Optimizing Alphabet Reduction Pairs of Arrays CODESCO'24

Jean-François Culus ${ }^{1}$ Sophie Toulouse ${ }^{2}$
${ }^{1}$ MEMIAD, Université des Antilles and CReC Saint-Cyr, France
${ }^{2}$ LIPN - Institut Galilée, Université Paris 13, France

Sevilla, July 11, 2024

Definition

Object: a pair (Q, P) of arrays with q columns on symbol set $\Sigma_{q}:=\{0, \ldots, q-1\}$ Constraints:

Definition

Object: a pair (Q, P) of arrays with q columns on symbol set $\Sigma_{q}:=\{0, \ldots, q-1\}$ Constraints:

- $\left(\Gamma_{Q}\right)(0,1, \ldots, q-1)$ occurs at least once in Q

Definition

Object: a pair (Q, P) of arrays with q columns on symbol set $\Sigma_{q}:=\{0, \ldots, q-1\}$ Constraints:

- $\left(\Gamma_{Q}\right)(0,1, \ldots, q-1)$ occurs at least once in Q
- (Γ_{P}) each row of P involves at most $p<q$ symbols of Σ_{q}

Definition

Object: a pair (Q, P) of arrays with q columns on symbol set $\Sigma_{q}:=\{0, \ldots, q-1\}$

Constraints:

- $\left(\Gamma_{Q}\right)(0,1, \ldots, q-1)$ occurs at least once in Q
- (Γ_{P}) each row of P involves at most $p<q$ symbols of Σ_{q}
- ($k=$) Q and P are " k-wise equivalent" $:=$ for all $J=\left(j_{1}, \ldots, j_{k}\right) \in \Sigma_{q}^{k}$, subarrays Q^{J} and P^{J} are the same collection of rows
(NB by ($k_{=}$), the number of rows in P is the same as in Q.)
Parameters:
- q the alphabet size
- p a positive number $\leq q$
- $k \in\{1, \ldots, p\}$ the strength

Illustration when $(q, p, k)=(5,4,3)$

Q^{0}	Q^{1}	Q^{2}	Q^{3}	Q^{4}		$P^{0} P^{1}$									P^{2}	P^{3}	P^{4}
0	0	1	3	4		0	0	1	0	3							
0	0	2	0	4		0	0	2	3	4							
0	0	2	3	3		0	0	2	3	4							
0	1	1	0	4		0	1	1	3	4							
0	1	1	3	3		0	1	1	3	4							
0	1	2	0	3		0	1	2	0	4							
0	1	2	3	4		0	1	2	0	4							
0	1	2	3	4		0	1	2	3	3							
0	1	2	3	4		0	1	2	3	3							
4	0	1	0	3		4	0	1	0	4							
4	0	1	0	3		4	0	1	3	3							
4	0	2	3	4		4	0	2	0	3							
4	1	1	3	4		4	1	1	0	3							
4	1	2	0	4		4	1	2	3	4							
4	1	2	3	3		4	1	2	3	4							

$(Q, P) \in \Gamma(5,4,3) ?$
$\left(\Gamma_{Q}\right):(0,1,2,3,4)$ occurs $3>1$ times in Q
$\left(\Gamma_{P}\right)$: P_{1} uses the $3<4$ symbols $0,1,3$, P_{2} uses the $4 \leq 4$ symbols $0,2,3,4, \ldots$

Illustration when $(q, p, k)=(5,4,3)$

$Q^{0} Q^{1} Q^{2} Q^{3} Q^{4} \quad P^{0} P^{1} P^{2} P^{3} P^{4}$									
0	0	1	3	4	0	0	1	0	3
0	0	2	0	4	0	0	2	3	4
0	0	2	3	3	0	0	2	3	4
0	1	1	0	4	0	1	1	3	4
0	1	1	3	3	0	1	1	3	4
0	1	2	0	3	0	1	2	0	4
0	1	2	3	4	0	1	2	0	4
0	1	2	3	4	0	1	2	3	3
0	1	2	3	4	0	1	2	3	3
4	0	1	0	3	4	0	1	0	4
4	0	1	0	3	4	0	1	3	3
4	0	2	3	4	4	0	2	0	3
4	1	1	3	4	4	1	1	0	3
4	1	2	0	4	4	1	2	3	4
4	1	2	3	3	4	1	2	3	

$(Q, P) \in \Gamma(5,4,3) ?$
$\left(\Gamma_{Q}\right):(0,1,2,3,4)$ occurs $3>1$ times in Q
$\left(\Gamma_{P}\right)$: P_{1} uses the $3<4$ symbols $0,1,3$, P_{2} uses the $4 \leq 4$ symbols $0,2,3,4, \ldots$
($k=$):
for $J=\{2,3,4\}$ and $w=(1,3,4)$, w occurs as many times in P^{J} as in Q^{J};

Illustration when $(q, p, k)=(5,4,3)$

$Q^{0} Q^{1} Q^{2} Q^{3} Q^{4} \quad P^{0} P^{1} P^{2} P^{3} P^{4}$									
0	0	1	3	4	0	0	1	0	3
0	0	2	0	4	0	0	2	3	4
0	0	2	3	3	0	0	2	3	4
0	1	1	0	4	0	1	1	3	4
0	1	1	3	3	0	1	1	3	4
0	1	2	0	3	0	1	2	0	4
0	1	2	3	4	0	1	2	0	4
0	1	2	3	4	0	1	2	3	3
0	1	2	3	4	0	1	2	3	3
4	0	1	0	3	4	0	1	0	4
4	0	1	0	3	4	0	1	3	3
4	0	2	3	4	4	0	2	0	3
4	1	1	3	4	4	1	1	0	3
4	1	2	0	4	4	1	2	3	4
4	1	2	3	3	4	1	2	3	

$(Q, P) \in \Gamma(5,4,3) ?$
$\left(\Gamma_{Q}\right):(0,1,2,3,4)$ occurs $3>1$ times in Q
$\left(\Gamma_{P}\right)$: P_{1} uses the $3<4$ symbols $0,1,3$, P_{2} uses the $4 \leq 4$ symbols $0,2,3,4, \ldots$
($k_{=}$):
for $J=\{2,3,4\}$ and $w=(1,3,4)$, w occurs as many times in P^{J} as in Q^{J}; for $J=\{2,3,4\}$ and $w=(2,0,4)$, w occurs as many times in P^{J} as in Q^{J};

Connection to CSPs with bounded constraint arity [CT18]

Motivation: reducing an instance I of a k CSP over Σ_{q} to $k \operatorname{CSPs}$ over Σ_{p}

- we use Q to model solutions of the initial instance l of a k CSP over Σ_{q} in particular: $(0,1, \ldots, q-1)$ models an optimum solution of I
- we use P to model solutions of k CSPs over Σ_{p}

We define:

- $R^{*}(Q, P)$: the number of times $(0,1, \ldots, q-1)$ occurs in Q
- $R(Q, P)$: the number of rows in P (or, by $\left(k_{=}\right)$, in Q)
- $\Gamma(q, p, k)$: the set of the ARPAs with parameters (q, p, k)
- $\gamma(q, p, k)$: the greatest ratio $R^{*}(Q, P) / R(Q, P)$ over $\Gamma(q, p, k)$

Back to CSPs:

- $\gamma(q, p, k)$ is a lower bound for the best approximation ratio reached on I by a solution whose coordinates take at most p distinct values
- it also is a lower bound for the expansion of the reduction

Illustration when $(q, p, k)=(5,4,3)$

	Q^{1}			Q^{4}	P^{0}	P^{1}	P^{2}	P^{3}			
0	0	1	3	4	0	0	1	0	3		
0	0	2	0	4	0	0	2	3	4		
0	0	2	3	3	0	0	2	3	4		
0	1	1	0	4	0	1	1	3	4		
0	1	1	3	3	0	1	1	3	4	(Q, P)	$\in \Gamma(5,4,3)$
0	1	2	0	3	0	1	2	0	4		
0	1	2	3	4	0	1	2	0	4	$R^{*}(Q, P)$	$=3$
0	1	2	3	4	0	1	2	3	3	$R(Q, P)$	$=15$
0	1	2	3	4	0	1	2	3	3	$R^{*}(Q, P) / R(Q, P)$	$=3 / 15$
4	0	1	0	3	4	0	1	0	4	$\Rightarrow \gamma(5,4,3)$	$\geq 1 / 5$
4	0	1	0	3	4	0	1	3	3		
4	0	2	3	4	4	0	2	0	3		
4	1	1	3	4	4	1	1	0	3		
4	1	2	0	4	4	1	2	3	4		
4	1	2	3	3	4	1	2		4		

Illustration when $(q, p, k)=(5,4,3)$

Q^{0}				Q^{4}		P^{1}	P^{2}				
0	0	1	3	4	0	0	1	0	3		
0	0	2	0	4	0	0	2	3	4		
0	0	2	3	3	0	0	2	3	4		
0	1	1	0	4	0	1	1	3	4		
0	1	1	3	3	0	1	1	3	4	(Q, P)	$\in \Gamma(5,4,3)$
0	1	2	0	3	0	1	2	0	4		
0	1	2	3	4	0	1	2	0	4	$R^{*}(Q, P)$	$=3$
0	1	2	3	4	0	1	2	3	3	$R(Q, P)$	$=15$
0	1	2	3	4	0	1	2	3	3	$R^{*}(Q, P) / R(Q, P)$	$=3 / 15$
4	0	1	0	3	4	0	1	0	4	$\Rightarrow \gamma(5,4,3)$	$\geq 1 / 5$
4	0	1	0	3	4	0	1	3	3		
4	0	2	3	4	4	0	2	0	3		
4	1	1	3	4	4	1	1	0	3		
4	1	2	0	4	4	1	2	3	4		
4	1	2	3	3	4	1	2	3	4		

\rightarrow for 3 CSPs over Σ_{5}, the best solutions among those whose coordinates take at most 4 distinct values are $1 / 5$-approximate

Facts that are already known about ARPAs

Property 1

$$
\begin{align*}
\gamma(q, q, k) & =1, & q & \geq k \geq 1 \\
\gamma(q+1, p+1, k) & \geq \gamma(q, p, k), & q \geq p & \geq k>0 \tag{1}
\end{align*}
$$

Proof of (2).

Let $(Q, P) \in \Gamma(q, p, k)$. Consider e.g.:

$$
\begin{array}{cccc|ccccc|c}
Q^{0} & Q^{1} & \ldots & Q^{q-1} & Q^{q} & & Q^{0} & Q^{1} & \ldots & Q^{q-1} \\
\cline { 1 - 2 } Q_{0}^{0} & Q_{0}^{1} & \ldots & Q_{0}^{q-1} & q & & Q^{q} \\
Q_{1}^{0} & Q_{1}^{1} & \ldots & Q_{1}^{q-1} & q & & Q_{0}^{1} & \ldots & Q_{0}^{q-1} & Q_{0}^{0}+q \\
\vdots & \vdots & Q_{1}^{1} & \ldots & Q_{1}^{q-1} & Q_{1}^{0}+q \\
\vdots & \vdots & & \vdots & \vdots & & \vdots & \vdots & \vdots \\
Q_{R}^{0} & Q_{R}^{1} & \ldots & Q_{R}^{q-1} & q & & Q_{R}^{0} & Q_{R}^{1} & \ldots & Q_{R}^{q-1} \\
Q_{R}^{0}+q
\end{array}
$$

(for the latter taking the addition modulo $(q+1)$)

Already known facts

We define:

$$
\begin{equation*}
T(q, k):=\sum_{i=0}^{k}\binom{q}{i}\binom{q-1-i}{k-i}, \quad q>k \geq 0 \tag{3}
\end{equation*}
$$

Proposition 2 ([CT18])

For all integers $k>0$ and $q>k$, there exists $(Q, P) \in \Gamma(q, k, k)$ such that $R^{*}(Q, P)=1$ and $R(Q, P)=(T(q, k)+1) / 2$.

Proof (sketch).

Recursive construction starting with $P=Q=(0,1, \ldots, k-1)$.

Consequence (combining Proposition 2 and (2)):

$$
\begin{equation*}
\gamma(q, p, k) \geq 2 /(T(q-p+k, k)+1), \quad q>p \geq k \geq 1 \tag{4}
\end{equation*}
$$

Illustration when $(k, q)=(3,5)$

$Q^{\mathbf{0}}$	$Q^{\mathbf{1}}$	$Q^{\mathbf{2}}$	$Q^{\mathbf{3}}$	$Q^{\mathbf{4}}$
0	1	2	3	4
0	1	3	0	0
0	3	2	0	0
3	1	2	0	3
0	3	3	3	0
3	1	3	3	3
3	3	2	3	3
3	3	3	0	3
0	1	4	4	0
0	4	2	4	0
0	4	4	3	0
4	1	2	4	0
4	1	4	3	0
4	4	2	3	0
0	4	4	4	4
0	4	4	4	4
4	1	4	4	4
4	1	4	4	4
4	4	2	4	4
4	4	2	4	4
4	4	4	3	4
4	4	4	3	4
4	4	4	4	0
4	4	4	4	0
4	4	4	4	0

$P^{\mathbf{0}}$	$P^{\mathbf{1}}$	$P^{\mathbf{2}}$	$P^{\mathbf{3}}$	$P^{\mathbf{4}}$
0	1	2	0	0
0	1	3	3	0
0	3	2	3	0
3	1	2	3	3
0	3	3	0	0
3	1	3	0	3
3	3	2	0	3
3	3	3	3	3
0	1	4	4	4
0	4	2	4	4
0	4	4	3	4
4	1	2	4	4
4	1	4	3	4
4	4	2	3	4
0	4	4	4	0
0	4	4	4	0
4	1	4	4	0
4	1	4	4	0
4	4	2	4	0
4	4	2	4	0
4	4	4	3	0
4	4	4	3	0
4	4	4	4	4
4	4	4	4	4
4	4	4	4	4

Questions addressed

1 Is the bound of $2 /(T(q, k)+1)$ for $\gamma(q, k, k)$ tight, $q>k>0$?
2 Can we find better bounds for $\gamma(q, p, k), q>p>k>0$?

Can we simplify the problem?

Intuition behind $\gamma(q, p, k)$:
■ We want to "cover" as many as possible occurrences of the word of q symbols $(0,1, \ldots, q-1)$ by as few as possible words of at most p symbols

- The most critical aspect of a coefficient in Q and P is whether it matches its column index or not

Can we simplify the problem?

Q^{0}	Q^{1}	Q^{2}	Q^{3}	Q^{4}			P^{0}	P^{1}	P^{2}	P^{3}	P^{4}
0	$?$	$?$	3	4		0	$?$	$?$	$?$	$?$	
0	$?$	2	$?$	4		0	$?$	2	3	4	
0	$?$	2	3	$?$		0	$?$	2	3	4	
0	1	$?$	$?$	4		0	1	$?$	3	4	
0	1	$?$	3	$?$		0	1	$?$	3	4	
0	1	2	$?$	$?$		0	1	2	$?$	4	
0	1	2	3	4		0	1	2	$?$	4	
0	1	2	3	4		0	1	2	3	$?$	
0	1	2	3	4		0	1	2	3	$?$	
$?$	$?$	$?$	$?$	$?$		$?$	$?$	$?$	$?$	4	
$?$	$?$	$?$	$?$	$?$		$?$	$?$	$?$	3	$?$	
$?$	$?$	2	3	4		$?$	$?$	2	$?$	$?$	
$?$	1	$?$	3	4		$?$	1	$?$	$?$	$?$	
$?$	1	2	$?$	4		$?$	1	2	3	4	
$?$	1	2	3	$?$		$?$	1	2	3	4	

(Q, P) is a partially defined solution:

- the coefficients that coincide with their column index are fixed,
- the other coefficients (with value '?') still must be defined,
- Q and P are k-wise equivalent

Question: can we replace each symbol '?' by a value distinct from its column index in such a way that (Q, P) stills satisfies $(k=)$, but also (Γ_{P})?

Cover pairs of arrays: definition

\Rightarrow new (Boolean) object: cover pairs of arrays

Object: a pair (N, D) of arrays with n columns on symbol set $\{0,1\}$
Constraints:

- (Δ_{N}) the row of all-ones occurs at least once in N
- (Δ_{D}) each row of D has at most $d<n$ non-zero coefficients
- ($k=$) N and D are " k-wise equivalent" := for all $J=\left(j_{1}, \ldots, j_{k}\right) \in[n]^{k}$, subarrays D^{J} and N^{J} are the same collection of rows

Parameters:

- n the dimension
- d a positive number $\leq n$

■ $k \in\{1, \ldots, d\}$ the strength

Illustration when $(n, d, k)=(5,4,3)$

1	0	0	1	1	1	0	0	0	0
1	0	1	0	1	1	0	1	1	1
1	0	1	1	0	1	0	1	1	1
1	1	0	0	1	1	1	0	1	1
1	1	0	1	0	1	1	0	1	1
1	1	1	0	0	1	1	1	0	1
1	1	1	1	1	1	1	1	0	1
1	1	1	1	1	1	1	1	1	0
1	1	1	1	1	1	1	1	1	0
0	0	0	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0	1	0
0	0	1	1	1	0	0	1	0	0
0	1	0	1	1	0	1	0	0	0
0	1	1	0	1	0	1	1	1	1
0	1	1	1	0	0	1	1	1	1

$(1,1, \ldots, 1)$ occurs $3>1$ times in N

Optimal CPAs

Notations:

- $R^{*}(N, D)$: the number of times $(1,1, \ldots, 1)$ occurs in N
- $R(N, D)$: the number of rows in D and N
- $\Delta(n, d, k)$: the set of the CPAs with paramaters (n, d, k)

Quantity of interest: $\delta(n, d, k)$: the greatest ratio $R^{*}(N, D) / R(N, D)$ over $\Delta(n, d, k)$ \rightarrow we call optimal the CPAs that achieve $\delta(n, d, k)$

Connection to optimal ARPAs:

- since CPAs model partially defined ARPAs, we have: $\delta(n, d, k) \geq \gamma(n, d, k)$
- \rightarrow question: what about the reverse inequality?

Definition

Weight of a boolean word: the number of its non-zero coordinates

Definition 3 (Regular CPAs)

CPAs in which the words of a given weight all occur the same number of times, in the same array.

Illustration when $(n, d, k)=(5,4,3)$

							D^{3}	D^{4}	
1	0	0	1	1	1	0	0	0	0
1	0	1	0	1	1	0	1	1	1
1	0	1	1	0	1	0	1	1	1
1	1	0	0	1	1	1	0	1	1
1	1	0	1	0	1	1	0	1	1
1	1	1	0	0	1	1	1	0	1
1	1	1	1	1	1	1	1	0	1
	1	1	1	1	1	1	1	1	0
1	1	1	1	1	1	1	1	1	0
0	0	0	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0	1	0
	0	1	1	1	0	0	1	0	0
0	1	0	1	1	0	1	0	0	0
0	1	1	0	1	0	1	1	1	1
0	1	1	1	0	0	1		1	1

the words of weight 3 occur once in N the word of weight 5 occurs 3 times in N the word of weight 0 occurs twice in N
the words of weight 1 occur once in D the words of weight 4 occur twice in D

Property

Property 4

Among the CPAs (N, D) that realize $\delta(n, d, k)$, there exist a regular one

Proof (sketch).

Permute the coefficients of each row of N an D by each permutation on $\{1, \ldots, n\}$.

Deriving ARPAs from regular CPAs

Data: $(N, D) \in \Delta(n, d, k), r:=$ the greatest weight $<n$ of a word in $N \cup D$

Theorem 5 ([CT24])

We can derive from (N, D) an ARPA $(Q, P) \in \Gamma\left(n, d^{\prime}, k\right)$ with the same ratio R^{*} / R as (N, D), where $d^{\prime} \leq d+2$. In particular, $d^{\prime}=d$ provided that $r=d$ and the words occurring in D have weight $\neq d-1$.

Proof (sketch for the zero coefficients).

1 translate (N, D) into a partially defined ARPA (Q, P)
2 for each row u of weight r that occurs in N or D, map its zero coefficients to the column index of its leftmost coefficient initially equal to 1
3 "propagate" these assignments to words of smaller weight

Consequence: $\gamma(q, p, k) \geq \delta(q, d+2, k)$

Illustration when $(n, d, k)=(5,4,3)$ and $r=d=d^{\prime}$

$(N, D) \in \Delta(5,4,3)$									$(Q, P) \in \Gamma(5,4,3)$									
$N^{1} N^{2} N^{3} N^{4} N^{5}$				$D^{1} D^{2} D^{3} D^{4} D^{5}$					$Q^{0} Q^{1} Q^{2} Q^{3} Q^{4}$					$P^{0} P^{1} P^{2} P^{3} P^{4}$				
1	1	1	11	1	1	1	1	0	0	1	2	3	4	0	1	2	3	0
1	1	1	11	1	1	1	1	0	0	1	2	3	4	0	1	2	3	0
1	1	1	11	1	1	1	0	1	0	1	2	3	4	0	1	2	0	4
1	1	1	00	1	1	1	0	1	0	1	2	0	0	0	1	2	0	
1	1	0	10	1	1	0	1	1	0	1	0	3	0	0	1	0	3	4
1	1	0	01	1	1	0	1	1	0	1	0	0	4	0	1	0	3	4
1	0	1	0	1	0	1	1	1	0	-	2	3	0	0	0	2	3	4
1	0	1	01	1	0	1	1	1	0	0	2	0	4	0	0	2	3	4
1	0	0	11	0	1	1	1	1	0	0	0	3	4	1	1	2	3	4
0	1	1	10	0	1	1	1	1	1	1	2	3	0	1	1	2	3	4
0	1	1	01	1	0	0	0	0	1	1	2	0	4	0	0	0	0	0
0	1	0	11	0	1	0	0	0	1	1	0	3	4	1	1	0	0	0
0	0	1	11		0	1	0	0	1	0	2	3	4	1	0	2	0	
0	0	0	00	0	0	0	1	0	1	0	0	0	0	1		0		0
0	0	0	00	0	0	0	0	1	1	0	0	0	0	1	0	0	0	

Modelling regular CPAs

Variables:

- For $i \in\{0, \ldots, n\}, y_{i}$: the number of times the words of weight i occur in N
- For $i \in\{0, \ldots, d\}, x_{i}$: the number of times the words of weight i occur in D
$\Rightarrow y_{n}$ represents $R^{*}(N, D)$, while $\sum_{i=0}^{d}\binom{n}{i} x_{i}$ and $\sum_{i=0}^{n}\binom{n}{i} y_{i}$ both represent $R(N, D)$

Constraints:

- For $\left(\Delta_{N}\right): y_{n} \geq 1$
- For $\left(k_{=}\right)$: for $J \subseteq\{1, \ldots, n\}$ with $|J|=k$ and $w \in\{0,1\}^{k}$, the numbers of rows u of N and D satisfying $u_{J}=w$ only depends on the number of the non-zero coordinates of w
\rightarrow we consider for ($k=$) the constraints:

$$
\begin{equation*}
\sum_{i=h}^{d}\binom{n-k}{i-h} x_{i}=\sum_{i=h}^{n-k+h}\binom{n-k}{i-h} y_{i}, \quad h \in\{0, \ldots, k\} \tag{5}
\end{equation*}
$$

(Where $\binom{n-k}{i-h}$ counts the number of words $u \in\{0,1\}^{n}$ of weight i verifying $u_{J}=w$.)

Linear program

We denote by $L P_{n, d, k}$ the linear program in continuous variables below:

NB:

- It only requires $\Theta(n)$ variables and $\Theta(k)$ constraints to model the restriction of $\Delta(n, d, k)$ to regular designs
- (while it requires $\Theta\left(n^{n}\right)$ variables and $\Theta\left(\binom{n}{k} \times n^{k}\right)$ constraints to model $\Gamma(n, d, k)$, and still $\Theta\left(2^{n}\right)$ variables and $\Theta\left(\binom{n}{k} \times 2^{k}\right)$ constraints to model $\left.\Delta(n, d, k)\right)$

Optimal regular CPAs

Theorem 6 ([CT24])

For each choice of $k+2$ word weights

$$
i_{k+1}=n>i_{k}=d>i_{k-1}>\ldots>i_{1}>i_{0}=0
$$

that occur alternately in N and D, there exists a regular $C P A(N, D) \in \Delta(n, d, k)$ with ratio $R^{*}(N, D) / R(N, D)$ equal to:

$$
\begin{equation*}
2 /\left(1+\sum_{r=0}^{k} \prod_{s \in\{0, \ldots, k\} \backslash\{r\}} \frac{n-i_{s}}{\left|i_{r}-i_{s}\right|}\right) \tag{6}
\end{equation*}
$$

The best such CPA realizes $\delta(n, d, k)$.

Proof (sketch).

- we characterize the feasible bases of $L P_{n, d, k}$
- we give necessary conditions for a feasible base of $L P_{n, d, k}$ to be optimal

Optimal regular CPAs

Corollary 7

$$
\begin{array}{lrl}
\gamma(q, p, k) & =\delta(q, p, k), & q \geq p \geq k>0 \\
\gamma(q, k, k) & =2 /(T(q, k)+1), & q>k \geq 1 \\
\gamma(q, p, 1) & =p / q, & q \geq p \geq 1 \\
\gamma(q, p, 2) & =\lceil p / 2\rceil\lfloor p / 2\rfloor /((q-\lceil p / 2\rceil)(q-\lfloor p / 2\rfloor)), & q \geq p \geq 2
\end{array}
$$

Proof (sketch).

- we deduce from Theorem 6 the analytic expression of $\delta(n, d, k)$ in case when $k \in\{1,2, p\}$
- by Theorem 5, we can derive from optimal CPAs of Theorem 6 ARPAs with the same set of parameters and the same ratio of R^{*} / R

Summary of the facts exposed

As regards $\gamma(q, p, k)$:

- computing optimal ARPAs reduces to compute optimal CPAs

■ we are aware of optimal ARPAs (and CPAs) in case when $p \in\{q, k\}$ or $k \in\{1,2\}$
■ for the other cases, we somehow know how to derive the expression of optimal solutions

- we know, however, how to construct (suboptimal) ARPAs (and CPAs) for all set (q, p, k) of parameters (many ways)

Direction for further researchs:
■ providing the analytic expression of $\gamma(q, p, k)$ (and $\delta(q, p, k)$) for other cases (i.e., when $q>p>k>2)$
■ studying the case where repeated rows are not allowed
■ ddesigning (optimal) solutions using only a few rows

Notice that CPAs (and thus, ARPAs) have another connection to CSPs: $\delta(n, d, k)$ is a lower bound on approximation guarantee reached on Hamming balls of radius k.

Illustration: two ARPAs achieving $\gamma(5,3,2)$

																	P^{1}	P^{2}		
										0	1			3	4	0	1	2	0	0
										0	1			3	4	0	1	0	3	0
										0	1			3	4	0	1	0	0	4
										0	0	0		0	0	0	0	2	3	0
										0	0			0	0	0	0	2	0	4
Q^{0}		Q^{2}	Q^{3}		P^{0}	P^{1}	P^{2}	P^{3}		0	0			0	0	0	0	0	3	4
0	1	2	3	4	3	3	2	3	4	1	1			0	0	1	1	2	3	1
	2	2	1	4	1	1	2	1	4	1	1			0	0	1	1	2	1	4
3	3	2	2	4		2	2	2	4	1	1			1		1		1	3	4
	3	3	3	3		1	3	3		1	0			0	0	2	2	2	3	4
	1	3	1	3	1	2	3	1	3	1	0			0	0	1	0	0	0	0
0	2	3	2	3		3	3	2	3	2	2			1	1	1	0	0	0	
										1	0			3	0	1	0	0	0	0
										1	0			3	0	1	0	0	0	0
										2	2			3	1	1	0	0	0	0
										1	0			0	4	1	0	0	0	0
										1	0			0	4	2	2	1	1	1
										2				1	4	2	2	1		

Illustration: alternate constructions

Proposition 8

For all integers $q \geq 3$, there exists $(Q, P) \in \Gamma(q, q-\lfloor q / 3\rfloor$, 2$)$ such that $R^{*}(Q, P)=1$ and $R(Q, P)=4$.

Proof.

- Partition Σ_{q} into any three subsets A, B, C of cardinality in $\{\lfloor q / 3\rfloor,\lceil q / 3\rceil\}$.
- Pick any two symbols $x \in A$ and $y \in B \cup C$.
- Consider then the pair (Q, P) below

Q^{A}	Q^{B}	Q^{C}	p^{A}	P^{B}	p^{C}
A	B	C	A	B	$x \ldots x$
A	$x \ldots x$	$x \ldots x$	A	$x \ldots x$	C
$y \ldots y$	B	$x \ldots x$	$y \ldots y$	B	C
$y \ldots y$	$x \ldots x$	C	$y \ldots y$	$x \ldots x$	$x \ldots x$

(NB by (10), the construction is optimal if q is a multiple of 3 .)

ARPAs maximizing R^{*} / R or minimizing R

We define $R(q, p, k):=$ the smallest number of rows over $\Gamma(q, p, k)$.
For $\gamma(q, p, k)$, we indicate the ratio $R^{*}(Q, P) / R(Q, P)$ on ARPAs (Q, P) that minimize $R(Q, P)$ among those which realize $\gamma(q, p, k)$.

q :		3		4		5		6		7	
k	p	γ	R								
2	2	1/4*	4*	1/9*	9*	1/16*	16*	1/25*	25*	1/36*	36*
	3	-	-	2/6*	4*	1/6*	6*	1/10	10	1/15	15
	4	-	-	-	-	8/18*	4*	1/4*	4*		
	5	-	-	-	-	-	-	7/14	4*	3/10	4*
	6	-	-	-	-	-	-	-	-	9/16	
3	3	-	-	1/8*	8*	1/25*	25*	1/56*	56*	1/105*	105*
	4	-	-	-	-	3/15	8	4/54			
	5	-	-	-	-	-	-	6/24			

* mark: cases for which we know how to construct a design that realizes the corresponding value (the other values have been calculated by computer).
blue color: cases where a regular design achieves the corresponding number

Relaxed ARPAs

In brief: almost the same thing as ARPAs, but any two words ($w_{0}, w_{1}, \ldots, w_{n-1}$) and $\left(w_{0}+a, w_{1}+a, \ldots, w_{n-1}+a\right)$ are considered equivalent $\left(\sim_{q}\right)$

Notations:

- $R^{*}(Q, P)$: the number of rows u of Q satisfying $u \sim_{q}(0,1, \ldots, q-1)$
- $R(Q, P)$: the number of rows in P (or, by $\left(k_{\sim}\right)$, in Q)
- $\Gamma_{E}(q, p, k)$: the set of the relaxed ARPAs with parameters (q, p, k)
- $\gamma_{E}(q, p, k)$: the greatest ratio $R^{*}(Q, P) / R(Q, P)$ over $\Gamma_{E}(q, p, k)$
(NB of course, we have $\left.\gamma_{E}(q, p, k) \geq \gamma(q, p, k)\right)$
Motivation [CT18]:
- $k \operatorname{CSP}\left(\mathcal{E}_{\mathrm{q}}\right): k \operatorname{CSPs}$ over Σ_{q} in which the constraints are stable under the shift by a same quantity of all their entries
■ \Rightarrow the same as for ARPAs, but reducing $\mathrm{k} \operatorname{CSP}\left(\mathcal{E}_{\mathbf{q}}\right)$ to $k \operatorname{CSPs}$ over Σ_{p}
Similarly to the case of ARPAs, we can seek and find bounds and constructions for $\gamma_{E}(q, p, k)$ and $\Gamma_{E}(q, p, k)$

Illustration when $(q, p, k)=(5,4,3)$

Q^{0}	Q^{1}	Q^{2}	Q^{3}	Q^{4}		P^{0}					P^{1}
	P^{2}	P^{3}	P^{4}								
0	0	1	3	4		0	0	1	2	3	
0	0	2	2	4		0	0	2	3	4	
0	0	2	3	3		0	0	2	3	4	
0	1	1	2	3		0	1	1	3	4	
0	1	2	3	4		0	1	2	2	4	
0	1	2	3	4		0	1	2	3	0	
1	2	3	4	0		0	1	2	3	3	
2	3	4	0	1		0	1	2	4	4	
0	1	3	4	0		0	1	3	3	4	
0	2	2	3	0		0	2	2	3	4	
0	2	2	4	4		0	2	2	3	4	
0	2	3	3	4		0	2	3	4	0	

$$
\begin{aligned}
R^{*}(Q, P) & =4 \\
R(Q, P) & =12 \\
R^{*}(Q, P) / R(Q, P) & =4 / 12 \\
\left(k_{\sim}\right) ? &
\end{aligned}
$$

Illustration when $(q, p, k)=(5,4,3)$

$Q^{0} Q^{1} Q^{2} Q^{3} Q^{4}$					$P^{0} P^{1} P^{2} P^{3} P^{4}$				
0	0	1	3	4	0	0	1	2	3
0	0	2	2	4	0	0	2	3	4
0	0	2	3	3	0	0	2	3	4
0	1	1	2	3	0	1	1	3	4
0	1	2	3	4	0	1	2	2	4
0	1	2	3	4	0	1	2	3	0
1	2	3	4	0	0	1	2	3	3
2	3	4	0	1	0	1	2	4	4
0	1	3	4	0	0	1	3	3	4
0	2	2	3	0	0	2	2	3	4
0	2	2	4	4	0			3	
0	2	3	3	4					

$$
\begin{aligned}
& R^{*}(Q, P)=4 \\
& R(Q, P)=12 \\
& R^{*}(Q, P) / R(Q, P)=4 / 12 \\
&\left(k_{\sim}\right) ?
\end{aligned}
$$

Illustration when $(q, p, k)=(5,4,3)$

Q^{0}	Q^{1}	Q^{2}	Q^{3}	Q^{4}		P^{0}										P^{1}	P^{2}	P^{3}	P^{4}
0	0	1	3	4		0	0	1	2	3									
0	0	2	2	4		0	0	2	3	4									
0	0	2	3	3		0	0	2	3	4									
0	1	1	2	3		0	1	1	3	4									
0	1	2	3	4		0	1	2	2	4									
0	1	2	3	4		0	1	2	3	0									
1	2	3	4	0		0	1	2	3	3									
2	3	4	0	1		0	1	2	4	4									
0	1	3	4	0		0	1	3	3	4									
0	2	2	3	0		0	2	2	3	4									
0	2	2	4	4		0	2	2	3	4									
0	2	3	3	4		0	2	3	4	0									

$$
\begin{aligned}
& \begin{aligned}
R^{*}(Q, P) & =4 \\
R(Q, P) & =12 \\
R^{*}(Q, P) / R(Q, P) & =4 / 12
\end{aligned} \\
& (k \sim) ? \\
& - \text { for } J=\{1,2,3\} \text { and } w=(0,1,3), \\
& P_{r}^{J} \sim_{q} w \text { occurs as many often as } Q_{r}^{J} \sim_{q} w ; \\
& - \text { for } J=\{1,2,3\} \text { and } w=(0,2,2), \\
& P_{r}^{J} \sim_{q} w \text { occurs as many often as } Q_{r}^{J} \sim_{q} w ;
\end{aligned}
$$

Illustration when $(q, p, k)=(5,4,3)$

Q^{0}	Q^{1}	Q^{2}	Q^{3}	Q^{4}		P^{0}					P^{1}
	P^{2}	P^{3}	P^{4}								
0	0	1	3	4		0	1	2	3		
0	0	2	2	4		0	0	2	3	4	
0	0	2	3	3		0	0	2	3	4	
0	1	1	2	3		0	1	1	3	4	
0	1	2	3	4		0	1	2	2	4	
0	1	2	3	4		0	1	2	3	0	
1	2	3	4	0		0	1	2	3	3	
2	3	4	0	1		0	1	2	4	4	
0	1	3	4	0		0	1	3	3	4	
0	2	2	3	0		0	2	2	3	4	
0	2	2	4	4		0	2	2	3	4	
0	2	3	3	4		0	2	3	4	0	

$$
\left.\begin{array}{l}
\begin{array}{rl}
R^{*}(Q, P) & =4 \\
R(Q, P) & =12
\end{array} \\
R^{*}(Q, P) / R(Q, P)=4 / 12
\end{array}\right\} \begin{aligned}
& \left(k_{\sim}\right) ? \\
& - \text { for } J=\{1,2,3\} \text { and } w=(0,1,3), \\
& P_{r}^{J} \sim_{q} w \text { occurs as many often as } Q_{r}^{J} \sim_{q} w ; \\
& - \text { for } J=\{1,2,3\} \text { and } w=(0,2,2), \\
& P_{r}^{J} \sim_{q} w \text { occurs as many often as } Q_{r}^{J} \sim_{q} w ; \\
& - \text { for } J=\{1,2,3\} \text { and } w=(0,2,3), \\
& P_{r}^{J} \sim_{q} w \text { occurs as many often as } Q_{r}^{J} \sim_{q} w ;
\end{aligned}
$$

Illustration when $(q, p, k)=(5,4,3)$

Q^{0}	Q^{1}	Q^{2}	Q^{3}	Q^{4}		P^{0}					P^{1}
	P^{2}	P^{3}	P^{4}								
0	0	1	3	4		0	0	1	2	3	
0	0	2	2	4		0	0	2	3	4	
0	0	2	3	3		0	0	2	3	4	
0	1	1	2	3		0	1	1	3	4	
0	1	2	3	4		0	1	2	2	4	
0	1	2	3	4		0	1	2	3	0	
1	2	3	4	0		0	1	2	3	3	
2	3	4	0	1		0	1	2	4	4	
0	1	3	4	0		0	1	3	3	4	
0	2	2	3	0		0	2	2	3	4	
0	2	2	4	4		0	2	2	3	4	
0	2	3	3	4		0	2	3	4	0	

$$
\begin{aligned}
& \qquad \begin{aligned}
& R * \\
& R(Q, P)=4 \\
& R(Q, P)=12
\end{aligned} \\
& R^{*}(Q, P) / R(Q, P)=4 / 12
\end{aligned} \quad \begin{aligned}
& \left(k_{\sim}\right) ? \\
& - \text { for } J=\{1,2,3\} \text { and } w=(0,1,3), \\
& P_{r}^{J} \sim_{q} w \text { occurs as many often as } Q_{r}^{J} \sim_{q} w ; \\
& - \text { for } J=\{1,2,3\} \text { and } w=(0,2,2), \\
& P_{r}^{J} \sim_{q} w \text { occurs as many often as } Q_{r}^{J} \sim_{q} w ; \\
& - \text { for } J=\{1,2,3\} \text { and } w=(0,2,3), \\
& \\
& P_{r}^{J} \sim_{q} w \text { occurs as many often as } Q_{r}^{J} \sim_{q} w ; \\
& \cdots
\end{aligned}
$$

Relaxed ARPAs maximizing R^{*} / R or minimizing R

We define $R_{E}(q, p, k):=$ the smallest number of rows over $\Gamma_{E}(q, p, k)$.
For $\gamma_{E}(q, p, k)$, we indicate the ratio $R^{*}(Q, P) / R(Q, P)$ in $(Q, P) \in \Gamma_{E}(q, p, k)$ that minimize $R(Q, P)$ among those which realize $\gamma_{E}(q, p, k)$

q :		3		4		5		6		7	
k	p	γ_{E}	R_{E}								
2	2	1/3*	3*	1/4*	4^{*}	2/10	7	9/59	8	3/21	
	3	-	-	6/12	3*	4/10	4*	8/26	5	48/168	
	4	-	-	-	-	6/10	3*	7/15	3^{*}	9/21	
	5	-	-	-	-	-	-	40/60	3*	11/21	$3 *$
	6	-	-	-	-	-	-	-	-	15/21	3*
3	3	-	-	1/4*	4*	5/55	14	153700/280			
	4	-	-	-	-	4/12	8	1/6	6		
	5	-	-	-	-	-	-	8/18	4*		
	6	-	-	-	-	-	-	-	-	14/28	
4	4	-	-	-	-	4/44	15^{*}				
	5	-	-	-	-	-	-	44/264			
5	5	-	-	-	-	-	-	1/16	16		
	6	-	-	-	-	-	-	-	-	6/60	

* mark: cases for which we know how to construct a design that realizes the corresponding value (the other values have been calculated by computer).
blue color: cases that meet a lower bound we have established

Jean-François Culus and Sophie Toulouse.
2 csps all are approximable within a constant differential factor.
In Jon Lee, Giovanni Rinaldi, and A. Ridha Mahjoub, editors, Combinatorial Optimization, volume 10856 of Lecture Notes in Computer Science, pages 389-401, Cham, 2018.
Springer International Publishing.
T
Jean-François Culus and Sophie Toulouse.
Optimizing alphabet reduction pairs of arrays, 2024.
preprint arXiv 2406.10930.

