On Some Cases of the Directed Uniform Hamilton-Waterloo Problem

Fatih Yetgin

Department of Mathematics, Gebze Technical University, Gebze, Turkey

Join work with Sibel Özkan and Uğur Odabaşı

Outline

1 Introduction

2 The Directed Hamilton-Waterloo Problem

3 Preliminary Results

4 Solutions to HWP* $(v; m^r, (2m)^s)$

Introduction ●00000	DHWP 000000	Preliminary Results	Solutions to HWP* $(v; m^{f}, (2m)^{S})$

• A *decomposition* of a graph *G* is a set $\mathcal{H} = \{H_1, H_2, \dots, H_k\}$ of edge-disjoint subgraphs of *G* such that $\bigcup_{i=1}^k E(H_i) = E(G)$. It is called an $\{H_1, H_2, \dots, H_k\}$ -decomposition of *G*.

Introduction ••••••	DHWP 000000	Preliminary Results	Solutions to HWP ⁺ ($v; m', (2m)^3$)

• A *decomposition* of a graph *G* is a set $\mathcal{H} = \{H_1, H_2, \dots, H_k\}$ of edge-disjoint subgraphs of *G* such that $\bigcup_{i=1}^{k} E(H_i) = E(G)$. It is called an $\{H_1, H_2, \dots, H_k\}$ -decomposition of *G*.

Example

A { C_6, C_3, C_3 }-decomposition of $K_6 - I$.

Introduction ••••••	DHWP 000000	Preliminary Results	Solutions to HWP* $(v; m', (2m)^{s})$

• A *decomposition* of a graph *G* is a set $\mathcal{H} = \{H_1, H_2, \dots, H_k\}$ of edge-disjoint subgraphs of *G* such that $\bigcup_{i=1}^{k} E(H_i) = E(G)$. It is called an $\{H_1, H_2, \dots, H_k\}$ -decomposition of *G*.

Example

A { C_6, C_3, C_3 }-decomposition of $K_6 - I$.

Introduction ••••••	DHWP 000000	Preliminary Results	Solutions to HWP* $(v; m^{r}, (2m)^{S})$

• A *decomposition* of a graph *G* is a set $\mathcal{H} = \{H_1, H_2, \dots, H_k\}$ of edge-disjoint subgraphs of *G* such that $\bigcup_{i=1}^{k} E(H_i) = E(G)$. It is called an $\{H_1, H_2, \dots, H_k\}$ -decomposition of *G*.

Example

A { C_6, C_3, C_3 }-decomposition of $K_6 - I$.

ntroduction		Solutions to HWP* $(v; m^r, (2m)^s)$

A *factor* in a graph G is a spanning subgraph of G. A *k*-regular spanning subgraph of G is called a *k*-*factor* of G.

Introduction ○●○○○○	DHWP 000000	Preliminary Results	Solutions to HWP* $(v; m^r, (2m)^s)$

- A *factor* in a graph G is a spanning subgraph of G. A *k*-regular spanning subgraph of G is called a *k*-*factor* of G.
- A *k*-factorization of a graph *G* is a decomposition of edges set of *G* into edge disjoint *k*-factors.

Introduction 00000	DHWP 000000	Preliminary Results	Solutions to HWP* (v; m ^r , (2m) ^S)

- A factor in a graph G is a spanning subgraph of G. A k-regular spanning subgraph of G is called a k-factor of G.
- A k-factorization of a graph G is a decomposition of edges set of G into edge disjoint k-factors.

There is a 2-factorization $K_6 - I$.

Introduction 00000	DHWP 000000	Preliminary Results	Solutions to HWP* $(v; m^r, (2m)^s)$

- A factor in a graph G is a spanning subgraph of G. A k-regular spanning subgraph of G is called a k-factor of G.
- A *k*-factorization of a graph *G* is a decomposition of edges set of *G* into edge disjoint *k*-factors.

There is a 2-factorization $K_6 - I$.

• A $\{F_1^{k_1}, F_2^{k_2}, \dots, F_l^{k_l}\}$ -factorization of a graph *G* is a decomposition which consists precisely of k_i factors isomorphic to F_i .

Introduction 00●000	Preliminary Results	Solutions to HWP* $(v; m^r, (2m)^s)$

- A $\{F_1^{k_1}, F_2^{k_2}, \dots, F_l^{k_l}\}$ -factorization of a graph *G* is a decomposition which consists precisely of k_i factors isomorphic to F_i .
- When each F_i factor consists of only n_i cycles for $i \in [1, t]$, then we will call the F_i factor as a C_{n_i} -factor and call this factorization as a $\{C_{n_1}^{r_1}, C_{n_2}^{r_2}, \ldots, C_{n_t}^{r_t}\}$ -factorization.

Introduction 000000		Solutions to HWP* $(v; m^r, (2m)^s)$

- A $\{F_1^{k_1}, F_2^{k_2}, \dots, F_l^{k_l}\}$ -factorization of a graph *G* is a decomposition which consists precisely of k_i factors isomorphic to F_i .
- When each F_i factor consists of only n_i cycles for $i \in [1, t]$, then we will call the F_i factor as a C_{n_i} -factor and call this factorization as a $\{C_{n_1}^{r_1}, C_{n_2}^{r_2}, \ldots, C_{n_l}^{r_l}\}$ -factorization.

A $\{F_1, F_2, F_3\}$ -factorization of K_7 .

Introduction 00●000	Preliminary Results	Solutions to HWP* $(v; m^r, (2m)^s)$

- A $\{F_1^{k_1}, F_2^{k_2}, \dots, F_l^{k_l}\}$ -factorization of a graph *G* is a decomposition which consists precisely of k_i factors isomorphic to F_i .
- When each F_i factor consists of only n_i cycles for $i \in [1, t]$, then we will call the F_i factor as a C_{n_i} -factor and call this factorization as a $\{C_{n_1}^{r_1}, C_{n_2}^{r_2}, \ldots, C_{n_t}^{r_t}\}$ -factorization.

A $\{F_1, F_2, F_3\}$ -factorization of K_7 .

ntroduction 00●000	Preliminary Results	Solutions to HWP* $(v; m^r, (2m)^s)$

- A $\{F_i^{k_1}, F_i^{k_2}, \dots, F_i^{k_i}\}$ -factorization of a graph *G* is a decomposition which consists precisely of k_i factors isomorphic to F_i .
- When each F_i factor consists of only n_i cycles for $i \in [1, t]$, then we will call the F_i factor as a C_{n_i} -factor and call this factorization as a $\{C_{n_1}^{r_1}, C_{n_2}^{r_2}, \ldots, C_{n_t}^{r_t}\}$ -factorization.

A $\{F_1, F_2, F_3\}$ -factorization of K_7 .

The Oberwolfach Problem

■ This problem is formulated as a seating problem : can v (v must be odd) people be seated at round tables of a given size on successive days (^{v-1}/₂) so that each person sits next to every other person once ?

The Oberwolfach Problem

- This problem is formulated as a seating problem : can v (v must be odd) people be seated at round tables of a given size on successive days (^{v-1}/₂) so that each person sits next to every other person once ?
- The problem asks for a 2-factorization of the complete graph K_v (or for even v, 2-factorization of $K_v I$ (spouse-avoiding version)) into 2-factors each of which is isomorphic to a given 2-factor F.

The Hamilton-Waterloo Problem

In the Hamilton-Waterloo Problem, there are two conference venues with different seating arrangements.

000000

The Hamilton-Waterloo Problem

- In the Hamilton-Waterloo Problem, there are two conference venues with different seating arrangements.
- The Hamilton-Waterloo Problem asks for a 2-factorization of the complete graph K_{v} (or for even v, 2-factorization of $K_{v} - I$) in which r of its 2-factors are isomorphic to a given 2-factor F_1 , and remaining s of its 2-factors are isomorphic to a given 2-factor F_2 .

The Hamilton-Waterloo Problem

- In the Hamilton-Waterloo Problem, there are two conference venues with different seating arrangements.
- The Hamilton-Waterloo Problem asks for a 2-factorization of the complete graph K_v (or for even v, 2-factorization of $K_v I$) in which r of its 2-factors are isomorphic to a given 2-factor F_1 , and remaining s of its 2-factors are isomorphic to a given 2-factor F_2 .
- If F_1 is an *m*-cycle factor and F_2 is an *n*-cycle factor, then the corresponding Hamilton-Waterloo problem is denoted by HWP($v; C_m^r, C_n^s$).

Lemma (Necessary Conditions)

Let v, m, n, r and s be non-negative integers with m, $n \ge 3$. If there exists a solution to $HWP(v; C_m^r, C_n^s)$, then

Lemma (Necessary Conditions)

Let v, m, n, r and s be non-negative integers with m, $n \ge 3$. If there exists a solution to $HWP(v; C_m^r, C_n^s)$, then

1) if r > 0, $v \equiv 0 \pmod{m}$,

Lemma (Necessary Conditions)

Let v, m, n, r and s be non-negative integers with m, $n \ge 3$. If there exists a solution to $HWP(v; C_m^r, C_n^s)$, then

- 1) if r > 0, $v \equiv 0 \pmod{m}$,
- 2) if s > 0, $v \equiv 0 \pmod{n}$,

Lemma (Necessary Conditions)

Let v, m, n, r and s be non-negative integers with m, $n \ge 3$. If there exists a solution to $HWP(v; C_m^r, C_n^s)$, then

- 1) if $r > 0, v \equiv 0 \pmod{m}$,
- 2) if $s > 0, v \equiv 0 \pmod{n}$,

3)
$$r+s=\left\lfloor \frac{v-1}{2}\right\rfloor$$
.

DHWP	
00000	

For a simple graph *G*, we use *G*^{*} to denote symmetric digraph with vertex set $V(G^*) = V(G)$ and arc set $A(G^*) = \bigcup_{\{x,y\} \in E(G)} \{(x,y), (y,x)\}$. Hence, K_v^* is the *complete symmetric digraph* of order *v*.

DHWP	
00000	

For a simple graph *G*, we use *G*^{*} to denote symmetric digraph with vertex set $V(G^*) = V(G)$ and arc set $A(G^*) = \bigcup_{\{x,y\} \in E(G)} \{(x, y), (y, x)\}$. Hence, K_v^* is the *complete symmetric digraph* of order *v*.

■ K^{*}_(x:y) is used to denote the *complete symmetric equipartite digraph* with y parts of size x.

DHWP	
00000	

For a simple graph *G*, we use *G*^{*} to denote symmetric digraph with vertex set $V(G^*) = V(G)$ and arc set $A(G^*) = \bigcup_{\{x,y\} \in E(G)} \{(x,y), (y,x)\}$. Hence, K_v^* is the *complete symmetric digraph* of order *v*.

• $K_{(x;y)}^*$ is used to denote the *complete symmetric equipartite digraph* with y parts of size x.

• We use $(x, y)^*$ to denote the double arc which consists of (x, y) and (y, x).

In the Directed versions of the Oberwolfach and the Hamilton-Waterloo Problems, K_v^* is decomposed into factors of directed cycles.

In the Directed versions of the Oberwolfach and the Hamilton-Waterloo Problems, K_v^* is decomposed into factors of directed cycles.

In the uniform version of the Directed Oberwolfach Problem, we focus on finding a factorization consisting only of directed *m*-cycles. This Problem is denoted by OP*(*m^k*).

In the Directed versions of the Oberwolfach and the Hamilton-Waterloo Problems, K_v^* is decomposed into factors of directed cycles.

- In the uniform version of the Directed Oberwolfach Problem, we focus on finding a factorization consisting only of directed *m*-cycles. This Problem is denoted by OP*(*m^k*).
- Similarly, HWP*(v; m^r, n^s) denotes the uniform directed Hamilton-Waterloo Problem with directed cycle sizes m and n.

In the Directed versions of the Oberwolfach and the Hamilton-Waterloo Problems, K_v^* is decomposed into factors of directed cycles.

- In the uniform version of the Directed Oberwolfach Problem, we focus on finding a factorization consisting only of directed *m*-cycles. This Problem is denoted by OP*(*m^k*).
- Similarly, HWP*(v; m^r, n^s) denotes the uniform directed Hamilton-Waterloo Problem with directed cycle sizes m and n.
- Any of its solutions will be referred to as a $\{\vec{C}_m^r, \vec{C}_n^s\}$ -factorization of K_v^* .

DHWP
000000

$\mathrm{HWP}^*(8;4^5,8^2)$ has a solution. ($\{\vec{C}_4^5,\vec{C}_8^2\}$ -factorization of K_8^*)

 $\mathrm{HWP}^*(8;4^5,8^2)$ has a solution. ($\{\vec{C}_4^5,\vec{C}_8^2\}$ -factorization of K_8^*)

DHWP 000●00 Preliminary Results

Solutions to HWP* $(v; m^r, (2m)^s)$

Necessary Conditions

Lemma (Necessary Conditions)

Let v, m, n, r and s be non-negative integers with m, $n \ge 2$. If there exists a solution to $HWP^*(v; m^r, n^s)$, then

Lemma (Necessary Conditions)

Let v, m, n, r and s be non-negative integers with m, $n \ge 2$. If there exists a solution to $HWP^*(v; m^r, n^s)$, then

1) if r > 0, $v \equiv 0 \pmod{m}$,

Lemma (Necessary Conditions)

Let v, m, n, r and s be non-negative integers with m, $n \ge 2$. If there exists a solution to $HWP^*(v; m^r, n^s)$, then

- 1) if r > 0, $v \equiv 0 \pmod{m}$,
- 2) if s > 0, $v \equiv 0 \pmod{n}$,

Lemma (Necessary Conditions)

Let v, m, n, r and s be non-negative integers with m, $n \ge 2$. If there exists a solution to $HWP^*(v; m^r, n^s)$, then

- 1) if r > 0, $v \equiv 0 \pmod{m}$,
- 2) if s > 0, $v \equiv 0 \pmod{n}$,
- 3) r + s = v 1.

Lemma (Necessary Conditions)

Let v, m, n, r and s be non-negative integers with m, $n \ge 2$. If there exists a solution to $HWP^*(v; m^r, n^s)$, then

- 1) if r > 0, $v \equiv 0 \pmod{m}$,
- 2) if s > 0, $v \equiv 0 \pmod{n}$,
- 3) r + s = v 1.

Observation (F.Yetgin et al. (2023))

If $HWP(v; m^r, n^s)$ has a solution for some r and s and v is odd, then $HWP^*(v; m^{2r}, n^{2s})$ has a solution for the same r and s.

Lemma (Necessary Conditions)

Let v, m, n, r and s be non-negative integers with m, $n \ge 2$. If there exists a solution to $HWP^*(v; m^r, n^s)$, then

- 1) if $r > 0, v \equiv 0 \pmod{m}$,
- 2) if s > 0, $v \equiv 0 \pmod{n}$,
- 3) r + s = v 1.

Observation (F.Yetgin et al. (2023))

If HWP($v; m^r, n^s$) has a solution for some r and s and v is odd, then HWP^{*}($v; m^{2r}, n^{2s}$) has a solution for the same r and s.

take two copies of each 2-factor

Lemma (Necessary Conditions)

Let v, m, n, r and s be non-negative integers with m, $n \ge 2$. If there exists a solution to $HWP^*(v; m^r, n^s)$, then

- 1) if $r > 0, v \equiv 0 \pmod{m}$,
- 2) if s > 0, $v \equiv 0 \pmod{n}$,
- 3) r + s = v 1.

Observation (F.Yetgin et al. (2023))

If $HWP(v; m^r, n^s)$ has a solution for some r and s and v is odd, then $HWP^*(v; m^{2r}, n^{2s})$ has a solution for the same r and s.

- take two copies of each 2-factor
- replace each edge $\{x, y\}$ with the arcs (x, y) and (y, x) in the two 2-factors.

Lemma (Necessary Conditions)

Let v, m, n, r and s be non-negative integers with m, $n \ge 2$. If there exists a solution to $HWP^*(v; m^r, n^s)$, then

- 1) if $r > 0, v \equiv 0 \pmod{m}$,
- 2) if s > 0, $v \equiv 0 \pmod{n}$,
- 3) r + s = v 1.

Observation (F.Yetgin et al. (2023))

If HWP($v; m^r, n^s$) has a solution for some r and s and v is odd, then HWP^{*}($v; m^{2r}, n^{2s}$) has a solution for the same r and s.

- take two copies of each 2-factor
- replace each edge $\{x, y\}$ with the arcs (x, y) and (y, x) in the two 2-factors.

Proposition (F.Yetgin et al. (2023))

Let G be a graph and H be a subgraph of G. If G has an H-factorization then, G^* has an H*-factorization.

Fatih Yetgin

Introd	lucti	on
000	00	

The following theorem summarizes the previous results on the uniform version of the Directed Oberwolfach Problem. [By R. Abel (2002) P. Adams and D. Bryant, J. C. Bermond et al. (1979), F. E. Bennett and Zhang (1990), Burgess and Sajna (2014), A. C. Burgess et al. (2018), A. Lacaze (2023)]

The following theorem summarizes the previous results on the uniform version of the Directed Oberwolfach Problem. [By R. Abel (2002) P. Adams and D. Bryant, J. C. Bermond et al. (1979), F. E. Bennett and Zhang (1990), Burgess and Sajna (2014), A. C. Burgess et al. (2018), A. Lacaze (2023)]

Theorem

Let *m* and *k* be nonnegative integers. Then, $OP^*(m^k)$ has a solution if and only if $(m, k) \notin \{(3, 2), (4, 1), (6, 1)\}$.

The following theorem summarizes the previous results on the uniform version of the Directed Oberwolfach Problem.[By R. Abel (2002) P. Adams and D. Bryant, J. C. Bermond et al. (1979), F. E. Bennett and Zhang (1990), Burgess and Sajna (2014), A. C. Burgess et al. (2018), A. Lacaze (2023)]

Theorem

Let *m* and *k* be nonnegative integers. Then, $OP^*(m^k)$ has a solution if and only if $(m, k) \notin \{(3, 2), (4, 1), (6, 1)\}$.

The directed Oberwolfach problem for complete symmetric equipartite digraphs and uniform-length cycles was solved by Francetić and Šajna (2023).

The following theorem summarizes the previous results on the uniform version of the Directed Oberwolfach Problem. [By R. Abel (2002) P. Adams and D. Bryant, J. C. Bermond et al. (1979), F. E. Bennett and Zhang (1990), Burgess and Sajna (2014), A. C. Burgess et al. (2018), A. Lacaze (2023)]

Theorem

Let *m* and *k* be nonnegative integers. Then, $OP^*(m^k)$ has a solution if and only if $(m, k) \notin \{(3, 2), (4, 1), (6, 1)\}$.

The directed Oberwolfach problem for complete symmetric equipartite digraphs and uniform-length cycles was solved by Francetić and Šajna (2023).

Theorem (F.Yetgin et al. (2023))

For nonnegative integers r and s, $HWP^*(v; m^r, n^s)$ has a solution for

1 $(m, n) \in \{(4, 6), (4, 8), (4, 12), (4, 16), (6, 12), (8, 16)\}$ when v is even,

2 $(m, n) \in \{(3, 5), (3, 15), (5, 15)\}$ when v is odd

if and only if r + s = v - 1 and lcm(m, n)|v except possibly $s \in \{1, 2, 3\}$ when (m, n) = (3, 5) and s = 1 when (m, n) = (3, 15).

Main Result

Theorem (F.Yetgin et al. (2023))

Let r, s be nonnegative integers, and let $m \ge 4$ be even. Then, $\operatorname{HWP}^*(v; m^r, (2m)^s)$ has a solution if and only if m|v, r + s = v - 1 and $v \ge 4$ except for $(s, v, m) \in \{(0, 4, 4), (0, 6, 3), (0, 6, 6)\}$, and except possibly when $s \in \{1, 3\}$.

Preliminary Results

Lemma (F.Yetgin et al. (2023))

 K_{2x}^* has a K_2^* -factorization for every integer $x \ge 1$.

Preliminary Results

Lemma (F.Yetgin et al. (2023))

 K_{2x}^* has a K_2^* -factorization for every integer $x \ge 1$.

Lemma (F.Yetgin et al. (2023))

The complete symmetric equipartite digraph $K^*_{(x:y)}$ has a \vec{C}_m -factorization for $m \ge 3$ and $x \ge 2$ if m|xy, x(y-1) is even, m is even when y = 2.

Preliminary Results

Lemma (F.Yetgin et al. (2023))

 K_{2x}^* has a K_2^* -factorization for every integer $x \ge 1$.

Lemma (F.Yetgin et al. (2023))

The complete symmetric equipartite digraph $K^*_{(x:y)}$ has a \vec{C}_m -factorization for $m \ge 3$ and $x \ge 2$ if m|xy, x(y-1) is even, m is even when y = 2.

Lemma (Burgess and Sajna (2014))

Let $m \ge 4$ be an even integer and x be a positive integer. Then $K^*_{(\frac{mx}{2}:2)}$ has a \vec{C}_m -factorization.

Introduction 000000	DHWP 000000	Preliminary Results	Solutions to HWP* ($v; m^r, (2m)^s$)
Preliminary	/ Results		

Introduction 000000	DHWP 000000	Preliminary Results	Solutions to HWP* $(v; m^r, (2m)^s)$
Preliminary	Results		

• αG will denote the vertex disjoint union of the α copies of G.

Introduction 000000	DHWP 000000	Preliminary Results	Solutions to HWP* $(v; m^r, (2m)^s)$
Preliminary Resu	ılts		

• αG will denote the vertex disjoint union of the α copies of G.

Example K_6^* is isomorphic to $2K_3^* \oplus K_{(3:2)}^*$

Introduction 000000	DHWP 000000	Preliminary Results	Solutions to HWP [*] $(v; m^r, (2m)^s)$
Preliminary Resu	ılts		

• αG will denote the vertex disjoint union of the α copies of G.

Example

 K_6^* is isomorphic to $2K_3^* \oplus K_{(3:2)}^*$

Introduction	DHWP 000000	Preliminary Results	Solutions to HWP* $(v; m^r, (2m)^s)$
Preliminary	/ Results		

• αG will denote the vertex disjoint union of the α copies of G.

Example

 K_6^* is isomorphic to $2K_3^* \oplus K_{(3:2)}^*$

ntroduction	DHWP 000000	Preliminary Results	Solutions to HWP* $(v; m^r, (2m)^s)$
Preliminary F	Reculte		

• αG will denote the vertex disjoint union of the α copies of G.

Preliminary Results

Solutions to HWP* $(v; m^r, (2m)^s)$

Preliminary Results

Solutions to HWP* $(v; m^r, (2m)^s)$

Preliminary Results

Solutions to HWP* $(v; m^r, (2m)^s)$

Preliminary Results

Solutions to HWP* $(v; m^r, (2m)^s)$

The Blow-Up Construction

■ K_{mx}^* has a { $F_1, F_2, ..., F_{2x-1}$ }-factorization. (K_{2x}^* has a K_2^* -factorization)

Preliminary Results

Solutions to HWP* $(v; m^r, (2m)^s)$

$$2x-2$$

Preliminary Results

Solutions to HWP* $(v; m^r, (2m)^s)$

$$- x \mathcal{N}_m \oplus \underbrace{\mathcal{M}_{(\frac{m}{2}:2)} \oplus \mathcal{M}_{(\frac{m}{2}:2)} \oplus \cdots \oplus \mathcal{M}_{(\frac{m}{2}:2)}}_{2x-2}$$

$$\mathcal{K}_{2mx}^* \cong x\mathcal{K}_{2m}^* \oplus \underbrace{x\mathcal{K}_{(m:2)}^* \oplus x\mathcal{K}_{(m:2)}^* \oplus \dots \oplus x\mathcal{K}_{(m:2)}^*}_{2x-2}$$

Introduction	DHWP 000000	Preliminary Results	Solutions to HWP* $(v; m^r, (2m)^s)$

■ Let D be a digraph and $D_0, D_1, ..., D_{k-1}$ be k vertex disjoint copies of D with $v_i \in V(D_i)$ for each $v \in V(D)$. Then, D[k] has the vertex set $V(D[k]) = V(D_0) \cup V(D_1) \cup \cdots \cup V(D_{k-1})$ and arc set $A(D[k]) = \{(u_i, v_j) : (u, v) \in A(D) \text{ and } 0 \le i, j \le k-1\}$. (Note that $K_m^*[2] \cong K_{2m}^* - mK_2^*$ and $K_y^*[x] \cong K_{(x;y)}^*$)

Introduction 000000	DHWP 000000	Preliminary Results	Solutions to HWP* $(v; m^{r}, (2m)^{s})$

■ Let D be a digraph and $D_0, D_1, ..., D_{k-1}$ be k vertex disjoint copies of D with $v_i \in V(D_i)$ for each $v \in V(D)$. Then, D[k] has the vertex set $V(D[k]) = V(D_0) \cup V(D_1) \cup \cdots \cup V(D_{k-1})$ and arc set $A(D[k]) = \{(u_i, v_j) : (u, v) \in A(D) \text{ and } 0 \le i, j \le k-1\}$. (Note that $K_m^*[2] \cong K_{2m}^* - mK_2^*$ and $K_y^*[x] \cong K_{(x;y)}^*$)

Example

Introduction 000000		Solutions to HWP [*] $(v; m^r, (2m)^s)$

■ Let D be a digraph and $D_0, D_1, ..., D_{k-1}$ be k vertex disjoint copies of D with $v_i \in V(D_i)$ for each $v \in V(D)$. Then, D[k] has the vertex set $V(D[k]) = V(D_0) \cup V(D_1) \cup \cdots \cup V(D_{k-1})$ and arc set $A(D[k]) = \{(u_i, v_j) : (u, v) \in A(D) \text{ and } 0 \le i, j \le k-1\}$. (Note that $K_m^*[2] \cong K_{2m}^* - mK_2^*$ and $K_y^*[x] \cong K_{(x;y)}^*$)

Example

 \vec{C}_6 , \vec{C}_6 [2], C_6^* and C_6^* [2] can be graphed as follows.

Č,

Introduction 000000		Solutions to HWP* $(v; m^r, (2m)^s)$

■ Let D be a digraph and $D_0, D_1, ..., D_{k-1}$ be k vertex disjoint copies of D with $v_i \in V(D_i)$ for each $v \in V(D)$. Then, D[k] has the vertex set $V(D[k]) = V(D_0) \cup V(D_1) \cup \cdots \cup V(D_{k-1})$ and arc set $A(D[k]) = \{(u_i, v_j) : (u, v) \in A(D) \text{ and } 0 \le i, j \le k-1\}$. (Note that $K_m^*[2] \cong K_{2m}^* - mK_2^*$ and $K_y^*[x] \cong K_{(x;y)}^*$)

Example

Introduction 000000		Solutions to HWP* $(v; m^{r}, (2m)^{s})$

■ Let D be a digraph and $D_0, D_1, ..., D_{k-1}$ be k vertex disjoint copies of D with $v_i \in V(D_i)$ for each $v \in V(D)$. Then, D[k] has the vertex set $V(D[k]) = V(D_0) \cup V(D_1) \cup \cdots \cup V(D_{k-1})$ and arc set $A(D[k]) = \{(u_i, v_j) : (u, v) \in A(D) \text{ and } 0 \le i, j \le k-1\}$. (Note that $K_m^*[2] \cong K_{2m}^* - mK_2^*$ and $K_y^*[x] \cong K_{(x;y)}^*$)

Example

Introduction 000000	DHWP 000000	Preliminary Results	Solutions to HWP* $(v; m^{r}, (2m)^{s})$

■ Let D be a digraph and $D_0, D_1, ..., D_{k-1}$ be k vertex disjoint copies of D with $v_i \in V(D_i)$ for each $v \in V(D)$. Then, D[k] has the vertex set $V(D[k]) = V(D_0) \cup V(D_1) \cup \cdots \cup V(D_{k-1})$ and arc set $A(D[k]) = \{(u_i, v_j) : (u, v) \in A(D) \text{ and } 0 \le i, j \le k-1\}$. (Note that $K_m^*[2] \cong K_{2m}^* - mK_2^*$ and $K_y^*[x] \cong K_{(x;y)}^*$)

Example

For all odd $m \ge 3$, K_m decomposes into $\left(\frac{m-1}{2}\right)$ Hamilton cycles.

For all odd $m \ge 3$, K_m decomposes into $\left(\frac{m-1}{2}\right)$ Hamilton cycles.

Lemma (Walecki (1861))

Let F_m be a 1-factor of K_m with edge set

$$E(F_m) = \{\{0, m/2\}, \{i, m-i\} : 1 \le i \le (m/2) - 1\}.$$

For all even $m \ge 4$, $K_m - F_m$ has an Hamilton cycle decomposition with prescribed cycles $\{C, \sigma(C), \sigma^2(C), \dots, \sigma^{\frac{m-4}{2}}(C)\}$ for $\sigma = (0)(1, 2, 3, \dots, m-2, m-1)$ where $C = (0, 1, 2, m-1, 3, m-2, \dots, \frac{m}{2} - 1, \frac{m}{2} + 2, \frac{m}{2}, \frac{m}{2} + 1)$.

For all odd $m \ge 3$, K_m decomposes into $\left(\frac{m-1}{2}\right)$ Hamilton cycles.

Lemma (Walecki (1861))

Let F_m be a 1-factor of K_m with edge set

$$E(F_m) = \{\{0, m/2\}, \{i, m-i\} : 1 \le i \le (m/2) - 1\}.$$

For all even $m \ge 4$, $K_m - F_m$ has an Hamilton cycle decomposition with prescribed cycles $\{C, \sigma(C), \sigma^2(C), \dots, \sigma^{\frac{m-4}{2}}(C)\}$ for $\sigma = (0)(1, 2, 3, \dots, m-2, m-1)$ where $C = (0, 1, 2, m-1, 3, m-2, \dots, \frac{m}{2} - 1, \frac{m}{2} + 2, \frac{m}{2}, \frac{m}{2} + 1)$.

$$\mathcal{K}_m \cong \underbrace{\mathcal{C}_m \oplus \mathcal{C}_m \oplus \ldots \oplus \mathcal{C}_m}_{\frac{m-1}{2}} \Rightarrow$$

For all odd $m \ge 3$, K_m decomposes into $\left(\frac{m-1}{2}\right)$ Hamilton cycles.

Lemma (Walecki (1861))

Let F_m be a 1-factor of K_m with edge set

$$E(F_m) = \{\{0, m/2\}, \{i, m-i\} : 1 \le i \le (m/2) - 1\}.$$

For all even $m \ge 4$, $K_m - F_m$ has an Hamilton cycle decomposition with prescribed cycles $\{C, \sigma(C), \sigma^2(C), \ldots, \sigma^{\frac{m-4}{2}}(C)\}$ for $\sigma = (0)(1, 2, 3, \ldots, m-2, m-1)$ where $C = (0, 1, 2, m-1, 3, m-2, \ldots, \frac{m}{2} - 1, \frac{m}{2} + 2, \frac{m}{2}, \frac{m}{2} + 1)$.

$$K_m \cong \underbrace{C_m \oplus C_m \oplus \ldots \oplus C_m}_{\frac{m-1}{2}} \Rightarrow K_m^* \cong C_m^* \oplus C_m^* \oplus \ldots \oplus C_m^*$$
(1)

For all odd $m \ge 3$, K_m decomposes into $\left(\frac{m-1}{2}\right)$ Hamilton cycles.

Lemma (Walecki (1861))

Let F_m be a 1-factor of K_m with edge set

$$E(F_m) = \{\{0, m/2\}, \{i, m-i\} : 1 \le i \le (m/2) - 1\}.$$

For all even $m \ge 4$, $K_m - F_m$ has an Hamilton cycle decomposition with prescribed cycles $\{C, \sigma(C), \sigma^2(C), \ldots, \sigma^{\frac{m-4}{2}}(C)\}$ for $\sigma = (0)(1, 2, 3, \ldots, m-2, m-1)$ where $C = (0, 1, 2, m-1, 3, m-2, \ldots, \frac{m}{2} - 1, \frac{m}{2} + 2, \frac{m}{2}, \frac{m}{2} + 1)$.

$$K_m \cong \underbrace{C_m \oplus C_m \oplus \ldots \oplus C_m}_{\frac{m-1}{2}} \Rightarrow K_m^* \cong C_m^* \oplus C_m^* \oplus \ldots \oplus C_m^*$$
(1)

$$K_m \cong \underbrace{C \oplus C \oplus \ldots \oplus C}_{\frac{m-2}{2}} \oplus F_m \Rightarrow$$

Lemma (Walecki (1861))

For all odd $m \ge 3$, K_m decomposes into $\left(\frac{m-1}{2}\right)$ Hamilton cycles.

Lemma (Walecki (1861))

Let F_m be a 1-factor of K_m with edge set

$$E(F_m) = \{\{0, m/2\}, \{i, m-i\} : 1 \le i \le (m/2) - 1\}.$$

For all even $m \ge 4$, $K_m - F_m$ has an Hamilton cycle decomposition with prescribed cycles $\{C, \sigma(C), \sigma^2(C), \ldots, \sigma^{\frac{m-4}{2}}(C)\}$ for $\sigma = (0)(1, 2, 3, \ldots, m-2, m-1)$ where $C = (0, 1, 2, m-1, 3, m-2, \ldots, \frac{m}{2} - 1, \frac{m}{2} + 2, \frac{m}{2}, \frac{m}{2} + 1)$.

$$K_m \cong \underbrace{C_m \oplus C_m \oplus \ldots \oplus C_m}_{\frac{m-1}{2}} \Rightarrow K_m^* \cong C_m^* \oplus C_m^* \oplus \ldots \oplus C_m^*$$
(1)

$$K_m \cong \underbrace{C \oplus C \oplus \ldots \oplus C}_{\frac{m-2}{2}} \oplus F_m \Rightarrow K_m^* \cong C^* \oplus C^* \oplus \ldots \oplus C^* \oplus F_m^*$$
(2)

Lemma (Walecki (1861))

For all odd $m \ge 3$, K_m decomposes into $\left(\frac{m-1}{2}\right)$ Hamilton cycles.

Lemma (Walecki (1861))

Let F_m be a 1-factor of K_m with edge set

$$E(F_m) = \{\{0, m/2\}, \{i, m-i\} : 1 \le i \le (m/2) - 1\}.$$

For all even $m \ge 4$, $K_m - F_m$ has an Hamilton cycle decomposition with prescribed cycles $\{C, \sigma(C), \sigma^2(C), \dots, \sigma^{\frac{m-4}{2}}(C)\}$ for $\sigma = (0)(1, 2, 3, \dots, m-2, m-1)$ where $C = (0, 1, 2, m-1, 3, m-2, \dots, \frac{m}{2} - 1, \frac{m}{2} + 2, \frac{m}{2}, \frac{m}{2} + 1)$.

$$K_m \cong \underbrace{C_m \oplus C_m \oplus \ldots \oplus C_m}_{\frac{m-1}{2}} \Rightarrow K_m^* \cong C_m^* \oplus C_m^* \oplus \ldots \oplus C_m^*$$
(1)

$$K_m \cong \underbrace{C \oplus C \oplus \ldots \oplus C}_{\frac{m-2}{2}} \oplus F_m \Rightarrow K_m^* \cong C^* \oplus C^* \oplus \ldots \oplus C^* \oplus F_m^*$$
(2)

We use Γ_m^* to denote $C^*[2] \oplus F_m^*[2]$, for the rest of the presentation.

Fatih Yetgin

Definition

Let *B* be a finite additive group and let *S* be a subset of *B*, where *S* does not contain the identity of *B*. The Directed Cayley graph $\vec{X}(B; S)$ on *B* with connection set *S* is a digraph with $V(\vec{X}(B; S)) = B$ and $A(\vec{X}(B; S)) = \{(x, y) : x, y \in B, y - x \in S\}$.

Definition

Let *B* be a finite additive group and let *S* be a subset of *B*, where *S* does not contain the identity of *B*. The Directed Cayley graph $\vec{X}(B; S)$ on *B* with connection set *S* is a digraph with $V(\vec{X}(B; S)) = B$ and $A(\vec{X}(B; S)) = \{(x, y) : x, y \in B, y - x \in S\}$.

Definition

Let *B* be a finite additive group and let *S* be a subset of *B*, where *S* does not contain the identity of *B*. The Directed Cayley graph $\vec{X}(B; S)$ on *B* with connection set *S* is a digraph with $V(\vec{X}(B; S)) = B$ and $A(\vec{X}(B; S)) = \{(x, y) : x, y \in B, y - x \in S\}$.

Example

 $\vec{X}(\mathbb{Z}_9; \{-1,$

Definition

Let *B* be a finite additive group and let *S* be a subset of *B*, where *S* does not contain the identity of *B*. The Directed Cayley graph $\vec{X}(B; S)$ on *B* with connection set *S* is a digraph with $V(\vec{X}(B; S)) = B$ and $A(\vec{X}(B; S)) = \{(x, y) : x, y \in A, y - x \in S\}$.

Example

 $\vec{X}(\mathbb{Z}_9; \{-1, 2\})$

Introduction	DHWP 000000	Preliminary Results	Solutions to HWP* $(v; m^{r}, (2m)^{s})$

Let
$$I_{2m}^*$$
 be a K_2^* -factor of $K_{2m}^*(V(K_{2m}^*) = \mathbb{Z}_{2m})$ with $A(I_{2m}^*) = \{(i, m+i)^* : 0 \le i \le m-1\}$

Introduction	DHWP 000000	Preliminary Results	Solutions to HWP* $(v; m^r, (2m)^s)$

Let
$$I_{2m}^*$$
 be a K_2^* -factor of $K_{2m}^*(V(K_{2m}^*) = \mathbb{Z}_{2m})$ with $A(I_{2m}^*) = \{(i, m+i)^* : 0 \le i \le m-1\}$ and define the bijective function $f : \mathbb{Z}_{2m} \to \mathbb{Z}_2 \times \mathbb{Z}_m$ with

$$f(i) = \begin{cases} (0,i) & \text{if } i < m \\ (1,i) & \text{if } i \ge m \end{cases}$$

Introduction 000000	DHWP 000000	Preliminary Results	Solutions to HWP* (v; m ^r , (2m) ^S)

Let
$$I_{2m}^*$$
 be a K_2^* -factor of $K_{2m}^*(V(K_{2m}^*) = \mathbb{Z}_{2m})$ with $A(I_{2m}^*) = \{(i, m+i)^* : 0 \le i \le m-1\}$ and define the bijective function $f : \mathbb{Z}_{2m} \to \mathbb{Z}_2 \times \mathbb{Z}_m$ with

$$f(i) = \begin{cases} (0,i) & \text{if } i < m \\ (1,i) & \text{if } i \ge m \end{cases}$$

■ $A(I_{2m}^*)$ can be restated as a set $\{((0, i), (1, i))^* : 0 \le i \le m - 1\}$ on $\mathbb{Z}_2 \times \mathbb{Z}_m$ using this bijective function.

Let I_{2m}^* be a K_2^* -factor of $K_{2m}^*(V(K_{2m}^*) = \mathbb{Z}_{2m})$ with $A(I_{2m}^*) = \{(i, m+i)^* : 0 \le i \le m-1\}$ and define the bijective function $f : \mathbb{Z}_{2m} \to \mathbb{Z}_2 \times \mathbb{Z}_m$ with

$$f(i) = \begin{cases} (0,i) & \text{if } i < m \\ (1,i) & \text{if } i \ge m \end{cases}$$

■ $A(I_{2m}^*)$ can be restated as a set $\{((0, i), (1, i))^* : 0 \le i \le m - 1\}$ on $\mathbb{Z}_2 \times \mathbb{Z}_m$ using this bijective function.

We will represent $C_m^*[2]$ and $C_m^*[2] \oplus I_{2m}^*$ as the directed Cayley graphs $\vec{X}(\mathbb{Z}_2 \times \mathbb{Z}_m, S)$ and $\vec{X}(\mathbb{Z}_2 \times \mathbb{Z}_m, S \cup \{(1,0)\})$ where $S = \{(0,1), (1,1), (0,-1), (1,-1)\}$.

Introduction 000000	DHWP 000000	Preliminary Results	Solutions to HWP* $(v; m^r, (2m)^s)$

Also, a factor F_m^* is defined as a K_2^* -factor of K_m^* with $A(F_m^*) = \{(0, m/2)^*, (i, m-i)^* : 1 \le i \le (m/2) - 1\}$. The arc set of F_m^* which is denoted by $A(F_m^*)$, can be expressed as $\{((0,0), (0, m/2))^*, ((0,i), (0, m-i))^* : 1 \le i \le (m/2) - 1\}$ using above bijective function.

uction	DHWP	Solutions to HWP* ($v; m^r, (2m)^s$)
000	000000	0000000000000

Also, a factor F_m^* is defined as a K_2^* -factor of K_m^* with $A(F_m^*) = \{(0, m/2)^*, (i, m-i)^* : 1 \le i \le (m/2) - 1\}$. The arc set of F_m^* which is denoted by $A(F_m^*)$, can be expressed as $\{((0,0), (0, m/2))^*, ((0,i), (0, m-i))^* : 1 \le i \le (m/2) - 1\}$ using above bijective function.

Thus, the vertex set and the arc set of Γ_m^* can be represented as $V(\Gamma_m^*) = \mathbb{Z}_2 \times \mathbb{Z}_m$ and $A(\Gamma_m^*) = \bigcup_{j=0}^{m-1} \left\{ \left((i,j), (i,j+1) \right)^*, \left((i,j), (i+1,j+1) \right)^* \right\} \cup A(F_m^*)$ for i = 0, 1, respectively.

 $C_6^*,\,C_6^*[2],\,C_6^*[2]\oplus I_{12}^*$ and $F_m^*[2]$ can be graphed as follows.

 $C_6^*,\,C_6^*[2],\,C_6^*[2]\oplus I_{12}^*$ and $F_m^*[2]$ can be graphed as follows.

 C_6^* , C_6^* [2], C_6^* [2] $\oplus I_{12}^*$ and F_m^* [2] can be graphed as follows.

 C_6^* , $C_6^*[2]$, $C_6^*[2] \oplus I_{12}^*$ and $F_m^*[2]$ can be graphed as follows.

 C_6^* , $C_6^*[2]$, $C_6^*[2] \oplus I_{12}^*$ and $F_m^*[2]$ can be graphed as follows.

DHWP 000000

Solutions to HWP*($v; m^r, (2m)^s$)

Lemma (F.Yetgin et al. (2023))

Let $m \ge 4$ be even integer, then Γ_m^* has a $\{\vec{C}_m^r, \vec{C}_{2m}^s\}$ -factorization for $r \in \{0, 6\}$ and r + s = 6.

DHWP 000000

Solutions to HWP*($v; m^r, (2m)^s$)

Lemma (F. Yetgin et al. (2023))

Let $m \ge 4$ be even integer, then Γ_m^* has a $\{\vec{C}_m^r, \vec{C}_{2m}^s\}$ -factorization for $r \in \{0, 6\}$ and r + s = 6.

Proof : $(r = 0) \Gamma_m^*$ has a \vec{C}_{2m} -factorization.

Solutions to HWP*($v; m^r, (2m)^s$)

Lemma (F.Yetgin et al. (2023))

Let $m \ge 4$ be even integer, then Γ_m^* has a $\{\vec{C}_m^r, \vec{C}_{2m}^s\}$ -factorization for $r \in \{0, 6\}$ and r + s = 6.

Proof : $(r = 0) \Gamma_m^*$ has a \vec{C}_{2m} -factorization. $(r = 6) \Gamma_m^*$ has a \vec{C}_m -factorization for $m \equiv 0 \pmod{4}$.

Introduction 000000	DHWP 000000	Preliminary Results	Solutions to HWP [*] ($v; m^r, (2m)^s$)

When $m \equiv 2 \pmod{4}$, define the following directed *m*-cycles.

$$\vec{C}_m^{(0)} = (v_0, v_1, \ldots - v_{m-1})$$
 where $v_i = (0, i)$ for $0 \leq i \leq m-1$.

Introduction 000000	DHWP 000000	Preliminary Results	Solutions to HWP* $(v; m^r, (2m)^s)$

When $m \equiv 2 \pmod{4}$, define the following directed *m*-cycles.

$$\vec{C}_m^{(0)} = (v_0, v_1, \ldots - v_{m-1})$$
 where $v_i = (0, i)$ for $0 \leq i \leq m-1$.

$$\vec{\mathcal{C}}_{m}^{(1)} = (x_{0}, x_{1}, \dots x_{m-1}) \text{ where } x_{0} = (0, 0) \text{ and for } 1 \le i \le m-1$$

$$x_{i=} \begin{cases} \left(\frac{1-(-1)^{i}}{2}, \frac{m}{2} - \lfloor \frac{i}{2} \rfloor\right), \text{ for } i \equiv 1, 2 \pmod{4} \\ \left(\frac{1-(-1)^{i}}{2}, \frac{m}{2} + \lfloor \frac{i}{2} \rfloor\right), \text{ for } i = 0, 3 \pmod{4} \end{cases}$$

$$\vec{C}_m^{(2)} = (u_0, u_1, \dots, u_{m-1}) \text{ where } u_i = \begin{cases} (1, m-1-i) & \text{if } 0 \le i \le \frac{m}{2}, \\ (0, m-1-i) & \text{if } \frac{m}{2} + 1 \le i \le m-1. \end{cases}$$

DHWP 000000 Preliminary Results

$$\vec{C}_m^{(3)} = (y_0, y_1, \dots y_{m-1})$$
 where $y_0 = (0, 0), y_1 = (0, \frac{m}{2}), y_2 = (1, \frac{m}{2} + 1), y_3 = (1, \frac{m}{2} - 1)$ and

$$y_{i=} \begin{cases} \left(1, \frac{m}{2} + (-1)^{i+1} \lfloor \frac{i}{2} \rfloor\right) \text{ if } i \equiv 0, 1 \pmod{4} \\ \left(0, \frac{m}{2} + (-1)^{i} \lfloor \frac{i}{2} \rfloor\right) \text{ if } i = 2, 3 \pmod{4} \end{cases} \text{ for } 4 \leq i \leq m-1.$$

DHWP 000000 Preliminary Results

$$\vec{C}_m^{(3)} = (y_0, y_1, \dots, y_{m-1})$$
 where $y_0 = (0, 0), y_1 = (0, \frac{m}{2}), y_2 = (1, \frac{m}{2} + 1), y_3 = (1, \frac{m}{2} - 1)$ and

$$y_{i=} \begin{cases} \left(1, \frac{m}{2} + (-1)^{i+1} \lfloor \frac{i}{2} \rfloor\right) \text{ if } i \equiv 0, 1 \pmod{4} \\ \left(0, \frac{m}{2} + (-1)^{i} \lfloor \frac{i}{2} \rfloor\right) \text{ if } i = 2, 3 \pmod{4} \end{cases} \text{ for } 4 \leq i \leq m-1.$$

$$\vec{C}_{m}^{(4)} = (z_0, z_1, \dots, z_{m-1})$$
 where

$$Z_{i=} \begin{cases} y_{m-i} + (1,0) & \text{if } 1 \le i \le m-3 \\ y_{m-i} & \text{if } m-2 \le i \le m \end{cases}.$$

DHWP 000000 Preliminary Results

$$\vec{C}_m^{(3)} = (y_0, y_1, \dots, y_{m-1})$$
 where $y_0 = (0, 0), y_1 = (0, \frac{m}{2}), y_2 = (1, \frac{m}{2} + 1), y_3 = (1, \frac{m}{2} - 1)$ and

$$y_{i=} \begin{cases} \left(1, \frac{m}{2} + (-1)^{i+1} \lfloor \frac{i}{2} \rfloor\right) \text{ if } i \equiv 0, 1 \pmod{4} \\ \left(0, \frac{m}{2} + (-1)^{i} \lfloor \frac{i}{2} \rfloor\right) \text{ if } i = 2, 3 \pmod{4} \end{cases} \text{ for } 4 \leq i \leq m-1.$$

$$\vec{C}_{m}^{(4)} = (z_0, z_1, \dots, z_{m-1})$$
 where

$$z_{i=} \begin{cases} y_{m-i} + (1,0) & \text{if } 1 \le i \le m-3 \\ y_{m-i} & \text{if } m-2 \le i \le m \end{cases}.$$

 $F_0 = \vec{C}_m^{(0)} \cup (\vec{C}_m^{(0)} + (1,0)), F_1 = \vec{C}_m^{(1)} \cup R(\vec{C}_m^{(1)} + (1,0)),$

DHWP 000000 Preliminary Results

$$\vec{C}_m^{(3)} = (y_0, y_1, \dots, y_{m-1})$$
 where $y_0 = (0, 0), y_1 = (0, \frac{m}{2}), y_2 = (1, \frac{m}{2} + 1), y_3 = (1, \frac{m}{2} - 1)$ and

$$y_{i=} \begin{cases} \left(1, \frac{m}{2} + (-1)^{i+1} \lfloor \frac{i}{2} \rfloor\right) \text{ if } i \equiv 0, 1 \pmod{4} \\ \left(0, \frac{m}{2} + (-1)^{i} \lfloor \frac{i}{2} \rfloor\right) \text{ if } i = 2, 3 \pmod{4} \end{cases} \text{ for } 4 \leq i \leq m-1.$$

$$\vec{C}_{m}^{(4)} = (z_0, z_1, \dots, z_{m-1})$$
 where

$$z_{i=} \left\{ \begin{array}{ll} y_{m-i} + (1,0) & \text{if } 1 \le i \le m-3 \\ y_{m-i} & \text{if } m-2 \le i \le m \end{array} \right. .$$

 $F_0 = \vec{C}_m^{(0)} \cup (\vec{C}_m^{(0)} + (1,0)), F_1 = \vec{C}_m^{(1)} \cup R(\vec{C}_m^{(1)} + (1,0)), F_2 = R(F_1),$

DHWP 000000 Preliminary Results

$$\vec{C}_m^{(3)} = (y_0, y_1, \dots, y_{m-1})$$
 where $y_0 = (0, 0), y_1 = (0, \frac{m}{2}), y_2 = (1, \frac{m}{2} + 1), y_3 = (1, \frac{m}{2} - 1)$ and

$$y_{i=} \begin{cases} \left(1, \frac{m}{2} + (-1)^{i+1} \lfloor \frac{i}{2} \rfloor\right) \text{ if } i \equiv 0, 1 \pmod{4} \\ \left(0, \frac{m}{2} + (-1)^{i} \lfloor \frac{i}{2} \rfloor\right) \text{ if } i = 2, 3 \pmod{4} \end{cases} \text{ for } 4 \leq i \leq m-1.$$

$$\vec{C}_{m}^{(4)} = (z_0, z_1, \dots, z_{m-1})$$
 where

$$z_{i=} \left\{ \begin{array}{ll} y_{m-i} + (1,0) & \text{if } 1 \le i \le m-3 \\ y_{m-i} & \text{if } m-2 \le i \le m \end{array} \right. .$$

$$\begin{split} F_0 &= \vec{c}_m^{(0)} \cup (\vec{c}_m^{(0)} + (1,0)), F_1 = \vec{c}_m^{(1)} \cup R(\vec{c}_m^{(1)} + (1,0)), F_2 = R(F_1), \\ F_3 &= \vec{c}_m^{(2)} \cup (\vec{c}_m^{(2)} + (1,0)), F_4 = \vec{c}_m^{(3)} \cup (\vec{c}_m^{(3)} + (1,0)) \text{ and} \end{split}$$

DHWP 000000 Preliminary Results

$$\vec{C}_m^{(3)} = (y_0, y_1, \dots, y_{m-1})$$
 where $y_0 = (0, 0), y_1 = (0, \frac{m}{2}), y_2 = (1, \frac{m}{2} + 1), y_3 = (1, \frac{m}{2} - 1)$ and

$$y_{i=} \begin{cases} \left(1, \frac{m}{2} + (-1)^{i+1} \lfloor \frac{i}{2} \rfloor\right) \text{ if } i \equiv 0, 1 \pmod{4} \\ \left(0, \frac{m}{2} + (-1)^{i} \lfloor \frac{i}{2} \rfloor\right) \text{ if } i = 2, 3 \pmod{4} \end{cases} \text{ for } 4 \leq i \leq m-1.$$

$$\vec{C}_{m}^{(4)} = (z_0, z_1, \dots, z_{m-1})$$
 where

$$z_{i=} \left\{ \begin{array}{ll} y_{m-i} + (1,0) & \text{if } 1 \le i \le m-3 \\ y_{m-i} & \text{if } m-2 \le i \le m \end{array} \right.$$

$$\begin{split} F_0 &= \vec{c}_m^{(0)} \cup (\vec{C}_m^{(0)} + (1,0)), F_1 = \vec{c}_m^{(1)} \cup R(\vec{c}_m^{(1)} + (1,0)), F_2 = R(F_1), \\ F_3 &= \vec{c}_m^{(2)} \cup (\vec{c}_m^{(2)} + (1,0)), F_4 = \vec{c}_m^{(3)} \cup (\vec{c}_m^{(3)} + (1,0)) \text{ and } \\ F_5 &= \vec{c}_m^{(4)} \cup (\vec{c}_m^{(4)} + (1,0)). \end{split}$$

DHWP 000000 Preliminary Results

$$\vec{C}_m^{(3)} = (y_0, y_1, \dots, y_{m-1})$$
 where $y_0 = (0, 0), y_1 = (0, \frac{m}{2}), y_2 = (1, \frac{m}{2} + 1), y_3 = (1, \frac{m}{2} - 1)$ and

$$y_{i=} \begin{cases} \left(1, \frac{m}{2} + (-1)^{i+1} \lfloor \frac{i}{2} \rfloor\right) \text{ if } i \equiv 0, 1 \pmod{4} \\ \left(0, \frac{m}{2} + (-1)^{i} \lfloor \frac{i}{2} \rfloor\right) \text{ if } i = 2, 3 \pmod{4} \end{cases} \text{ for } 4 \leq i \leq m-1.$$

$$\vec{C}_{m}^{(4)} = (z_0, z_1, \dots, z_{m-1})$$
 where

$$z_{i=} \begin{cases} y_{m-i} + (1,0) & \text{if } 1 \le i \le m-3 \\ y_{m-i} & \text{if } m-2 \le i \le m \end{cases}.$$

$$\begin{split} F_{0} &= \vec{c}_{m}^{(0)} \cup (\vec{C}_{m}^{(0)} + (1,0)), F_{1} = \vec{c}_{m}^{(1)} \cup R(\vec{c}_{m}^{(1)} + (1,0)), F_{2} = R(F_{1}), \\ F_{3} &= \vec{c}_{m}^{(2)} \cup (\vec{c}_{m}^{(2)} + (1,0)), F_{4} = \vec{c}_{m}^{(3)} \cup (\vec{c}_{m}^{(3)} + (1,0)) \text{ and } \\ F_{5} &= \vec{c}_{m}^{(4)} \cup (\vec{c}_{m}^{(4)} + (1,0)). \\ \text{Then, } \{F_{0}, F_{1}, F_{2}, F_{3}, F_{4}, F_{5}\} \text{ is a } \vec{c}_{m} \text{-factorization of } \Gamma_{m}^{*}. \end{split}$$

DHWP 000000 Preliminary Results

$$\vec{C}_m^{(3)} = (y_0, y_1, \dots, y_{m-1})$$
 where $y_0 = (0, 0), y_1 = (0, \frac{m}{2}), y_2 = (1, \frac{m}{2} + 1), y_3 = (1, \frac{m}{2} - 1)$ and

$$y_{i=} \begin{cases} \left(1, \frac{m}{2} + (-1)^{i+1} \lfloor \frac{i}{2} \rfloor\right) \text{ if } i \equiv 0, 1 \pmod{4} \\ \left(0, \frac{m}{2} + (-1)^{i} \lfloor \frac{i}{2} \rfloor\right) \text{ if } i = 2, 3 \pmod{4} \end{cases} \text{ for } 4 \leq i \leq m-1.$$

$$\vec{C}_{m}^{(4)} = (z_0, z_1, \dots, z_{m-1})$$
 where

$$z_{i=} \begin{cases} y_{m-i} + (1,0) & \text{if } 1 \le i \le m-3 \\ y_{m-i} & \text{if } m-2 \le i \le m \end{cases}.$$

$$\begin{split} F_{0} &= \vec{c}_{m}^{(0)} \cup (\vec{C}_{m}^{(0)} + (1,0)), F_{1} = \vec{c}_{m}^{(1)} \cup R(\vec{c}_{m}^{(1)} + (1,0)), F_{2} = R(F_{1}), \\ F_{3} &= \vec{c}_{m}^{(2)} \cup (\vec{c}_{m}^{(2)} + (1,0)), F_{4} = \vec{c}_{m}^{(3)} \cup (\vec{c}_{m}^{(3)} + (1,0)) \text{ and } \\ F_{5} &= \vec{c}_{m}^{(4)} \cup (\vec{c}_{m}^{(4)} + (1,0)). \\ \text{Then, } \{F_{0}, F_{1}, F_{2}, F_{3}, F_{4}, F_{5}\} \text{ is a } \vec{c}_{m} \text{-factorization of } \Gamma_{m}^{*}. \end{split}$$

	DHWP	Preliminary Results
000		

troduction	DHWP 000000	Preliminary Results	Solutions to HWP* $(v; m^r, (2m)^s)$ 0000000000000

Introduction 000000		Solutions to HWP* $(v; m^r, (2m)^s)$

Introduction 000000	DHWP 000000	Preliminary Results	Solutions to HWP* $(v; m^r, (2m)^s)$

DHWP 000000 Preliminary Results

Lemma (F.Yetgin et al. (2023))

Let $m \ge 4$ be even integer, then $C_m^*[2]$ has a $\{\vec{C}_m^r, \vec{C}_{2m}^s\}$ -factorization for $r \in \{0, 2, 4\}$ and r + s = 4.

Lemma (F.Yetgin et al. (2023))

Let $m \ge 4$ be even integer, then $C_m^*[2]$ has a $\{\vec{C}_m^r, \vec{C}_{2m}^s\}$ -factorization for $r \in \{0, 2, 4\}$ and r + s = 4.

Lemma (F.Yetgin et al. (2023))

Let $m \ge 4$ be even integer, then $C_m^*[2] \oplus l_{2m}^*$ has a $\{\vec{C}_m^r, \vec{C}_{2m}^s\}$ -factorization for $r \in \{0, 1, 3\}$ and r + s = 5.

Lemma (F.Yetgin et al. (2023))

Let $m \ge 4$ be even integer, then $C_m^*[2]$ has a $\{\vec{C}_m^r, \vec{C}_{2m}^s\}$ -factorization for $r \in \{0, 2, 4\}$ and r + s = 4.

Lemma (F.Yetgin et al. (2023))

Let $m \ge 4$ be even integer, then $C_m^*[2] \oplus l_{2m}^*$ has a $\{\vec{C}_m^r, \vec{C}_{2m}^s\}$ -factorization for $r \in \{0, 1, 3\}$ and r + s = 5.

Let r, s be nonnegative integers, and let $m \ge 4$ be even. Then, HWP^{*} $(v; m^r, (2m)^s)$ has a solution if and only if $m \mid v, r + s = v - 1$ and $v \ge 4$ except for $(s, v, m) \in \{(0, 4, 4), (0, 6, 3)\}$ and $(r, v, m) \in \{(0, 6, 6)\}$, and except possibly for $s \in \{1, 3\}$.

Let r, s be nonnegative integers, and let $m \ge 4$ be even. Then, HWP^{*} $(v; m^r, (2m)^s)$ has a solution if and only if $m \mid v, r + s = v - 1$ and $v \ge 4$ except for $(s, v, m) \in \{(0, 4, 4), (0, 6, 3)\}$ and $(r, v, m) \in \{(0, 6, 6)\}$, and except possibly for $s \in \{1, 3\}$.

Proof : We can factorize K_{2mx}^* as follows :

$$\mathcal{K}_{2mx}^{*} \cong x\mathcal{K}_{2m}^{*} \oplus \underbrace{x\mathcal{K}_{(m:2)}^{*} \oplus x\mathcal{K}_{(m:2)}^{*} \oplus \ldots \oplus x\mathcal{K}_{(m:2)}^{*}}_{2x-2}$$
(3)

Let r, s be nonnegative integers, and let $m \ge 4$ be even. Then, HWP^{*} $(v; m^r, (2m)^s)$ has a solution if and only if $m \mid v, r + s = v - 1$ and $v \ge 4$ except for $(s, v, m) \in \{(0, 4, 4), (0, 6, 3)\}$ and $(r, v, m) \in \{(0, 6, 6)\}$, and except possibly for $s \in \{1, 3\}$.

Proof : We can factorize K_{2mx}^* as follows :

$$\mathcal{K}_{2mx}^{*} \cong x\mathcal{K}_{2m}^{*} \oplus \underbrace{x\mathcal{K}_{(m:2)}^{*} \oplus x\mathcal{K}_{(m:2)}^{*} \oplus \ldots \oplus x\mathcal{K}_{(m:2)}^{*}}_{2x-2}$$
(3)

Also, we can factorize K_{2m}^* as follows :

 $K_{2m}^*\cong K_m^*[2]\oplus I_{2m}^*$

Let r, s be nonnegative integers, and let $m \ge 4$ be even. Then, HWP^{*} $(v; m^r, (2m)^s)$ has a solution if and only if $m \mid v, r + s = v - 1$ and $v \ge 4$ except for $(s, v, m) \in \{(0, 4, 4), (0, 6, 3)\}$ and $(r, v, m) \in \{(0, 6, 6)\}$, and except possibly for $s \in \{1, 3\}$.

Proof : We can factorize K_{2mx}^* as follows :

$$\mathcal{K}_{2mx}^{*} \cong x\mathcal{K}_{2m}^{*} \oplus \underbrace{x\mathcal{K}_{(m:2)}^{*} \oplus x\mathcal{K}_{(m:2)}^{*} \oplus \ldots \oplus x\mathcal{K}_{(m:2)}^{*}}_{2x-2}$$
(3)

Also, we can factorize K_{2m}^* as follows :

$$\mathcal{K}_{2m}^* \cong \mathcal{K}_m^*[2] \oplus \mathcal{I}_{2m}^* \cong \mathcal{C}_m^*[2] \oplus \mathcal{C}_m^*[2] \oplus \dots \oplus \mathcal{C}_m^*[2] \oplus \mathcal{F}_m^*[2] \oplus \mathcal{I}_{2m}^* \tag{4}$$

Let r, s be nonnegative integers, and let $m \ge 4$ be even. Then, HWP^{*} $(v; m^r, (2m)^s)$ has a solution if and only if $m \mid v, r + s = v - 1$ and $v \ge 4$ except for $(s, v, m) \in \{(0, 4, 4), (0, 6, 3)\}$ and $(r, v, m) \in \{(0, 6, 6)\}$, and except possibly for $s \in \{1, 3\}$.

Proof : We can factorize K_{2mx}^* as follows :

$$K_{2mx}^* \cong xK_{2m}^* \oplus \underbrace{xK_{(m:2)}^* \oplus xK_{(m:2)}^* \oplus \ldots \oplus xK_{(m:2)}^*}_{2x-2}$$
(3)

Also, we can factorize K_{2m}^* as follows :

 $\mathcal{K}_{2m}^* \cong \mathcal{K}_m^*[2] \oplus \mathcal{I}_{2m}^* \cong \mathcal{C}_m^*[2] \oplus \mathcal{C}_m^*[2] \oplus \ldots \oplus \mathcal{C}_m^*[2] \oplus \mathcal{F}_m^*[2] \oplus \mathcal{I}_{2m}^* \tag{4}$

So, K_{2m}^* has a $\{(C_m^*[2])^{\frac{m-6}{2}}, C_m^*[2] \oplus I_{2m}^*, \Gamma_m^*\}$ -factorization.

Conclusion

Case which remain to solve $HWP^*(v; m^r, (2m)^s)$ is $s \in \{1, 3\}$,

Conclusion

- Case which remain to solve $HWP^*(v; m^r, (2m)^s)$ is $s \in \{1, 3\}$,
 - **1** $C_m^*[2]$ must have a $\{\vec{C}_m^r, \vec{C}_{2m}^s\}$ -factorization for s = 1
 - 2 $C_m^*[2] \oplus l_{2m}^*$ must have a $\{\vec{C}_m^r, \vec{C}_{2m}^s\}$ -factorization for s = 1
 - **3** Γ_m^* must have a $\{\vec{C}_m^r, \vec{C}_{2m}^s\}$ -factorization for s = 1
 - **4** $K_{(m:2)}^*$ must have a $\{\vec{C}_m^r, \vec{C}_{2m}^s\}$ -factorization for s = 1

Thank You for Your Attention

References

B. Alspach, H. Gavlas, M. Sajna, and H. Verrall, *Cycle decompositions IV : complete directed graphs and fixed length directed cycles*, J. Comb. Theory Ser. A. **103(1)** (2003), 165-208.
 P. Adams, E. J. Billington, D. E. Bryant, and S. I. El-Zanati, *On the Hamilton-Waterloo problem*, Graphs Combin. **18** (2002), 31-51.

[3] D. Bryant, P. Danziger, On bipartite 2-factorizations of $K_n - I$ and the Oberwolfach problem, J. Graph Theory **68(1)** (2011), 22-37.

[4] D. Bryant, P. Danziger, and M. Dean, *On the Hamilton-Waterloo Problem for Bipartite 2-Factors*, J. Comb. Des. **21(2)** (2013), 60-80.

References

[5] J. C. Bermond, A. Germa, and D. Sotteau, *Resolvable decomposition of* K_n^* , J. Comb. Theory Ser. A. **26(2)** (1979), 179-185. [6] F. E. Bennett, X. Zhang, *Resolvable Mendelsohn designs with block size 4*, Aequationes Math. **40(1)** (1990), 248-260. [7] A. Burgess, N. Francetic, and M. Sajna, *On the directed Oberwolfach Problem with equal cycle lengths : the odd case*, Australas. J. Comb. **71(2)** (2018), 272-292. [8] A. Burgess, M. Sajna, *On the directed Oberwolfach Problem with equal cycle lengths*, Electron. J. Comb. **21(1)** (2014), 1-15. Introduction

[9] A. Burgess, P. Danziger, and T. Traetta, On the Hamilton-Waterloo problem with odd orders, J. Comb. Des. 25(6) (2017), 258-287.
[10] A. Burgess, P. Danziger, and T. Traetta, On the Hamilton-Waterloo problem with odd cycle lengths, J. Comb. Des. 26(2) (2018), 51-83.
[11] S. Bonvicini, M. Buratti, Octahedral, dicyclic and special linear solutions of some Hamilton-Waterloo problems, Ars Math. Contemp. 14(1) (2017), 1-14
[12] P. Danziger, G. Quattrocchi, and B. Stevens, The Hamilton-Waterloo problem for cycle sizes 3 and 4, J. Comb. Des., 17(4) (2009), 342-352.

Introduction

[13] R. K. Guy, Unsolved combinatorial problems, In : Proceedings of the Conference on Combinatorial Mathematics and Its Applications, Oxford, 1967 (D. J. A. Welsh, Ed.), Academic Press, New York, 1971.

[14] R. Haggkvist, *A lemma on cycle decompositions*, North-Holland Mathematics Studies **115** (1985), 227-23

[15] W. Imrich, S. Klavzar *Product graphs : Structure and Recognition*, John Wiley and Sons Incorporated, New York, 2000.

[16] M. Keranen, S. Özkan, *The Hamilton-Waterloo problem with* 4-cycles and a single factor of *n*-cycles, Graphs Combin. **29** (2013), 1827–1837.

[17] J. Liu, *The equipartite Oberwolfach problem with uniform tables*, J. Comb. Theory Ser. A. **101** (2003), 20–34.

DHWP 000000

Introduction

E. Shabani, M. Sajna, *On the Directed Oberwolfach Problem with variable cycle lengths*, 2020, arXiv preprint arXiv :2009.08731.

[19] U. Odabasi, S. Özkan, *The Hamilton-Waterloo problem with C*₄ and C_m factors, Discrete Math. **339(1)** (2016), 263-269.

[20] F.Yetgin, U. Odabasi and S. Özkan, *On the Directed Hamilton-Waterloo Poblem with Two Cycle Sizes*, Contributions to Discrete Mathematics, (Accepted).

[21] F.Yetgin, U. Odabasi and S. Özkan, *The Directed Uniform Hamilton-Waterloo Problem Involving Even Cycle Sizes*, Discussiones Mathematicae Graph Theory, (Accepted).

[22] U. Odabasi, *Factorizations of complete graphs into cycles and 1-factors*, Contributions to Discrete Mathematics **15(1)** (2020), 80-89.

[23] E. Lucas, *Recreations mathematiques*, vol. 2, Gauthier-Villars, Paris, 1892.