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Background



Hypergraphs and Configurations

Hypergraph: H = (V , E)

• set of vertices (points) V

• set of hyperedges (lines) E

• e ∈ E (multi)set of vertices from V , if proper hypergraph each is a set

Eulerian hypergraph: each vertex has even degree

Configuration: (vk , bℓ) is a hypergraph with:

• v vertices (points) each in k hyperedges (lines)

• b hyperedges (lines) each containing ℓ vertices (points)

Our general setting is Eulerian hypergraphs, but all “nice” examples are
configurations with k even
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Puzzle

Label the points of the following configuration with either 1 or −1 so that an odd
number of lines have product −1.
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Puzzle

Label the points of the following configuration with either 1 or −1 so that an odd
number of lines have product −1.

This is impossible since each point is in an even number of lines!
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Puzzle

Label the points of the following configuration with either 1 or −1 so that an odd
number of lines have product −1.

This is impossible since each point is in an even number of lines!
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Contextuality

• Einstein-Podolski-Rosen 1935: Hidden variable model

• Kochen-Specker 1967: First proof of contextuality (measurements depend on
context!)

• Mermin 1993: provides simple proof of contextuality via a contextual configuration

• M. Howard, J. Wallman, V. Veitch, J. Emerson, Contextuality supplies the ‘magic’ for
quantum computation. Nature 510 (2014), 351-355.
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Magic (contextual) assignments

H = (V , E) - Hypergraph with each vertex even degree (Eulerian hypergraph)
α : V → GL(H) - Assignment

1. α(v)2 = I and α(v) is Hermitian for all v ∈ V .

2. α(v)α(w) = α(w)α(v) whenever v,w are in a common hyperedge e ∈ E .

3.
∏
v∈e

α(v) = ±I for each hyperedge e ∈ E .

4.
∏
v∈e

α(v) = −I for an odd number of hyperedges e ∈ E .

Magic: α satisfies 1-4
Valid: α satisfies 1-3, but maybe not 4
Pauli-based: α(v) ∈ Pk for each v ∈ V . We say α is a k-qubit assignment.
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Magic (contextual) assignments

Goal: Given proper Eulerian hypergraph (or configuration) H, check if H has magic
assignment α. If so, we say that H is magic.

Why: Classical assignments (those given by hidden variable models, i.e classical
physics) CANNOT satisfy 1-4 because of a parity argument.

Therefore: The pair (H,α) is a proof of contextuality.
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Pauli matrices

I =

[
1 0
0 1

]
, X =

[
0 1
1 0

]
, Y =

[
0 i
−i 0

]
, Z =

[
1 0
0 −1

]

• I, X , Y , Z Hermitian

• I2 = X2 = Y 2 = Z2 = I

• X , Y , Z pairwise anti-commute: (i.e XY = −XY , etc)

• XYZ = iI

• Pk is set of k-fold tensor products of I, X , Y , Z

- elements of Pk are also Hermitian and square to the identity
- easy to multiply and check commutativity “qubit-wise”
- notation: X ⊗ Y ⊗ I → XYI
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Mermin square & Peres-Mermin Pentagram
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2-regular hypergraphs

Theorem (Arkhipov 2012)
Let H = (V , E) be a 2-regular hypergraph. Then H is magic if and only if the dual
graph of H is non-planar.

• Every magic 2-regular hypergraph can be “reduced” to square or pentagram. Dual
of square is K3,3, dual of pentagram is K5.

• Every magic 2-regular hypergraph has a Pauli-based assignment with 2 or 3 qubits

• Only the square and pentagram cannot be labeled using either repeated
operators or identity operators (i.e only square and pentagram are irreducible)
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Extending Arkhipov’s result



Motivation

When we began this work:

• the only known irreducible Eulerian hypergraphs in the literature were the square
and pentagram.

• it was not known whether there was an Eulerian hypergraph necessitating more
than 3 qubits

• given an Eulerian hypergraph H there was no known algorithm to check if H has a
Pauli-based assignment

• Assignments were found from ad-hoc methods or external constructions
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Our contribution

Developed an algorithm to:

• check if an Eulerian hypergraph H admits a Pauli-based assignment
• compute minimum number of qubits (can be computationally expensive)
• iterate through different Pauli-based assignments
• check if H is irreducible or not
• if H is reducible, can “farm” it to create irreducible instances

We have now found:

• over 8000 irreducible hypergraphs (necessitating from 3 to 6 qubits)
• only 4 vertex-transitive cases
• each of the 4 is a configuration!

We have also done an exhaustive search of (v4, bℓ) configurations with v ≤ 20
points, ℓ ∈ {4, 5}
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Gram matrices

Given assignment α : V → Pn, the |V | × |V | Gram matrix M records commutativity:

Mi,j =

0 if α(vi),α(vj) commute

1 if α(vi),α(vj) do not commute

We say that α respects M.
Many assignments respect the same Gram matrix

Question: What does Gram matrix M tell us about the assignments α respecting it?

12 / 26



Gram matrices (II)

1 2 3 4 5 6 7 8 9



1 0 0 0 0 1 1 0 1 1
2 0 0 0 1 0 1 1 0 1
3 0 0 0 1 1 0 1 1 0
4 0 1 1 0 0 0 0 1 1
5 1 0 1 0 0 0 1 0 1
6 1 1 0 0 0 0 1 1 0
7 0 1 1 0 1 1 0 0 0
8 1 0 1 1 0 1 0 0 0
9 1 1 0 1 1 0 0 0 0

α(v1) = XX and α(v5) = XZ do not commute, so M1,5 = 1
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Gram matrices (III)

Main idea. Gram matrices capture everything we need!

• computing valid assignments
valid Gram matrix binary rank 2k ⇐⇒ α k-qubit valid assignment

• valid Gram matrices are easy to compute
form subspace of Rv×v that we call valid Gram space

• can check if Pauli-based magic assignment exists respecting Gram matrix
affine subspace of valid Gram space.
These Gram matrices are magic Gram matrices.

• compute number of qubits
binary rank

• explicitly compute magic assignments
embed corresponding graph in symplectic graph
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Constructing magic assignments?

Main question: how do we actually generate the k-qubit magic assignments once
we’ve found a magic Gram matrix of binary rank 2k in the valid Gram space of H?
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Symplectic graphs

Symplectic graph SP(2k) :

• vertices are non-identity k-qubit Pauli operators

• edge between pair of vertices if corresponding Pauli
operators do not commute

Reduced graph :

• no isolated (degree 0) vertices

• no pair of vertices has same neighbourhood

Y

X

Z

Theorem (Godsil/Royle 2001)
If a graph G is reduced and its adjacency matrix has binary rank at most 2k for
some k ∈ Z≥0, then G is an induced subgraph of SP(2k).
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Magic Gram matrices to magic assignments

1 2 3 4 5 6 7 8 9



1 0 0 0 0 1 1 0 1 1
2 0 0 0 1 0 1 1 0 1
3 0 0 0 1 1 0 1 1 0
4 0 1 1 0 0 0 0 1 1
5 1 0 1 0 0 0 1 0 1
6 1 1 0 0 0 0 1 1 0
7 0 1 1 0 1 1 0 0 0
8 1 0 1 1 0 1 0 0 0
9 1 1 0 1 1 0 0 0 0
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Algorithm overview
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Planarity

Note that this (along with Arkhipov’s result) implicitly defines a linear algebraic
algorithm for checking planarity and producing K5 or K3,3 minor.

Graph G → dual (2-regular) hypergraph H → set of magic Gram matrices.

One of the magic Gram matrices encodes the K3,3 or K5 minor.

This forms a potentially interesting link between Algebraic Graph Theory and
Topological Graph Theory.
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New irreducible hypergraphs
(configurations)



MS4-21

YYZX YYII IIZI IIIX

YIYZ YIYI

YYIX

IZIZ IZII

ZYZZ IIXI

IYYI

XZXY XYIX

IZZZ

XIIY IIXX

XXZY

XYXI IZXI

IIIZ

• Grünbaum-Rigby (or Klein)
configuration

• (214)-configuration

• is self-dual

• needs 4 qubits
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MS4-27

ZIZY

IXIX

IXIZ

XIXI

IZZY

ZIII

IZIIXZIY

IYXZZXII

XIYI IIYY

YYXI

YIII

YYZZ

XZXX

IYIY

ZYZY

IIZI

XIII

IIXZ

ZIZX
IXYZ

YZXZ

YXZZ

IIXX

IIIZ

• 3-astral, 4-configuration
(Fig. 3.7.2(b) of Grünbaum
Configurations of points
and lines)
We thank T. Pisanski for
pointing this out to us

• (274)-configuration

• is self-dual

• needs 4 qubits
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MS5-27

YIIZI

XXYXY IZIXX

YXIZI

XIYXY

YYIYI

IIIIX

IIXYI

ZYZXY
XZYZI

XZZXX

IYYYY

YZZII

YZZXZ

ZYYYI

IIIIZ

IIIXI XYYXZ

YIZYZ IYZXX

IYZII

XIIYY

IIZYY
ZZYZI

IXIXX

ZZZXZ

IIIZY

• smallest known weakly flag-
transitive configuration (de-
scribed in Marušič, Pisanski
Weakly flag-transitive configu-
rations and half-arc-transitive
graphs)
We thank T. Pisanski for
pointing this out to us

• (274)-configuation

• is self-dual

• needs 5 qubits
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MS3-27

• lines given by “shifting”
starter line via translation

Ta,b,c : Z3
3 → Z3

3

(x, y, z) → (x + a, y + b, z + c)

• (274)-configuration

• is self-dual

• needs 3 qubits

• have not found in litera-
ture
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Notable non vertex transitive irreducible hypergraphs
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Open problems



Open problems

Find new irreducible contextual configurations
(i.e irreducible magic Eulerian hypergraphs that are configurations)

Infinite family of irreducible contextual configurations?
Would be even more interesting if minimum number of qubits → ∞
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Thank you and an advertisement

Thank you!!

If you have any configurations that you think may be good candidates, please send
them to me at strandafir@us.es

Stefan Trandafir, Petr Lisoněk, and Adán Cabello.
Irreducible magic sets for n-qubit systems.
Physical Review Letters, 129(20):200401, 2022.
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