, there exist a regular one

Proof (sketch).

Permute the coefficients of each row of N an D by each permutation on $\{1, \ldots, n\}$.

Image: Image:

Deriving ARPAs from regular CPAs

Data: $(N, D) \in \Delta(n, d, k)$, r := the greatest weight < n of a word in $N \cup D$

Theorem 5 ([CT24])

We can derive from (N, D) an ARPA $(Q, P) \in \Gamma(n, d', k)$ with the same ratio R^*/R as (N, D), where $d' \leq d + 2$. In particular, d' = d provided that r = d and the words occurring in D have weight $\neq d - 1$.

Proof (sketch for the zero coefficients).

- 1 translate (N, D) into a partially defined ARPA (Q, P)
- 2 for each row u of weight r that occurs in N or D, map its zero coefficients to the column index of its leftmost coefficient initially equal to 1
- 3 "propagate" these assignments to words of smaller weight

Consequence: $\gamma(q, p, k) \geq \delta(q, d+2, k)$

< □ > < 同 > < 回 > < 回 > < 回 >

Illustration when (n, d, k) = (5, 4, 3) and r = d = d'

				-				- `				
			(N,	D)	€.	$\Delta(5$, 4,	3)				
N1	N^2	N ³	N^4	N^5		D^1	D^2	D^3	D^4	D^5	Q^0	Q^1 (
1	1	1	1	1		1	1	1	1	0	0	1
1	1	1	1	1		1	1	1	1	0	0	1
1	1	1	1	1		1	1	1	0	1	0	1
1	1	1	0	0		1	1	1	0	1	0	1
1	1	0	1	0		1	1	0	1	1	0	1
1	1	0	0	1		1	1	0	1	1	0	1
1	0	1	1	0		1	0	1	1	1	0	0
1	0	1	0	1		1	0	1	1	1	0	0
1	0	0	1	1		0	1	1	1	1	0	0
0	1	1	1	0		0	1	1	1	1	1	1
0	1	1	0	1		1	0	0	0	0	1	1
0	1	0	1	1		0	1	0	0	0	1	1
0	0	1	1	1		0	0	1	0	0	1	0
0	0	0	0	0		0	0	0	1	0	1	0
0	0	0	0	0		0	0	0	0	1	1	0

 $(Q, P) \in \Gamma(5, 4, 3)$

Q^0	Q^1	Q^2	Q^3	Q^4	P^0	P^1	P^2	P^3	P^4
0	1	2	3	4	0	1	2	3	0
0	1	2	3	4	0	1	2	3	0
0	1	2	3	4	0	1	2	0	4
0	1	2	0	0	0	1	2	0	4
0	1	0	3	0	0	1	0	3	4
0	1	0	0	4	0	1	0	3	4
0	0	2	3	0	0	0	2	3	4
0	0	2	0	4	0	0	2	3	4
0	0	0	3	4	1	1	2	3	4
1	1	2	3	0	1	1	2	3	4
1	1	2	0	4	0	0	0	0	0
1	1	0	3	4	1	1	0	0	0
1	0	2	3	4	1	0	2	0	0
1	0	0	0	0	1	0	0	3	0
1	0	0	0	0	1	0	0	0	4

19/31

э

Modelling regular CPAs

Variables:

- For $i \in \{0, ..., n\}$, y_i : the number of times the words of weight i occur in N
- For $i \in \{0, \ldots, d\}$, x_i : the number of times the words of weight *i* occur in *D*

 \Rightarrow y_n represents $R^*(N, D)$, while $\sum_{i=0}^d {n \choose i} x_i$ and $\sum_{i=0}^n {n \choose i} y_i$ both represent R(N, D)

Constraints:

- For (Δ_N) : $y_n \ge 1$
- For (k=): for J ⊆ {1,..., n} with |J| = k and w ∈ {0,1}^k, the numbers of rows u of N and D satisfying u_J = w only depends on the number of the non-zero coordinates of w
 → we consider for (k=) the constraints:

$$\sum_{i=h}^{d} {\binom{n-k}{i-h}} x_i = \sum_{i=h}^{n-k+h} {\binom{n-k}{i-h}} y_i, \qquad h \in \{0, \dots, k\}$$
(5)

(Where $\binom{n-k}{i-h}$ counts the number of words $u \in \{0,1\}^n$ of weight *i* verifying $u_J = w$.)

イロト 不得下 イヨト イヨト 二日

Linear program

We denote by $LP_{n,d,k}$ the linear program in continuous variables below:

$$\begin{cases} 2/\delta(n,d,k) - 1 = \min \sum_{i=0}^{n-1} {n \choose i} y_i + \sum_{i=0}^{d} {n \choose i} x_i \\ s.t. \sum_{i=k}^{d} {n-k \choose i-k} x_i - \sum_{i=k}^{n-1} {n-k \choose i-k} y_i = 1 \\ \sum_{i=h}^{d} {n-k \choose i-h} x_i - \sum_{i=h}^{n-k+h} {n-k \choose i-h} y_i = 0, \quad h \in \{0, \dots, k-1\} \\ y_0, \dots, y_{n-1}, x_0, \dots, x_d \ge 0 \end{cases}$$

NB:

- It only requires $\Theta(n)$ variables and $\Theta(k)$ constraints to model the restriction of $\Delta(n, d, k)$ to regular designs
- (while it requires $\Theta(n^n)$ variables and $\Theta(\binom{n}{k} \times n^k)$ constraints to model $\Gamma(n, d, k)$, and still $\Theta(2^n)$ variables and $\Theta(\binom{n}{k} \times 2^k)$ constraints to model $\Delta(n, d, k)$)

Optimal regular CPAs

Theorem 6 ([CT24])

For each choice of k + 2 word weights

$$i_{k+1} = n > i_k = d > i_{k-1} > \ldots > i_1 > i_0 = 0$$

that occur alternately in N and D, there exists a regular CPA $(N, D) \in \Delta(n, d, k)$ with ratio $R^*(N, D)/R(N, D)$ equal to:

$$2/\left(1+\sum_{r=0}^{k}\prod_{s\in\{0,...,k\}\setminus\{r\}}\frac{n-i_{s}}{|i_{r}-i_{s}|}\right)$$
(6)

The best such CPA realizes $\delta(n, d, k)$.

Proof (sketch).

- we characterize the feasible bases of LP_{n,d,k}
- we give necessary conditions for a feasible base of LP_{n,d,k} to be optimal

Optimal regular CPAs

Corollary 7

$\gamma(q, p, k) = \delta(q, p, k),$	$q \geq p \geq k > 0$	(7)
$\gamma(q,k,k) = 2/\left(T(q,k)+1 ight),$	$q>k\geq 1$	(8)
$\gamma(q, p, 1) = p/q,$	$q\geq p\geq 1$	(9)
$\gamma(q, p, 2) = \lceil p/2 \rceil \lfloor p/2 \rfloor / ((q - \lceil p/2 \rceil) (q - \lfloor p/2 \rfloor)),$	$q \ge p \ge 2$	(10)

Proof (sketch).

- we deduce from Theorem 6 the analytic expression of $\delta(n, d, k)$ in case when $k \in \{1, 2, p\}$
- by Theorem 5, we can derive from optimal CPAs of Theorem 6 ARPAs with the same set of parameters and the same ratio of R^*/R

- ∢ ∃ >

э

23 / 31

Image: A matrix

Summary of the facts exposed

As regards $\gamma(q, p, k)$:

- computing optimal ARPAs reduces to compute optimal CPAs
- we are aware of optimal ARPAs (and CPAs) in case when $p \in \{q, k\}$ or $k \in \{1, 2\}$
- for the other cases, we somehow know how to derive the expression of optimal solutions
- we know, however, how to construct (suboptimal) ARPAs (and CPAs) for all set (q, p, k) of parameters (many ways)

Direction for further researchs:

- providing the analytic expression of $\gamma(q, p, k)$ (and $\delta(q, p, k)$) for other cases (i.e., when q > p > k > 2)
- studying the case where repeated rows are not allowed
- ddesigning (optimal) solutions using only a few rows

Notice that CPAs (and thus, ARPAs) have another connection to CSPs: $\delta(n, d, k)$ is a lower bound on approximation guarantee reached on Hamming balls of radius k.

< □ > < 同 > < 回 > < 回 > < 回 >

Illustration: two ARPAs achieving $\gamma(5,3,2)$

		$Q^0 \; Q^1 \; Q^2 \; Q^3 \; Q^4$	P ⁰ P ¹ P ² P ³ P ⁴
		0 1 2 3 4	0 1 2 0 0
		0 1 2 3 4	0 1 0 3 0
		0 1 2 3 4	0 1 0 0 4
		0 0 0 0 0	0 0 2 3 0
		0 0 0 0 0	0 0 2 0 4
$Q^0 \; Q^1 \; Q^2 \; Q^3 \; Q^4$	P ⁰ P ¹ P ² P ³ P ⁴	0 0 0 0 0	0 0 0 3 4
$\frac{4}{0}$ $\frac{4}{1}$ $\frac{4}{2}$ $\frac{4}{3}$ $\frac{4}{4}$	$\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{4}$	1 <mark>1</mark> 0 0 0	1 1 2 3 1
1 2 2 1 4	1 1 2 1 4	1 1 0 0 0	1 1 2 1 4
3 3 2 2 4	0 2 2 2 4	1 <mark>1</mark> 1 1 1	1 1 1 3 4
3 3 3 3 3	0 1 3 3 3	1 0 2 0 0	2 2 2 3 4
1 1 3 1 3	1 2 3 1 3	1 0 2 0 0	1 0 0 0 0
0 2 3 2 3	3 3 3 2 3	2 2 2 1 1	1 0 0 0 0
0 2 0 2 0		1 0 0 3 0	1 0 0 0 0
		1 0 0 3 0	1 0 0 0 0
		2 2 1 3 1	1 0 0 0 0
		1 0 0 0 4	1 0 0 0 0
		1 0 0 0 4	$2 \ 2 \ 1 \ 1 \ 1$
		2 2 1 1 4	2 2 1 1 1

-

э

Illustration: alternate constructions

Proposition 8

For all integers $q \ge 3$, there exists $(Q, P) \in \Gamma(q, q - \lfloor q/3 \rfloor, 2)$ such that $R^*(Q, P) = 1$ and R(Q, P) = 4.

Proof.

- Partition Σ_q into any three subsets A, B, C of cardinality in $\{\lfloor q/3 \rfloor, \lceil q/3 \rceil\}$.
- Pick any two symbols $x \in A$ and $y \in B \cup C$.
- Consider then the pair (Q, P) below

Q^A	Q^B	Q^C	P^A	P^B	P^{C}
A	В	С	A	В	<i>xx</i>
Α	<i>xx</i>	<i>xx</i>	Α	<i>xx</i>	С
<i>y y</i>	В	<i>xx</i>	<i>y y</i>	В	С
y y	<i>x x</i>	С	y y	<i>xx</i>	<i>xx</i>

(NB by (10), the construction is optimal if q is a multiple of 3.)

ARPAs maximizing R^*/R or minimizing R

We define R(q, p, k) := the smallest number of rows over $\Gamma(q, p, k)$.

For $\gamma(q, p, k)$, we indicate the ratio $R^*(Q, P)/R(Q, P)$ on ARPAs (Q, P) that minimize R(Q, P) among those which realize $\gamma(q, p, k)$.

	q :	q: 3		4		5		6		7	
k	р	γ	R	γ	R	γ	R	γ	R	γ	R
	2	1/4*	4 *	1/9*	<mark>9</mark> *	1/16*	16 *	1/25*	25*	1/36*	36*
	3	-	_	2/6*	4*	1/6*	6*	1/10	10	1/15	15
2	4	-	_	_	-	8/18*	4*	$1/4^{*}$	4*		
	5	-	-	_	-	-	-	7/14	4*	3/10	4*
	6	-	-	-	-	—	-	_	_	9/16	
	3	-	_	1/8*	<mark>8</mark> *	1/25*	25*	1/56*	56 *	1/105*	105*
3	4	-	_	_	-	3/15	8	4/54			
	5	-	-	-	-	—	-	6/24			

* mark: cases for which we know how to construct a design that realizes the corresponding value (the other values have been calculated by computer).

blue color: cases where a regular design achieves the corresponding number

Relaxed ARPAs

In brief: almost the same thing as ARPAs, but any two words $(w_0, w_1, \ldots, w_{n-1})$ and $(w_0+a, w_1+a, \ldots, w_{n-1}+a)$ are considered equivalent (\sim_q)

Notations:

- $R^*(Q, P)$: the number of rows u of Q satisfying $u \sim_q (0, 1, \dots, q-1)$
- R(Q, P): the number of rows in P (or, by (k_{\sim}) , in Q)
- $\Gamma_E(q, p, k)$: the set of the relaxed ARPAs with parameters (q, p, k)
- $\gamma_E(q, p, k)$: the greatest ratio $R^*(Q, P)/R(Q, P)$ over $\Gamma_E(q, p, k)$ (NB of course, we have $\gamma_E(q, p, k) \ge \gamma(q, p, k)$)

Motivation [CT18]:

- $k \operatorname{CSP}(\mathcal{E}_q)$: $k \operatorname{CSPs}$ over Σ_q in which the constraints are stable under the shift by a same quantity of all their entries
- \Rightarrow the same as for ARPAs, but reducing k CSP(\mathcal{E}_q) to k CSPs over Σ_p

Similarly to the case of ARPAs, we can seek and find bounds and constructions for $\gamma_E(q, p, k)$ and $\Gamma_E(q, p, k)$

3

Q^0	Q^1	Q^2	Q^3	Q^4	P^0	P^1	P^2	P^3	P^4
0	0	1	3	4	0	0	1	2	3
0	0	2	2	4	0	0	2	3	4
0	0	2	3	3	0	0	2	3	4
0	1	1	2	3	0	1	1	3	4
0	1	2	3	4	0	1	2	2	4
0	1	2	3	4	0	1	2	3	0
1	2	3	4	0	0	1	2	3	3
2	3	4	0	1	0	1	2	4	4
0	1	3	4	0	0	1	3	3	4
0	2	2	3	0	0	2	2	3	4
0	2	2	4	4	0	2	2	3	4
0	2	3	3	4	0	2	3	4	0

$$R^{*}(Q, P) = 4$$

$$R(Q, P) = 12$$

$$R^{*}(Q, P)/R(Q, P) = 4/12$$

$$(k_{\sim})?$$

J.-F. Culus and S. Toulouse

э

~0	a 1	~2	~3	~1	-0	-1	-2	-3	D 4
Q^0	Q^1	Q^2		Q^4	P^{0}	P^1	P ²	<u> </u>	·
0	0	1	3	4	0	0	1	2	3
0	0	2	2	4	0	0	2	3	4
0	0	2	3	3	0	0	2	3	4
0	1	1	2	3	0	1	1	3	4
0	1	2	3	4	0	1	2	2	4
0	1	2	3	4	0	1	2	3	0
1	2	3	4	0	0	1	2	3	3
2	3	4	0	1	0	1	2	4	4
0	1	3	4	0	0	1	3	3	4
0	2	2	3	0	0	2	2	3	4
0	2	2	4	4	0	2	2	3	4
0	2	3	3	4	0	2	3	4	0

$$\begin{array}{rcl} R^*(Q,P) &= 4 \\ R(Q,P) &= 12 \\ R^*(Q,P)/R(Q,P) &= 4/12 \\ \hline (k_{\sim})? \\ - \mbox{ for } J = \{1,2,3\} \mbox{ and } w = (0,1,3), \\ P_r^J \sim_q w \mbox{ occurs as many often as } Q_r^J \sim_q w; \end{array}$$

-∢ ∃ >

э

Q^0	Q^1	Q^2	Q^3	Q^4	P^0	P^1	P^2	P ³	P^4
0	0	1	3	4	0	0	1	2	3
0	0	2	2	4	0	0	2	3	4
0	0	2	3	3	0	0	2	3	4
0	1	1	2	3	0	1	1	3	4
0	1	2	3	4	0	1	2	2	4
0	1	2	3	4	0	1	2	3	0
1	2	3	4	0	0	1	2	3	3
2	3	4	0	1	0	1	2	4	4
0	1	3	4	0	0	1	3	3	4
0	2	2	3	0	0	2	2	3	4
0	2	2	4	4	0	2	2	3	4
0	2	3	3	4	0	2	3	4	0

3

Q^0	Q^1	Q^2	Q^3	Q^4	D0		D2	P ³	
0	0	1	3	4	$\frac{1}{0}$	0	1	2	<u>'</u> 3
0	0	2	2	4	0	0	2	3	4
0	0	2	3	3	0	0	2	3	4
0	1	1	2	3	0	1	1	3	4
0	1	2	3	4	0	1	2	2	4
0	1	2	3	4	0	1	2	3	0
1	2	3	4	0	0	1	2	3	3
2	3	4	0	1	0	1	2	4	4
0	1	3	4	0	0	1	3	3	4
0	2	2	3	0	0	2	2	3	4
0	2	2	4	4	0	2	2	3	4
0	2	3	3	4	0	2	3	4	0

$$\begin{array}{cccc} & R^*(Q,P) &= 4 \\ R(Q,P) &= 12 \\ R^*(Q,P)/R(Q,P) &= 4/12 \\ R$$

O^0	Q^1	Q^2	Q^3	Q^4	P ⁰	P^1	P ²	P ³	P ⁴
<u>~</u>	0	_			<u> </u>	· .	·	<u> </u>	3
0	0	1	3	4	0	0	1	2	3
0	0	2	2	4	0	0	2	3	4
0	0	2	3	3	0	0	2	3	4
0	1	1	2	3	0	1	1	3	4
0	1	2	3	4	0	1	2	2	4
0	1	2	3	4	0	1	2	3	0
1	2	3	4	0	0	1	2	3	3
2	3	4	0	1	0	1	2	4	4
0	1	3	4	0	0	1	3	3	4
0	2	2	3	0	0	2	2	3	4
0	2	2	4	4	0	2	2	3	4
0	2	3	3	4	0	2	3	4	0

$$\begin{array}{rcl} R^*(Q,P) &= 4 \\ R(Q,P) &= 12 \\ R^*(Q,P)/R(Q,P) &= 4/12 \end{array}$$

(k~)?
- for $J = \{1,2,3\}$ and $w = (0,1,3),$
 $P_r^J \sim_q w$ occurs as many often as $Q_r^J \sim_q w$;
- for $J = \{1,2,3\}$ and $w = (0,2,2),$
 $P_r^J \sim_q w$ occurs as many often as $Q_r^J \sim_q w$;
- for $J = \{1,2,3\}$ and $w = (0,2,3),$
 $P_r^J \sim_q w$ occurs as many often as $Q_r^J \sim_q w$;
...

 $\Rightarrow \gamma_E(5,4,3) \ge 1/3$

Sevilla, July 11, 2024

э

29/31

э.

Relaxed ARPAs maximizing R^*/R or minimizing R

We define $R_E(q, p, k)$:= the smallest number of rows over $\Gamma_E(q, p, k)$.

For $\gamma_E(q, p, k)$, we indicate the ratio $R^*(Q, P)/R(Q, P)$ in $(Q, P) \in \Gamma_E(q, p, k)$ that minimize R(Q, P) among those which realize $\gamma_E(q, p, k)$

	q :	3		4		5		6		7	
k	р	γ_E	R _E	γ_E	R _E	γ_E	R _E	γ_E	R _E	γ_E	R _E
	2	1/3*	3*	1/4*	4*	2/10	7	9/59	8	3/21	
	3	-	-	6/12	3*	4/10	4*	8/26	5	48/168	
2	4	-	-	-	-	6/10	3*	7/15	3*	9/21	
	5	-	-	-	-	-	-	40/60	3*	11/21	3*
	6	-	-	-	-	-	-	-	-	15/21	3*
	3	-	-	1/4*	4*	5/55	14	153700/2805368			
3	4	-	-	-	-	4/12	8	1/6	6		
5	5	-	-	-	-	-	-	8/18	4*		
	6	-	-	-	-	-	-	-	-	14/28	
4	4	-	-	-	-	4/44	15^{*}				
-	5	-	-	-	-	-	-	44/264			
5	5	-	-	-	-	-	-	1/16	16		
5	6	-	—	_	-	-	-	I	—	6/60	

 * mark: cases for which we know how to construct a design that realizes the corresponding value (the other values have been calculated by computer).

blue color: cases that meet a lower bound we have established

Jean-François Culus and Sophie Toulouse.

2 csps all are approximable within a constant differential factor.

In Jon Lee, Giovanni Rinaldi, and A. Ridha Mahjoub, editors, *Combinatorial Optimization*, volume 10856 of *Lecture Notes in Computer Science*, pages 389–401, Cham, 2018. Springer International Publishing.

Jean-François Culus and Sophie Toulouse. Optimizing alphabet reduction pairs of arrays, 2024. preprint arXiv 2406.10930.