Graphs of Latin Regular Hexahedra

Akihiro Yamamura

Department of of Mathematical Science and Electrical-Electronic-Computer Engineering, Akita University, Japan

> Combinatorial Designs and Codes July 8-12, 2024

Institute of Mathematics of the University of Seville, Spain.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

System of Latin rectangles

System of Latin rectangles is a finite set of Latin rectangles

 It has a solution if we can obtain Latin rectangles by substituting a certain Latin rectangle for each variable

System of Latin rectangles

Example 1

• System of Latin rectangles where *A* and *B* are Latin rectangles and *X* is a variable

• It has a solution if there exists a Latin rectangle *C* so that $\overrightarrow{A \ C}$ and $\overrightarrow{B \ C}$ are Latin rectangles

System of Latin rectangles

Example 1

System of Latin rectangles

Example 1

- Suppose A and B are arrays $\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix}$ and
- A system of Latin rectangles

4 3

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

2

has no solution.

System of Latin rectangles

A system of Latin rectangles

$$\begin{array}{c|c} A & X \\ \hline \blacksquare & X \\ \hline \hline \hline & X \\ \hline \hline \hline &$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

• \triangleleft is obtained from A by rotating $\frac{\pi}{2}$ counterclockwise

System of Latin rectangles

Example 2

◆□ ▶ ◆■ ▶ ◆ ■ ▶ ◆ ■ ● ● ● ●

System of Latin rectangles

Example 2

is a Latin rectangle

• C makes both $A \ C$ and $\P \ C$ Latin rectangles

• C is a solution

System of Latin rectangles

Example 2

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

has no solution

Latin hexahedra

Latin regular hexahedron

 Regular hexahedron of order n is a polyhedron consisting of six faces, each of which forms an n × n matrix filled with integers in {1,2,3,...,4n}

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Latin hexahedra

Net

 A net is an arrangement of a non-overlapping edge-joined polygon which can be folded along edges to become faces of the hexahedron

Latin hexahedra

Circuit

 A circuit of a regular hexahedron of order n is a 1 × 4n subarray in one of its nets

▲□▶▲□▶▲□▶▲□▶ □ のQ@

• There exist 3*n* circuits on a regular hexahedron of order *n*

Latin hexahedra

Latin regular hexahedron

 Regular hexahedron of order *n* is called Latin if every integer in {1,2,3,...,4*n*} appears exactly once in every circuit

Latin hexahedra

Sudoku Latin square

 If each column, each row, and each sub-matrices contain all of the integers from 1 to 9, it is called a Sudoku Latin square

Latin hexahedra

Latin quasi-sudoku regular hexahedron

 If every integer in {1, 2, 3, ..., 4n} appears exactly *m* times on each face, it is called a Latin quasi-sudoku regular hexahedron with multiplicity *m*

Latin hexahedra

System of Latin rectangles

Theorem

A system of Latin rectangles with variables (R, T, U, V, W, Y)

has a solution

If (A, B, C, D, E, F) is a solution of (1), then

provides a net of a Latin regular hexahedron of order 2n. Conversely, if (2) is a net of a Latin regular hexahedron of order 2n, then the sextuple (A, B, C, D, E, F) is a solution of (1).

Latin hexahedra

Existence

Theorem

(1) There exists a Latin quasi-sudoku regular hexahedron of order 4*n* with multiplicity *n*(2) There exists a Latin sudoku regular hexahedron of order 4

Related combinatorial structures and applications

Latin three-axis design

• A system of Latin rectangles with variables (V, W, Y)

$$> \ge W Y \qquad V >$$

 A solution (A, C, D) is called a Latin three-axis design of order n

Related combinatorial structures and applications

Latin three-axis design and its net

• Latin three-axis design (*A*, *C*, *D*) is considered as a complex with three axes *op*, *oq* and *or*

・ コット (雪) (小田) (コット 日)

-Related combinatorial structures and applications

Latin four-axis design

• System of Latin rectangles with variables (*R*, *T*, *U*, *V*, *W*, *Y*)

A solution (A, B, C, D, E, F) is called a Latin four-axis design

Related combinatorial structures and applications

Existence

Theorem

(1) There exists a Latin three-axis design of order 2n(2) There exists a Latin four-axis design of order n

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

Related combinatorial structures and applications

1-factor of a graph

• A subgraph of G = (V, E) is called a factor if it includes V

- 1-factor of G is a spanning 1-regular subgraph of G
- *G* is called 1-factorizable if *E* can be partitioned into disjoint 1-factors

Related combinatorial structures and applications

1-factorization

Lemma

(1) $K_{2n,2n,2n}$ is 1-factorizable if and only if there exists a Latin three-axis design of order 2n(2) $K_{n,n,n,n}$ is 1-factorizable if and only if there exists a Latin four-axis design of order n

Related combinatorial structures and applications

1-factorization

Theorem

 $K_{2n,2n,2n}$ and $K_{n,n,n,n}$ are 1-factorizable for every positive integer n

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

-Related combinatorial structures and applications

Perfect 1-factorization

- A 1-factorization of a graph *G* is called *perfect* if the union of any two distinct 1-factors forms a Hamilton cycle of *G*
- A complete bipartite graph has a perfect 1-factorization (I.Wanless)
 - $K_{p,p}$ has a perfect 1-factorization for every prime p
 - $K_{2p-1,2p-1}$ has a perfect 1-factorization for every prime p
 - K_{p^2,p^2} have a perfect 1-factorization for every odd prime p

(日) (日) (日) (日) (日) (日) (日)

Related combinatorial structures and applications

1-factorization of K_{2,2,2}

Theorem

Every 1-factorization of $K_{2,2,2}$ is perfect

- We also observed that $K_{2,2,2,2}$ and $K_{3,3,3,3}$ have perfect 1-factorizations
- Can we characterize integers *n* for which *K_{n,n,n}* (or *K_{n,n,n,n}*) has a perfect 1-factorization?
- There exists a pan-Hamiltonian square of order *n* if and only if *K_{n,n}* has a perfect 1-factorization (Wanless)
 Can we characterize a similar property for *K_{n,n,n}* and *K_{n,n,n,n}*?

Construction of a Latin regular hexahedron using Latin three-axis designs

Construction of a Latin regular hexahedron using Latin three-axis designs

- Suppose L_1 and L_2 are Latin three-axis designs such that $|L_1| = \{1, 2, 3, \dots, 4n\}$ and $|L_2| = \{4n + 1, 4n + 2, 4n + 3, \dots, 8n\}$ $L_1 : \begin{bmatrix} A \\ \hline C \end{bmatrix} \qquad L_2 : \begin{bmatrix} E \\ \hline B \end{bmatrix}$
- We obtain a Latin regular hexahedron pasting L₁ and L₂

(日) (日) (日) (日) (日) (日) (日)

Construction of a Latin regular hexahedron using Latin three-axis designs

Nets of Latin regular hexahedron obtained by pasting L_1 and L_2

Construction of a Latin regular hexahedron using Latin three-axis designs

Separable Latin regular hexahedron

A Latin regular hexahedron is called *separable* if it can be constructed from two three-axis designs D₁ and D₂ with |D₁| ∩ |D₂| = Ø, and *inseparable* otherwise.

Construction of a Latin regular hexahedron using Latin three-axis designs

Separable Latin regular hexahedron

Theorem

Every Latin regular hexahedron of order 2 is separable.

Construction of a Latin regular hexahedron using Latin three-axis designs

Example of an inseparable Latin regular hexahedron

Latin regular hexahedron below is inseparable

Construction of a Latin regular hexahedron using Latin three-axis designs

To check separability

- Let L be a Latin regular hexahedron of order 2n. For every integer i in {1,2,3,...,8n}, we define L(i) to be the set of integers that are placed on the cells of L in contrapositions of the cells on which i is placed.
- If L_2 is obtained from L_1 by transposing integers on a cell and its contraposition, then $L_1(i) = L_2(i)$ holds for every $i \in \{1, 2, 3..., 8n\}$

(日) (日) (日) (日) (日) (日) (日)