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What do these mathematical words have in common?

I group,

I graph,

I set,

I manifold,

I field,

I design,

I matrix,

I category,

I module,

I ring,

I sequence,

I space?
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Subsquares

A latin square of order n is an n × n matrix in which each of n
symbols occurs exactly once in each row and once in each column.

e.g.

1 2 3 4
2 4 1 3
3 1 4 2
4 3 2 1

is a latin square of order 4.

In a latin square, a subsquare is a submatrix that is itself a latin
square.

A subsquare of order 2 is an intercalate.

n will always be the order of my latin square.
k will always be the order of my subsquare.

A subsquare is proper provided 1 < k < n. In fact k 6 n/2.
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Intersectionality

The intersection of two subsquares...

...is itself a subsquare.
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Group tables

Suppose H is a subgroup of order k in a group G of finite order n.

Hy

xH
xHHy

=xHy

...produces a subsquare of order k in the Cayley table of G .

In fact, this is the only way that subsquares arise in group tables.

Corollary: The number of subsquares of order k in G is (n/k)2

times the number of subgroups of order k.
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Minimum number of subsquares

Consider the set of latin squares of order n.

The minimum number of k × k subsquares is 0 for almost all
values of 1 < k < n.

If k does not divide n then we can use any group table.
In other cases you have to be a bit cleverer, but it is
(almost always) possible to avoid subsquares of order k .

The two most studied problems are constructions for

I N2 latin squares; i.e. ones without intercalates, and

I N∞ latin squares; i.e. ones without proper subsquares
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Intercalate-free latin squares

Theorem: For all orders n 6∈ {2, 4} there exists a latin square
with no intercalates.

This was proved by a sequence of papers including:

I [Kotzig/Lindner/Rosa’75] Orders that aren’t powers of 2.

I [McLeish’75] Powers of 2 that are > 32.

I [Kotzig/Turgeon’76] 16 and 32.

I [Denniston’78] catalogues all examples of order 8.

I [McLeish’80] (corrected in [W’01]) constructs examples for
n > 30.
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Subsquare-free latin squares

A tougher problem is to avoid all proper subsquares.

Conjecture: [Hilton’70] N∞ latin squares exist for all n /∈ {4, 6}.

This conjecture has been confirmed as follows:

I [Denniston’78] Order 8.

I [Heinrich’80] Orders pq 6= 6 for primes p, q.

I [Andersen/Mendelsohn’82] Orders divisible by a prime > 5.

I [Gibbons/Mendelsohn’91] Order 12.

I [Elliot/Gibbons’92] Order 16,18.

I [W.’97] Orders < 256.

I [Maenhaut/W./Webb’07] Odd orders.

I [Allsop/W.’24+] All remaining orders.
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Corrupted product

Let A,B be Latin squares of the same order that agree only in
their principal entry.

Let M be an m ×m Latin square.

The corrupted product P = (A,B) ∗s M of shift s 6≡ 0 mod m is
defined by

P
[
(i , j), (k , l)

]
=


(
A[i , k], (M[j , l ] + s)m

)
i = k = 1,(

B[i , k],M[j , l ]
)

(i , k) 6= (1, 1) = (j , l),(
A[i , k],M[j , l ]

)
otherwise;



Corrupted product

Let A,B be Latin squares of the same order that agree only in
their principal entry.

Let M be an m ×m Latin square.

The corrupted product P = (A,B) ∗s M of shift s 6≡ 0 mod m is
defined by

P
[
(i , j), (k , l)

]
=


(
A[i , k], (M[j , l ] + s)m

)
i = k = 1,(

B[i , k],M[j , l ]
)

(i , k) 6= (1, 1) = (j , l),(
A[i , k],M[j , l ]

)
otherwise;



Corrupted product

Let A,B be Latin squares of the same order that agree only in
their principal entry.

Let M be an m ×m Latin square.

The corrupted product P = (A,B) ∗s M of shift s 6≡ 0 mod m is
defined by

P
[
(i , j), (k , l)

]
=


(
A[i , k], (M[j , l ] + s)m

)
i = k = 1,(

B[i , k],M[j , l ]
)

(i , k) 6= (1, 1) = (j , l),(
A[i , k],M[j , l ]

)
otherwise;



Corrupted products
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Corrupted products
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Corrupted products

A =

1 2 3 4 5 6 7

, B =

1 5 2 7 3 4 6

.

M =

1 2 3

2 3 1

3 1 2

.

The corrupted product (A,B) ∗1 M is ...
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Corrupted product

In [W’2001] I showed that, under certain conditions, the corrupted
product has a unique subsquare.

To destroy this subsquare we switch a row cycle of length 3:[
a b c
b c a

]
−→

[
b c a
a b c

]

We use “corrupting pairs” (A,B) of order 8 and order 9 respectively
to enlarge our N∞ LSs by a factor of 8,9. The hard part is getting
the inductive hypothesis right to allow us to repeatedly do this.

Once we have that in place, we just need base cases of sizes
{12, 16, 18, 24, 32, 36, 48, 54, 64, 72}.
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Maximum number of intercalates

Let Sk(n) be the maximum, over all order n latin squares, of the
number of order k subsquares.

Theorem: S2(n) 6 1
4n

2(n − 1), with equality only achieved by
elementary abelian 2-groups. [Heinrich/Wallis’81]

HW also showed that S2(n) > 1
45n

3 + O(n2).

[Bartlett’13] & [Browning/Cameron/W.’14] show that
S2(n) > 1

8n
3 + O(n2).

(The dihedral group has this many intercalates.)

The latter paper also showed that elementary abelian 2-groups
uniquely maximise the number of subsquares of order k = 2t .
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Subsquares of order 3

From [van Rees’90],

Theorem: S3(n) 6 1
18n

2(n − 1), with equality when n = 3a for
some a.

Conjecture: Equality is only achieved when n = 3a.

The conjecture is open, though from [Kinyon/W’11] we know

I It is true for n < 33.

I Equality can only be achieved for n ≡ 3 mod 6.

I There are many interesting examples that achieve equality,
not just the elementary abelian 3-groups. (There are at least
8 species of examples for n = 27.)

I A quasigroup achieves equality iff every loop-isotope has
exponent 3.

I There is a Steiner triple system associated with every row,
column and symbol in any example that achieves equality.
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Prime k

S2(n) 6 1
4n

2(n − 1).

S3(n) 6 1
18n

2(n − 1).

Theorem: Fix a prime p. No latin square can have more than
cubically many subsquares that are isotopic to Zp.

In fact you can’t have more than cubically many copies of any
subsquare that contains a cycle of length more than k/2.

Open problem: Is there a family of latin squares with more than
cubically many subsquares of order p?
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Other small orders

Let ψ(k) be the “correct exponent” for Sk(n) as n→∞.

Formally, ψ(k) = lim sup
n→∞

log Sk(n)

log n
.

k ψ(k)
1 2
2 3
3 3
4 4
5 3
6 4
7 3 . . . 4
8 5
9 4

10 4
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General bounds

[Browning,Vojtěchovský,W’10] showed that Sk(n) 6 nO(
√
k).

[Browning,Stones,W’11] showed Sk(n) 6 ndlog2 ke+2.

[Browning/Cameron/W.’14] show Sk(n) 6 n3+blog2(k/3)c when k is
not a power of 2.

Proof idea: Recursively compile a list of subsquares by taking all
subsquares which minimally contain some proper subsquare in your
list.

N.B. Elementary abelian 2 groups have Sk(n) = Θ(n2+log2 k) when
k is a power of 2.
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The typical number of intercalates

If we choose a latin square at random how many intercalates will it
have?

Let µn = 1
4n(n − 1).

[McKay/W’99] conjectured that there will be µn(1 + o(1))
intercalates, and showed that almost all latin squares have at least
n3/2−ε intercalates. Also, the probability of being N2 is
O(exp(−n2−ε)).

[Cavenagh/Greenhill/W’08] showed that almost surely there are at
most 5n5/2 intercalates.

[Kwan/Sudakov’18] Showed there will be at least µn(1− o(1))
intercalates.
[Kwan/Sah/Sawhney’22] Proved a matching upper bound, proving
the MW Conjecture.
[Kwan/Sah/Sawhney/Simkin’23] showed that the probability of
being N2 is at least exp(−µn + o(n2)).
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The typical number of larger subsquares

[McKay/W’99] conjectured that the expected number of
subsquares of order 3 will be 1/18,

and that there will almost
surely be no larger proper subsquare.

[Divoux/Kelly/Kennedy/Sidhu’23+] and [Gill/Mammoliti/W.’24+]
show this conjecture for k >

√
n log n.

It follows that Latin square isomorphism can be tested in
average-case polynomial time.
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Summary of open problems

I van Rees conjecture (on maximising 3× 3 subsquares).

I How close can you get to the van Rees bound?

I Can you embed more than cubically many STS(7)’s?

I Is it possible to have more than cubically many subsquares of
(prime) order p?

I Find the expected number of 3× 3 subsquares.

I Show that subsquares of order > 3 are unlikely.

I Can isomorphism be solved in average case polynomial time
for STS and 1-factorisations?
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Chein loops

⊗ (y , 0) (y , 1)

(x , 0) (xy , 0) (yx , 1)
(x , 1) (xy−1, 1) (y−1x , 0)

Where the first coordinate is calculated in a subgroup G of index 2.

Take G to be of exponent p and consider any subgroup H of order
p. Then

⊗ (Hb, 0) (cHa−1, 1)

(aH, 0) (aHb, 0) (cH, 1)
(cHb, 1) (cH, 1) (aHb, 0)

gives us a subsquare of order 2p.
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van Rees loops of order 27

I Elementary abelian group.

I Non-abelian group of exponent 3.

I A Bol loop with trivial center, discovered by [Keedwell’63].

I Two power-associative conjugacy closed loops, described in
[Kinyon/Kunen’06].

I A universal left conjugacy closed loop (which is not conjugacy
closed) with the left inverse property.

I A commutative, weak inverse property loop.

I A (noncommutative) weak inverse property loop such that
each inner mapping of the form L−1x Rx is an automorphism.

The Bol loop is the only one where each loop in the species has
trivial center.
There are no other examples of order 27 with at least one
nontrivial nucleus.


