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Background



Hypergraphs and Configurations

Hypergraph: H = (V,E)

e set of vertices (points) V
e set of hyperedges (lines) E

e e c E (multi)set of vertices from V, if proper hypergraph each is a set
Eulerian hypergraph: each vertex has even degree
Configuration: (vi, by) is a hypergraph with:

e v vertices (points) each in k hyperedges (lines)

e b hyperedges (lines) each containing ¢ vertices (points)

Our general setting is Eulerian hypergraphs, but all “nice” examples are
configurations with k even
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Label the points of the following configuration with either 1 or —1 so that an odd
number of lines have product —1.
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Label the points of the following configuration with either 1 or —1 so that an odd
number of lines have product —1.
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Label the points of the following configuration with either 1 or —1 so that an odd
number of lines have product —1.

This is impossible since each point is in an even number of lines!
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Contextuality

Einstein-Podolski-Rosen 1935: Hidden variable model

Kochen-Specker 1967: First proof of contextuality (measurements depend on
context!)

Mermin 1993: provides simple proof of contextuality via a contextual configuration

M. Howard, J. Wallman, V. Veitch, J. Emerson, Contextuality supplies the ‘magic’ for
quantum computation. Nature 510 (2014), 351-355.
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Magic (contextual) assignments

H = (V,E) - Hypergraph with each vertex even degree (Eulerian hypergraph)
a:V — GL(H) - Assignment

1. a(v)? = I and a(v) is Hermitian for all v € V.

2. a(v)a(w) = a(w)a(v) whenever v, w are in a common hyperedge e € E.
3. ] a(v) = £/ for each hyperedge e € E.

vee
4. [] a(v) = —I for an odd number of hyperedges e € E.

vee

Magic: « satisfies 1-4
Valid: « satisfies 1-3, but maybe not 4
Pauli-based: a(v) € Py for each v € V. We say «a is a k-qubit assignment.
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Magic (contextual) assignments

Goal: Given proper Eulerian hypergraph (or configuration) H, check if H has magic

assignment «. If so, we say that H is magic.

Why: Classical assignments (those given by hidden variable models, i.e classical
physics) CANNOT satisfy 1-4 because of a parity argument.

Therefore: The pair (H, «) is a proof of contextuality.
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1T 0
0 -1

I, X,Y,Z Hermitian

FPelt==2"=|

X,Y,Z pairwise anti-commute: (i.,e XY = —XY, etc)
o XYZ =l

Py is set of k-fold tensor products of [, X, Y, Z

- elements of Py are also Hermitian and square to the identity
- easy to multiply and check commutativity “qubit-wise”
- notation: X ® Y ® | — XY/
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Mermin square & Peres-Mermin Pentagram
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2-regular hypergraphs

Theorem (Arkhipov 2012)

Let H= (V,E) be a 2-regular hypergraph. Then H is magic if and only if the dual

graph of H is non-planar.

e Every magic 2-regular hypergraph can be “reduced” to square or pentagram. Dual
of square is K33, dual of pentagram is Ks.

e Every magic 2-regular hypergraph has a Pauli-based assignment with 2 or 3 qubits

e Only the square and pentagram cannot be labeled using either repeated
operators or identity operators (i.e only square and pentagram are irreducible)
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Extending Arkhipov’s result




When we began this work:

e the only known irreducible Eulerian hypergraphs in the literature were the square
and pentagram.

e it was not known whether there was an Eulerian hypergraph necessitating more
than 3 qubits

e given an Eulerian hypergraph H there was no known algorithm to check if H has a
Pauli-based assignment

e Assignments were found from ad-hoc methods or external constructions
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Our contribution

Developed an algorithm to:

e check if an Eulerian hypergraph H admits a Pauli-based assignment

e compute minimum number of qubits (can be computationally expensive)
e iterate through different Pauli-based assignments

e check if H is irreducible or not

e if H is reducible, can “farm” it to create irreducible instances
We have now found:

e over 8000 irreducible hypergraphs (necessitating from 3 to 6 qubits)
e only 4 vertex-transitive cases
e each of the 4 is a configuration!

We have also done an exhaustive search of (v4, by) configurations with v < 20

points, ¢ € {4,5} 1/26



Gram matrices

Given assignment a1 V — P, the |V| x |V| Gram matrix M records commutativity:

M 0 if a(vi), vj) commute
. 1 if a(vi), a(v;) do not commute

We say that o respects M.
Many assignments respect the same Gram matrix

Question: What does Gram matrix M tell us about the assignments « respecting it?
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Gram matrices (lll)

Main idea. Gram matrices capture everything we need!

computing valid assignments

valid Gram matrix binary rank 2k <= « k-qubit valid assignment
valid Gram matrices are easy to compute

form subspace of RY*" that we call valid Gram space

can check if Pauli-based magic assignment exists respecting Gram matrix
affine subspace of valid Gram space.

These Gram matrices are magic Gram matrices.

compute number of qubits

binary rank

explicitly compute magic assignments

embed corresponding graph in symplectic graph
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Constructing magic assignments?

Main question: how do we actually generate the k-qubit magic assignments once
we've found a magic Gram matrix of binary rank 2k in the valid Gram space of H?
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Symplectic graphs

Symplectic graph SP(2k) :
e vertices are non-identity k-qubit Pauli operators

e edge between pair of vertices if corresponding Pauli
operators do not commute

Reduced graph :
e no isolated (degree 0) vertices

e no pair of vertices has same neighbourhood

Theorem (Godsil/Royle 2001)

If a graph G is reduced and its adjacency matrix has binary rank at most 2k for
some k € Zxo, then G is an induced subgraph of SP(2k).
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Magic Gram matrices to magic assignments

1 2 3 4 5 6 7 8 9
1 0 0 0 0 1 1 0 1 1
2 0 0 0 1 0 1 1 0 1
3 0 0 0 1 1 0 1 1 0
4 0 1 1 0 0 0 0 1 1
5 1 0 1 0 0 0 1 0 1
6 1 1 0 0 0 0 1 1 0 compute
7 0 1 1 0 1 1 0 0 0
8 1 0 1 1 0 1 0 0 0
9 1 1 0 1 1 0 0 0 0

XI X XX

XY YX 77
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Algorithm overview

I Eulerian hypergraph H I

I valid Gram space of H I

1/2 of Gram matrices
are magic

no magic
Gram matrix

no Pauli-based magic assignment of A | | choose magic Gram matrix M of binary rank 2k |

find G{M) as induced
subgraph of SP(2k)

I k-qubit magic assignment o of H
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Note that this (along with Arkhipov’s result) implicitly defines a linear algebraic
algorithm for checking planarity and producing K5 or K33 minor.

Graph G — dual (2-regular) hypergraph H — set of magic Gram matrices.
One of the magic Gram matrices encodes the K33 or K5 minor.

This forms a potentially interesting link between Algebraic Graph Theory and
Topological Graph Theory.
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New irreducible hypergraphs
(configurations)
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Griinbaum-Rigby (or Klein)
configuration

(214)-configuration
is self-dual

needs 4 qubits
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e smallest known weakly flag-
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scribed in Marusi¢, Pisanski
Weakly flag-transitive configu-
rations and half-arc-transitive
graphs)

We thank T. Pisanski for
pointing this out to us

e (274)-configuation
e is self-dual

e needs 5 qubits
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lines given by “shifting”

starter line via translation
. 73 3

TLJIC . ZZ3 — ZZ3

(x,y,2) > (x+ay+bz+c)

(274)-configuration
is self-dual
needs 3 qubits

have not found in litera-
ture
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Notable non vertex transitive irreducible hypergraphs

n Magic set Observables Contexts b/Q ¢

3 MS3-15 104 + 56 103 + 104  14/20 0.3

3 MS3-18 39 4 154 63 + 124 12/18 0.33
3 MS3-27b 274 274 17/27 0.37
3 MS3-29 274 + 219 334 19/33 0.424
4 MS4-20 5o + 154 63 + 134 17/19 0.105
4 MS4-21b 115 + 104 23 + 144 14/16 0.125
4 MS4-21c 1o+ 194 + 16 214 19/21 0.095
4 MS4-24 39 +114+96 + 110 253 + 124 + 125 20/26 0.23
5 MS5-26 254 4+ 110 103 +204  24/30 0.2

5 MS5-29 234 + 56 + 1g 63 + 284 28/34 0.176
5 MS5-31 324234+ 26 +3s 23 + 124 + 165 24/30 0.2

6 MS6-35 304 + bs 33 4144 + 195 30/36 0.167
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Open problems




Open problems

Find new irreducible contextual configurations
(i.e irreducible magic Eulerian hypergraphs that are configurations)

Infinite family of irreducible contextual configurations?
Would be even more interesting if minimum number of qubits — oo
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Thank you and an advertisement

Thank you!!

If you have any configurations that you think may be good candidates, please send
them to me at strandafir@us.es

[§ Stefan Trandafir, Petr Lison&k, and Adan Cabello.
Irreducible magic sets for n-qubit systems.
Physical Review Letters, 129(20):200401, 2022.
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