On Some Cases of the Directed Uniform Hamilton-Waterloo Problem

Fatih Yetgin

Department of Mathematics, Gebze Technical University, Gebze, Turkey

Join work with Sibel Özkan and Uğur Odabaşı

Outline

1 Introduction

2 The Directed Hamilton-Waterloo Problem

3 Preliminary Results

4 Solutions to HWP* $\left(v ; m^{r},(2 m)^{s}\right)$

■ A decomposition of a graph G is a set $\mathcal{H}=\left\{H_{1}, H_{2}, \ldots, H_{k}\right\}$ of edge-disjoint subgraphs of G such that $\bigcup_{i=1}^{k} E\left(H_{i}\right)=E(G)$. It is called an $\left\{H_{1}, H_{2}, \ldots, H_{k}\right\}$ -decomposition of G.

■ A decomposition of a graph G is a set $\mathcal{H}=\left\{H_{1}, H_{2}, \ldots, H_{k}\right\}$ of edge-disjoint subgraphs of G such that $\bigcup_{i=1}^{k} E\left(H_{i}\right)=E(G)$. It is called an $\left\{H_{1}, H_{2}, \ldots, H_{k}\right\}$ -decomposition of G.

Example

A $\left\{C_{6}, C_{3}, C_{3}\right\}$-decomposition of $K_{6}-I$.

■ A decomposition of a graph G is a set $\mathcal{H}=\left\{H_{1}, H_{2}, \ldots, H_{k}\right\}$ of edge-disjoint subgraphs of G such that $\bigcup_{i=1}^{k} E\left(H_{i}\right)=E(G)$. It is called an $\left\{H_{1}, H_{2}, \ldots, H_{k}\right\}$ -decomposition of G.

Example

A $\left\{C_{6}, C_{3}, C_{3}\right\}$-decomposition of $K_{6}-I$.

■ A decomposition of a graph G is a set $\mathcal{H}=\left\{H_{1}, H_{2}, \ldots, H_{k}\right\}$ of edge-disjoint subgraphs of G such that $\bigcup_{i=1}^{k} E\left(H_{i}\right)=E(G)$. It is called an $\left\{H_{1}, H_{2}, \ldots, H_{k}\right\}$ -decomposition of G.

Example

A $\left\{C_{6}, C_{3}, C_{3}\right\}$-decomposition of $K_{6}-I$.

- A factor in a graph G is a spanning subgraph of G. A k-regular spanning subgraph of G is called a k-factor of G.
- A factor in a graph G is a spanning subgraph of G. A k-regular spanning subgraph of G is called a k-factor of G.
- A k-factorization of a graph G is a decomposition of edges set of G into edge disjoint k-factors.
- A factor in a graph G is a spanning subgraph of G. A k-regular spanning subgraph of G is called a k-factor of G.
- A k-factorization of a graph G is a decomposition of edges set of G into edge disjoint k-factors.

Example

There is a 2-factorization $K_{6}-I$.

- A factor in a graph G is a spanning subgraph of G. A k-regular spanning subgraph of G is called a k-factor of G.
- A k-factorization of a graph G is a decomposition of edges set of G into edge disjoint k-factors.

Example

There is a 2-factorization $K_{6}-I$.

- $A\left\{F_{1}^{k_{1}}, F_{2}^{k_{2}}, \ldots, F_{l}^{k_{1}}\right\}$-factorization of a graph G is a decomposition which consists precisely of k_{i} factors isomorphic to F_{i}.
- $\mathrm{A}\left\{F_{1}^{k_{1}}, F_{2}^{k_{2}}, \ldots, F_{l}^{k_{1}}\right\}$-factorization of a graph G is a decomposition which consists precisely of k_{i} factors isomorphic to F_{i}.
- When each F_{i} factor consists of only n_{i} cycles for $i \in[1, t]$, then we will call the F_{i} factor as a $C_{n_{i}}$-factor and call this factorization as a $\left\{C_{n_{1}}^{r_{1}}, C_{n_{2}}^{r_{2}}, \ldots, C_{n_{t}}^{r_{t}}\right\}$-factorization.
- A $\left\{F_{1}^{k_{1}}, F_{2}^{k_{2}}, \ldots, F_{l}^{k_{1}}\right\}$-factorization of a graph G is a decomposition which consists precisely of k_{i} factors isomorphic to F_{i}.
■ When each F_{i} factor consists of only n_{i} cycles for $i \in[1, t]$, then we will call the F_{i} factor as a $C_{n_{i}}$-factor and call this factorization as a $\left\{C_{n_{1}}^{r_{1}}, C_{n_{2}}^{r_{2}}, \ldots, C_{n_{t}}^{r_{t}}\right\}$-factorization.

Example

A $\left\{F_{1}, F_{2}, F_{3}\right\}$-factorization of K_{7}.

- A $\left\{F_{1}^{k_{1}}, F_{2}^{k_{2}}, \ldots, F_{l}^{k_{1}}\right\}$-factorization of a graph G is a decomposition which consists precisely of k_{i} factors isomorphic to F_{i}.
■ When each F_{i} factor consists of only n_{i} cycles for $i \in[1, t]$, then we will call the F_{i} factor as a $C_{n_{i}}$-factor and call this factorization as a $\left\{C_{n_{1}}^{r_{1}}, C_{n_{2}}^{r_{2}}, \ldots, C_{n_{t}}^{r_{t}}\right\}$-factorization.

Example

A $\left\{F_{1}, F_{2}, F_{3}\right\}$-factorization of K_{7}.

K_{7}

- A $\left\{F_{1}^{k_{1}}, F_{2}^{k_{2}}, \ldots, F_{l}^{k_{l}}\right\}$-factorization of a graph G is a decomposition which consists precisely of k_{i} factors isomorphic to F_{i}.
■ When each F_{i} factor consists of only n_{i} cycles for $i \in[1, t]$, then we will call the F_{i} factor as a $C_{n_{i}}$-factor and call this factorization as a $\left\{C_{n_{1}}^{r_{1}}, C_{n_{2}}^{r_{2}}, \ldots, C_{n_{t}}^{r_{t}}\right\}$-factorization.

Example

A $\left\{F_{1}, F_{2}, F_{3}\right\}$-factorization of K_{7}.

K_{7}

F_{1}

F_{2}

F_{3}

The Oberwolfach Problem

■ This problem is formulated as a seating problem : can v (v must be odd) people be seated at round tables of a given size on successive days ($\frac{v-1}{2}$) so that each person sits next to every other person once?

The Oberwolfach Problem

■ This problem is formulated as a seating problem : can v (v must be odd) people be seated at round tables of a given size on successive days ($\frac{v-1}{2}$) so that each person sits next to every other person once ?

- The problem asks for a 2-factorization of the complete graph K_{v} (or for even v, 2 -factorization of $K_{v}-I$ (spouse-avoiding version)) into 2 -factors each of which is isomorphic to a given 2 -factor F.

The Hamilton-Waterloo Problem

- In the Hamilton-Waterloo Problem, there are two conference venues with different seating arrangements.

The Hamilton-Waterloo Problem

■ In the Hamilton-Waterloo Problem, there are two conference venues with different seating arrangements.

- The Hamilton-Waterloo Problem asks for a 2-factorization of the complete graph K_{v} (or for even v, 2-factorization of $K_{v}-I$) in which r of its 2-factors are isomorphic to a given 2 -factor F_{1}, and remaining s of its 2 -factors are isomorphic to a given 2-factor F_{2}.

The Hamilton-Waterloo Problem

■ In the Hamilton-Waterloo Problem, there are two conference venues with different seating arrangements.

- The Hamilton-Waterloo Problem asks for a 2-factorization of the complete graph K_{v} (or for even v, 2-factorization of $K_{v}-I$) in which r of its 2-factors are isomorphic to a given 2 -factor F_{1}, and remaining s of its 2 -factors are isomorphic to a given 2-factor F_{2}.
- If F_{1} is an m-cycle factor and F_{2} is an n-cycle factor, then the corresponding Hamilton-Waterloo problem is denoted by $\operatorname{HWP}\left(v ; C_{m}^{r}, C_{n}^{s}\right)$.

Necessary Conditions

Lemma (Necessary Conditions)

Let v, m, n, r and s be non-negative integers with $m, n \geq 3$. If there exists a solution to $\operatorname{HWP}\left(v ; C_{m}^{r}, C_{n}^{s}\right)$, then

Necessary Conditions

Lemma (Necessary Conditions)

Let v, m, n, r and s be non-negative integers with $m, n \geq 3$. If there exists a solution to $\operatorname{HWP}\left(v ; C_{m}^{r}, C_{n}^{s}\right)$, then

1) if $r>0, v \equiv 0(\bmod m)$,

Necessary Conditions

Lemma (Necessary Conditions)

Let v, m, n, r and s be non-negative integers with $m, n \geq 3$. If there exists a solution to $\operatorname{HWP}\left(v ; C_{m}^{r}, C_{n}^{s}\right)$, then

1) if $r>0, v \equiv 0(\bmod m)$,
2) if $s>0, v \equiv 0(\bmod n)$,

Necessary Conditions

Lemma (Necessary Conditions)

Let v, m, n, r and s be non-negative integers with $m, n \geq 3$. If there exists a solution to $\operatorname{HWP}\left(v ; C_{m}^{r}, C_{n}^{s}\right)$, then

1) if $r>0, v \equiv 0(\bmod m)$,
2) if $s>0, v \equiv 0(\bmod n)$,
3) $r+s=\left\lfloor\frac{v-1}{2}\right\rfloor$.

For a simple graph G, we use G^{*} to denote symmetric digraph with vertex set $V\left(G^{*}\right)=V(G)$ and $\operatorname{arcset} A\left(G^{*}\right)=\bigcup_{\{x, y\} \in E(G)}\{(x, y),(y, x)\}$. Hence, K_{V}^{*} is the complete symmetric digraph of order v.

■ For a simple graph G, we use G^{*} to denote symmetric digraph with vertex set $V\left(G^{*}\right)=V(G)$ and arc set $A\left(G^{*}\right)=\bigcup_{\{x, y\} \in E(G)}\{(x, y),(y, x)\}$. Hence, K_{v}^{*} is the complete symmetric digraph of order v.
$\square K_{(x: y)}^{*}$ is used to denote the complete symmetric equipartite digraph with y parts of size x.

■ For a simple graph G, we use G^{*} to denote symmetric digraph with vertex set $V\left(G^{*}\right)=V(G)$ and arc set $A\left(G^{*}\right)=\bigcup_{\{x, y\} \in E(G)}\{(x, y),(y, x)\}$. Hence, K_{v}^{*} is the complete symmetric digraph of order v.

- $K_{(x: y)}^{*}$ is used to denote the complete symmetric equipartite digraph with y parts of size x.
\square We use $(x, y)^{*}$ to denote the double arc which consists of (x, y) and (y, x).

The directed Oberwolfach Problem and directed Hamilton-Waterloo Problem

In the Directed versions of the Oberwolfach and the Hamilton-Waterloo Problems, K_{v}^{*} is decomposed into factors of directed cycles.

The directed Oberwolfach Problem and directed Hamilton-Waterloo Problem

In the Directed versions of the Oberwolfach and the Hamilton-Waterloo Problems, K_{v}^{*} is decomposed into factors of directed cycles.

- In the uniform version of the Directed Oberwolfach Problem, we focus on finding a factorization consisting only of directed m-cycles. This Problem is denoted by OP* $\left(m^{k}\right)$.

The directed Oberwolfach Problem and directed Hamilton-Waterloo Problem

In the Directed versions of the Oberwolfach and the Hamilton-Waterloo Problems, K_{v}^{*} is decomposed into factors of directed cycles.

- In the uniform version of the Directed Oberwolfach Problem, we focus on finding a factorization consisting only of directed m-cycles. This Problem is denoted by $\mathrm{OP}{ }^{*}\left(m^{k}\right)$.

■ Similarly, HWP ${ }^{*}\left(v ; m^{r}, n^{s}\right)$ denotes the uniform directed Hamilton-Waterloo Problem with directed cycle sizes m and n.

The directed Oberwolfach Problem and directed Hamilton-Waterloo Problem

In the Directed versions of the Oberwolfach and the Hamilton-Waterloo Problems, K_{v}^{*} is decomposed into factors of directed cycles.

- In the uniform version of the Directed Oberwolfach Problem, we focus on finding a factorization consisting only of directed m-cycles. This Problem is denoted by $\mathrm{OP}{ }^{*}\left(m^{k}\right)$.
- Similarly, $\operatorname{HWP}^{*}\left(v ; m^{r}, n^{s}\right)$ denotes the uniform directed Hamilton-Waterloo Problem with directed cycle sizes m and n.
■ Any of its solutions will be referred to as a $\left\{\vec{C}_{m}^{r}, \vec{C}_{n}^{s}\right\}$-factorization of K_{v}^{*}.

Example

$\operatorname{HWP}^{*}\left(8 ; 4^{5}, 8^{2}\right)$ has a solution. ($\left\{\vec{C}_{4}^{5}, \vec{C}_{8}^{2}\right\}$-factorization of $\left.K_{8}^{*}\right)$

Example

$\operatorname{HWP}^{*}\left(8 ; 4^{5}, 8^{2}\right)$ has a solution. ($\left\{\vec{C}_{4}^{5}, \vec{C}_{8}^{2}\right\}$-factorization of $\left.K_{8}^{*}\right)$

Necessary Conditions

Lemma (Necessary Conditions)
Let v, m, n, r and s be non-negative integers with $m, n \geq 2$. If there exists a solution to $\operatorname{HWP}^{*}\left(v ; m^{r}, n^{s}\right)$, then

Necessary Conditions

Lemma (Necessary Conditions)
Let v, m, n, r and s be non-negative integers with $m, n \geq 2$. If there exists a solution to $\operatorname{HWP}^{*}\left(v ; m^{r}, n^{s}\right)$, then

1) if $r>0, v \equiv 0(\bmod m)$,

Necessary Conditions

Lemma (Necessary Conditions)
Let v, m, n, r and s be non-negative integers with $m, n \geq 2$. If there exists a solution to $\operatorname{HWP}^{*}\left(v ; m^{r}, n^{s}\right)$, then

1) if $r>0, v \equiv 0(\bmod m)$,
2) if $s>0, v \equiv 0(\bmod n)$,

Necessary Conditions

Lemma (Necessary Conditions)
Let v, m, n, r and s be non-negative integers with $m, n \geq 2$. If there exists a solution to $\operatorname{HWP}^{*}\left(v ; m^{r}, n^{s}\right)$, then

1) if $r>0, v \equiv 0(\bmod m)$,
2) if $s>0, v \equiv 0(\bmod n)$,
3) $r+s=v-1$.

Necessary Conditions

Lemma (Necessary Conditions)

Let v, m, n, r and s be non-negative integers with $m, n \geq 2$. If there exists a solution to $\operatorname{HWP}^{*}\left(v ; m^{r}, n^{s}\right)$, then

1) if $r>0, v \equiv 0(\bmod m)$,
2) if $s>0, v \equiv 0(\bmod n)$,
3) $r+s=v-1$.

Observation (F.Yetgin et al. (2023))

If $\operatorname{HWP}\left(v ; m^{r}, n^{s}\right)$ has a solution for some r and s and v is odd, then HWP* $\left(v ; m^{2 r}, n^{2 s}\right)$ has a solution for the same r and s.

Necessary Conditions

Lemma (Necessary Conditions)

Let v, m, n, r and s be non-negative integers with $m, n \geq 2$. If there exists a solution to $\operatorname{HWP}^{*}\left(v ; m^{r}, n^{s}\right)$, then

1) if $r>0, v \equiv 0(\bmod m)$,
2) if $s>0, v \equiv 0(\bmod n)$,
3) $r+s=v-1$.

Observation (F.Yetgin et al. (2023))

If $\operatorname{HWP}\left(v ; m^{r}, n^{s}\right)$ has a solution for some r and s and v is odd, then HWP* $\left(v ; m^{2 r}, n^{2 s}\right)$ has a solution for the same r and s.

■ take two copies of each 2-factor

Necessary Conditions

Lemma (Necessary Conditions)

Let v, m, n, r and s be non-negative integers with $m, n \geq 2$. If there exists a solution to $\operatorname{HWP}^{*}\left(v ; m^{r}, n^{s}\right)$, then

1) if $r>0, v \equiv 0(\bmod m)$,
2) if $s>0, v \equiv 0(\bmod n)$,
3) $r+s=v-1$.

Observation (F.Yetgin et al. (2023))

If $\operatorname{HWP}\left(v ; m^{r}, n^{s}\right)$ has a solution for some r and s and v is odd, then HWP* $\left(v ; m^{2 r}, n^{2 s}\right)$ has a solution for the same r and s.

■ take two copies of each 2-factor
\square replace each edge $\{x, y\}$ with the $\operatorname{arcs}(x, y)$ and (y, x) in the two 2 -factors.

Necessary Conditions

Lemma (Necessary Conditions)

Let v, m, n, r and s be non-negative integers with $m, n \geq 2$. If there exists a solution to $\operatorname{HWP}^{*}\left(v ; m^{r}, n^{s}\right)$, then

1) if $r>0, v \equiv 0(\bmod m)$,
2) if $s>0, v \equiv 0(\bmod n)$,
3) $r+s=v-1$.

Observation (F.Yetgin et al. (2023))

If $\operatorname{HWP}\left(v ; m^{r}, n^{s}\right)$ has a solution for some r and s and v is odd, then HWP* $\left(v ; m^{2 r}, n^{2 s}\right)$ has a solution for the same r and s.

- take two copies of each 2-factor
- replace each edge $\{x, y\}$ with the $\operatorname{arcs}(x, y)$ and (y, x) in the two 2 -factors.

Proposition (F.Yetgin et al. (2023))

Let G be a graph and H be a subgraph of G. If G has an H-factorization then, G^{*} has an H^{*}-factorization.

Known Results

The following theorem summarizes the previous results on the uniform version of the Directed Oberwolfach Problem.[By R. Abel (2002) P. Adams and D. Bryant, J. C. Bermond et al. (1979), F. E. Bennett and Zhang (1990), Burgess and Sajna (2014), A. C. Burgess et al. (2018), A. Lacaze (2023)]

Known Results

The following theorem summarizes the previous results on the uniform version of the Directed Oberwolfach Problem.[By R. Abel (2002) P. Adams and D. Bryant, J. C. Bermond et al. (1979), F. E. Bennett and Zhang (1990), Burgess and Sajna (2014), A. C. Burgess et al. (2018), A. Lacaze (2023)]

Theorem

Let m and k be nonnegative integers. Then, $\mathrm{OP}^{*}\left(m^{k}\right)$ has a solution if and only if $(m, k) \notin\{(3,2),(4,1),(6,1)\}$.

Known Results

The following theorem summarizes the previous results on the uniform version of the Directed Oberwolfach Problem.[By R. Abel (2002) P. Adams and D. Bryant, J. C. Bermond et al. (1979), F. E. Bennett and Zhang (1990), Burgess and Sajna (2014), A. C. Burgess et al. (2018), A. Lacaze (2023)]

Theorem

Let m and k be nonnegative integers. Then, $\mathrm{OP}^{*}\left(m^{k}\right)$ has a solution if and only if $(m, k) \notin\{(3,2),(4,1),(6,1)\}$.

The directed Oberwolfach problem for complete symmetric equipartite digraphs and uniform-length cycles was solved by Francetić and Šajna (2023).

Known Results

The following theorem summarizes the previous results on the uniform version of the Directed Oberwolfach Problem.[By R. Abel (2002) P. Adams and D. Bryant, J. C. Bermond et al. (1979), F. E. Bennett and Zhang (1990), Burgess and Sajna (2014), A. C. Burgess et al. (2018), A. Lacaze (2023)]

Theorem

Let m and k be nonnegative integers. Then, $\mathrm{OP}^{*}\left(m^{k}\right)$ has a solution if and only if $(m, k) \notin\{(3,2),(4,1),(6,1)\}$.

The directed Oberwolfach problem for complete symmetric equipartite digraphs and uniform-length cycles was solved by Francetić and Šajna (2023).

Theorem (F.Yetgin et al. (2023))

For nonnegative integers r and $s, \operatorname{HWP}^{*}\left(v ; m^{r}, n^{s}\right)$ has a solution for
$1(m, n) \in\{(4,6),(4,8),(4,12),(4,16),(6,12),(8,16)\}$ when v is even,
$2(m, n) \in\{(3,5),(3,15),(5,15)\}$ when v is odd
if and only if $r+s=v-1$ and $\operatorname{lcm}(m, n) \mid v$ except possibly $s \in\{1,2,3\}$ when
$(m, n)=(3,5)$ and $s=1$ when $(m, n)=(3,15)$.

Main Result

Theorem (F.Yetgin et al. (2023))

Let r, s be nonnegative integers, and let $m \geq 4$ be even. Then, $\operatorname{HWP}^{*}\left(v ; m^{r},(2 m)^{s}\right)$ has a solution if and only if $m \mid v, r+s=v-1$ and $v \geq 4$ except for $(s, v, m) \in\{(0,4,4),(0,6,3),(0,6,6)\}$, and except possibly when $s \in\{1,3\}$.

Preliminary Results

Lemma (F.Yetgin et al. (2023))
$K_{2 x}^{*}$ has a K_{2}^{*}-factorization for every integer $x \geq 1$.

Preliminary Results

Lemma (F.Yetgin et al. (2023))

$K_{2 x}^{*}$ has a K_{2}^{*}-factorization for every integer $x \geq 1$.

Lemma (F.Yetgin et al. (2023))
The complete symmetric equipartite digraph $K_{(x: y)}^{*}$ has a \vec{C}_{m}-factorization for $m \geq 3$ and $x \geq 2$ if $m \mid x y, x(y-1)$ is even, m is even when $y=2$.

Preliminary Results

Lemma (F.Yetgin et al. (2023))

$K_{2 x}^{*}$ has a K_{2}^{*}-factorization for every integer $x \geq 1$.

Lemma (F.Yetgin et al. (2023))
The complete symmetric equipartite digraph $K_{(x: y)}^{*}$ has a \vec{C}_{m}-factorization for $m \geq 3$ and $x \geq 2$ if $m \mid x y, x(y-1)$ is even, m is even when $y=2$.

Lemma (Burgess and Sajna (2014))

Let $m \geq 4$ be an even integer and x be a positive integer. Then $K_{\left(\frac{m x}{2}: 2\right)}^{*}$ has a \vec{C}_{m}-factorization.

Preliminary Results

- If G_{1} and G_{2} are two edge (arc)-disjoint graphs (digraphs) with $V\left(G_{1}\right)=V\left(G_{2}\right)$, then $G_{1} \oplus G_{2}$ is used to denote the graph on the same vertex set with $E\left(G_{1} \oplus G_{2}\right)=E\left(G_{1}\right) \cup E\left(G_{2}\right)\left(A\left(G_{1} \oplus G_{2}\right)=A\left(G_{1}\right) \cup A\left(G_{2}\right)\right)$.

Preliminary Results

- If G_{1} and G_{2} are two edge (arc)-disjoint graphs (digraphs) with $V\left(G_{1}\right)=V\left(G_{2}\right)$, then $G_{1} \oplus G_{2}$ is used to denote the graph on the same vertex set with $E\left(G_{1} \oplus G_{2}\right)=E\left(G_{1}\right) \cup E\left(G_{2}\right)\left(A\left(G_{1} \oplus G_{2}\right)=A\left(G_{1}\right) \cup A\left(G_{2}\right)\right)$.
$\square \alpha G$ will denote the vertex disjoint union of the α copies of G.

Preliminary Results

■ If G_{1} and G_{2} are two edge (arc)-disjoint graphs (digraphs) with $V\left(G_{1}\right)=V\left(G_{2}\right)$, then $G_{1} \oplus G_{2}$ is used to denote the graph on the same vertex set with $E\left(G_{1} \oplus G_{2}\right)=E\left(G_{1}\right) \cup E\left(G_{2}\right)\left(A\left(G_{1} \oplus G_{2}\right)=A\left(G_{1}\right) \cup A\left(G_{2}\right)\right)$.

■ αG will denote the vertex disjoint union of the α copies of G.

Example

K_{6}^{*} is isomorphic to $2 K_{3}^{*} \oplus K_{(3: 2)}^{*}$

Preliminary Results

■ If G_{1} and G_{2} are two edge (arc)-disjoint graphs (digraphs) with $V\left(G_{1}\right)=V\left(G_{2}\right)$, then $G_{1} \oplus G_{2}$ is used to denote the graph on the same vertex set with $E\left(G_{1} \oplus G_{2}\right)=E\left(G_{1}\right) \cup E\left(G_{2}\right)\left(A\left(G_{1} \oplus G_{2}\right)=A\left(G_{1}\right) \cup A\left(G_{2}\right)\right)$.

■ αG will denote the vertex disjoint union of the α copies of G.

Example

K_{6}^{*} is isomorphic to $2 K_{3}^{*} \oplus K_{(3: 2)}^{*}$

Preliminary Results

- If G_{1} and G_{2} are two edge (arc)-disjoint graphs (digraphs) with $V\left(G_{1}\right)=V\left(G_{2}\right)$, then $G_{1} \oplus G_{2}$ is used to denote the graph on the same vertex set with $E\left(G_{1} \oplus G_{2}\right)=E\left(G_{1}\right) \cup E\left(G_{2}\right)\left(A\left(G_{1} \oplus G_{2}\right)=A\left(G_{1}\right) \cup A\left(G_{2}\right)\right)$.

■ αG will denote the vertex disjoint union of the α copies of G.

Example

K_{6}^{*} is isomorphic to $2 K_{3}^{*} \oplus K_{(3: 2)}^{*}$

Preliminary Results

- If G_{1} and G_{2} are two edge (arc)-disjoint graphs (digraphs) with $V\left(G_{1}\right)=V\left(G_{2}\right)$, then $G_{1} \oplus G_{2}$ is used to denote the graph on the same vertex set with $E\left(G_{1} \oplus G_{2}\right)=E\left(G_{1}\right) \cup E\left(G_{2}\right)\left(A\left(G_{1} \oplus G_{2}\right)=A\left(G_{1}\right) \cup A\left(G_{2}\right)\right)$.
- αG will denote the vertex disjoint union of the α copies of G.

Example

K_{6}^{*} is isomorphic to $2 K_{3}^{*} \oplus K_{(3: 2)}^{*}$

The Blow-Up Construction

The Blow-Up Construction

The Blow-Up Construction

The Blow-Up Construction

The Blow-Up Construction

$\square K_{m x}^{*}$ has a $\left\{F_{1}, F_{2}, \ldots, F_{2 x-1}\right\}$-factorization. ($K_{2 x}^{*}$ has a K_{2}^{*}-factorization)

$$
K_{m x}^{*} \cong x K_{m}^{*} \oplus \underbrace{x K_{\left(\frac{m}{2}: 2\right)}^{*} \oplus x K_{\left(\frac{m}{2}: 2\right)}^{*} \oplus \ldots \oplus x K_{\left(\frac{m}{2}: 2\right)}^{*}}_{2 x-2}
$$

The Blow-Up Construction

$\square K_{m x}^{*}$ has a $\left\{F_{1}, F_{2}, \ldots, F_{2 x-1}\right\}$-factorization. ($K_{2 x}^{*}$ has a K_{2}^{*}-factorization)

$$
K_{m x}^{*} \cong x K_{m}^{*} \oplus \underbrace{x K_{\left(\frac{m}{2}: 2\right)}^{*} \oplus x K_{\left(\frac{m}{2}: 2\right)}^{*} \oplus \ldots \oplus x K_{\left(\frac{m}{2}: 2\right)}^{*}}_{2 x-2}
$$

$$
K_{2 m x}^{*} \cong x K_{2 m}^{*} \oplus \underbrace{x K_{(m: 2)}^{*} \oplus x K_{(m: 2)}^{*} \oplus \ldots \oplus x K_{(m: 2)}^{*}}_{2 x-2}
$$

The Power of a Graph

Let D be a digraph and $D_{0}, D_{1}, \ldots, D_{k-1}$ be k vertex disjoint copies of D with $v_{i} \in V\left(D_{i}\right)$ for each $v \in V(D)$. Then, $D[k]$ has the vertex set $V(D[k])=V\left(D_{0}\right) \cup V\left(D_{1}\right) \cup \cdots \cup V\left(D_{k-1}\right)$ and arc set $A(D[k])=\left\{\left(u_{i}, v_{j}\right):(u, v) \in A(D)\right.$ and $\left.0 \leq i, j \leq k-1\right\}$. (Note that $K_{m}^{*}[2] \cong K_{2 m}^{*}-m K_{2}^{*}$ and $\left.K_{y}^{*}[x] \cong K_{(x: y)}^{*}\right)$

The Power of a Graph

Let D be a digraph and $D_{0}, D_{1}, \ldots, D_{k-1}$ be k vertex disjoint copies of D with $v_{i} \in V\left(D_{i}\right)$ for each $v \in V(D)$. Then, $D[k]$ has the vertex set $V(D[k])=V\left(D_{0}\right) \cup V\left(D_{1}\right) \cup \cdots \cup V\left(D_{k-1}\right)$ and arc set $A(D[k])=\left\{\left(u_{i}, v_{j}\right):(u, v) \in A(D)\right.$ and $\left.0 \leq i, j \leq k-1\right\}$. (Note that $K_{m}^{*}[2] \cong K_{2 m}^{*}-m K_{2}^{*}$ and $\left.K_{y}^{*}[x] \cong K_{(x: y)}^{*}\right)$

Example

$\vec{C}_{6}, \vec{C}_{6}[2], C_{6}^{*}$ and $C_{6}^{*}[2]$ can be graphed as follows.

The Power of a Graph

Let D be a digraph and $D_{0}, D_{1}, \ldots, D_{k-1}$ be k vertex disjoint copies of D with $v_{i} \in V\left(D_{i}\right)$ for each $v \in V(D)$. Then, $D[k]$ has the vertex set $V(D[k])=V\left(D_{0}\right) \cup V\left(D_{1}\right) \cup \cdots \cup V\left(D_{k-1}\right)$ and arc set $A(D[k])=\left\{\left(u_{i}, v_{j}\right):(u, v) \in A(D)\right.$ and $\left.0 \leq i, j \leq k-1\right\}$. (Note that $K_{m}^{*}[2] \cong K_{2 m}^{*}-m K_{2}^{*}$ and $\left.K_{y}^{*}[x] \cong K_{(x: y)}^{*}\right)$

Example

$\vec{C}_{6}, \vec{C}_{6}[2], C_{6}^{*}$ and $C_{6}^{*}[2]$ can be graphed as follows.

The Power of a Graph

Let D be a digraph and $D_{0}, D_{1}, \ldots, D_{k-1}$ be k vertex disjoint copies of D with $v_{i} \in V\left(D_{i}\right)$ for each $v \in V(D)$. Then, $D[k]$ has the vertex set $V(D[k])=V\left(D_{0}\right) \cup V\left(D_{1}\right) \cup \cdots \cup V\left(D_{k-1}\right)$ and arc set $A(D[k])=\left\{\left(u_{i}, v_{j}\right):(u, v) \in A(D)\right.$ and $\left.0 \leq i, j \leq k-1\right\}$. (Note that $K_{m}^{*}[2] \cong K_{2 m}^{*}-m K_{2}^{*}$ and $\left.K_{y}^{*}[x] \cong K_{(x: y)}^{*}\right)$

Example

$\vec{C}_{6}, \vec{C}_{6}[2], C_{6}^{*}$ and $C_{6}^{*}[2]$ can be graphed as follows.

The Power of a Graph

Let D be a digraph and $D_{0}, D_{1}, \ldots, D_{k-1}$ be k vertex disjoint copies of D with $v_{i} \in V\left(D_{i}\right)$ for each $v \in V(D)$. Then, $D[k]$ has the vertex set $V(D[k])=V\left(D_{0}\right) \cup V\left(D_{1}\right) \cup \cdots \cup V\left(D_{k-1}\right)$ and arc set $A(D[k])=\left\{\left(u_{i}, v_{j}\right):(u, v) \in A(D)\right.$ and $\left.0 \leq i, j \leq k-1\right\}$. (Note that $K_{m}^{*}[2] \cong K_{2 m}^{*}-m K_{2}^{*}$ and $\left.K_{y}^{*}[x] \cong K_{(x: y)}^{*}\right)$

Example

$\vec{C}_{6}, \vec{C}_{6}[2], C_{6}^{*}$ and $C_{6}^{*}[2]$ can be graphed as follows.

The Power of a Graph

Let D be a digraph and $D_{0}, D_{1}, \ldots, D_{k-1}$ be k vertex disjoint copies of D with $v_{i} \in V\left(D_{i}\right)$ for each $v \in V(D)$. Then, $D[k]$ has the vertex set
$V(D[k])=V\left(D_{0}\right) \cup V\left(D_{1}\right) \cup \cdots \cup V\left(D_{k-1}\right)$ and arc set
$A(D[k])=\left\{\left(u_{i}, v_{j}\right):(u, v) \in A(D)\right.$ and $\left.0 \leq i, j \leq k-1\right\}$. (Note that
$K_{m}^{*}[2] \cong K_{2 m}^{*}-m K_{2}^{*}$ and $\left.K_{y}^{*}[x] \cong K_{(x: y)}^{*}\right)$

Example

$\vec{C}_{6}, \vec{C}_{6}[2], C_{6}^{*}$ and $C_{6}^{*}[2]$ can be graphed as follows.

Lemma (Walecki (1861))
For all odd $m \geq 3, K_{m}$ decomposes into $\left(\frac{m-1}{2}\right)$ Hamilton cycles.

Lemma (Walecki (1861))

For all odd $m \geq 3, K_{m}$ decomposes into $\left(\frac{m-1}{2}\right)$ Hamilton cycles.

Lemma (Walecki (1861))

Let F_{m} be a 1-factor of K_{m} with edge set

$$
E\left(F_{m}\right)=\{\{0, m / 2\},\{i, m-i\}: 1 \leq i \leq(m / 2)-1\} .
$$

For all even $m \geq 4, K_{m}-F_{m}$ has an Hamilton cycle decomposition with prescribed cycles $\left\{C, \sigma(C), \sigma^{2}(C) \ldots, \sigma^{\frac{m-4}{2}}(C)\right\}$ for $\sigma=(0)(1,2,3 \ldots, m-2, m-1)$ where $C=\left(0,1,2, m-1,3, m-2, \ldots, \frac{m}{2}-1, \frac{m}{2}+2, \frac{m}{2}, \frac{m}{2}+1\right)$.

Lemma (Walecki (1861))

For all odd $m \geq 3, K_{m}$ decomposes into $\left(\frac{m-1}{2}\right)$ Hamilton cycles.

Lemma (Walecki (1861))

Let F_{m} be a 1-factor of K_{m} with edge set

$$
E\left(F_{m}\right)=\{\{0, m / 2\},\{i, m-i\}: 1 \leq i \leq(m / 2)-1\} .
$$

For all even $m \geq 4, K_{m}-F_{m}$ has an Hamilton cycle decomposition with prescribed cycles $\left\{C, \sigma(C), \sigma^{2}(C) \ldots, \sigma^{\frac{m-4}{2}}(C)\right\}$ for $\sigma=(0)(1,2,3 \ldots, m-2, m-1)$ where $C=\left(0,1,2, m-1,3, m-2, \ldots, \frac{m}{2}-1, \frac{m}{2}+2, \frac{m}{2}, \frac{m}{2}+1\right)$.

$$
K_{m} \cong \underbrace{C_{m} \oplus C_{m} \oplus \ldots \oplus C_{m}}_{\frac{m-1}{2}} \Rightarrow
$$

Lemma (Walecki (1861))

For all odd $m \geq 3, K_{m}$ decomposes into $\left(\frac{m-1}{2}\right)$ Hamilton cycles.

Lemma (Walecki (1861))

Let F_{m} be a 1-factor of K_{m} with edge set

$$
E\left(F_{m}\right)=\{\{0, m / 2\},\{i, m-i\}: 1 \leq i \leq(m / 2)-1\} .
$$

For all even $m \geq 4, K_{m}-F_{m}$ has an Hamilton cycle decomposition with prescribed cycles $\left\{C, \sigma(C), \sigma^{2}(C) \ldots, \sigma^{\frac{m-4}{2}}(C)\right\}$ for $\sigma=(0)(1,2,3 \ldots, m-2, m-1)$ where $C=\left(0,1,2, m-1,3, m-2, \ldots, \frac{m}{2}-1, \frac{m}{2}+2, \frac{m}{2}, \frac{m}{2}+1\right)$.

$$
\begin{equation*}
K_{m} \cong \underbrace{C_{m} \oplus C_{m} \oplus \ldots \oplus C_{m}}_{\frac{m-1}{2}} \Rightarrow K_{m}^{*} \cong C_{m}^{*} \oplus C_{m}^{*} \oplus \ldots \oplus C_{m}^{*} \tag{1}
\end{equation*}
$$

Lemma (Walecki (1861))

For all odd $m \geq 3, K_{m}$ decomposes into $\left(\frac{m-1}{2}\right)$ Hamilton cycles.

Lemma (Walecki (1861))

Let F_{m} be a 1-factor of K_{m} with edge set

$$
E\left(F_{m}\right)=\{\{0, m / 2\},\{i, m-i\}: 1 \leq i \leq(m / 2)-1\} .
$$

For all even $m \geq 4, K_{m}-F_{m}$ has an Hamilton cycle decomposition with prescribed cycles $\left\{C, \sigma(C), \sigma^{2}(C) \ldots, \sigma^{\frac{m-4}{2}}(C)\right\}$ for $\sigma=(0)(1,2,3 \ldots, m-2, m-1)$ where $C=\left(0,1,2, m-1,3, m-2, \ldots, \frac{m}{2}-1, \frac{m}{2}+2, \frac{m}{2}, \frac{m}{2}+1\right)$.

$$
\begin{aligned}
& K_{m} \cong \underbrace{C_{m} \oplus C_{m} \oplus \ldots \oplus C_{m}}_{\frac{m-1}{2}} \Rightarrow K_{m}^{*} \cong C_{m}^{*} \oplus C_{m}^{*} \oplus \ldots \oplus C_{m}^{*} \\
& K_{m} \cong \underbrace{C \oplus C \oplus \ldots \oplus C \oplus F_{m} \Rightarrow}_{\frac{m-2}{2}}
\end{aligned}
$$

Lemma (Walecki (1861))

For all odd $m \geq 3, K_{m}$ decomposes into $\left(\frac{m-1}{2}\right)$ Hamilton cycles.

Lemma (Walecki (1861))

Let F_{m} be a 1-factor of K_{m} with edge set

$$
E\left(F_{m}\right)=\{\{0, m / 2\},\{i, m-i\}: 1 \leq i \leq(m / 2)-1\} .
$$

For all even $m \geq 4, K_{m}-F_{m}$ has an Hamilton cycle decomposition with prescribed cycles $\left\{C, \sigma(C), \sigma^{2}(C) \ldots, \sigma^{\frac{m-4}{2}}(C)\right\}$ for $\sigma=(0)(1,2,3 \ldots, m-2, m-1)$ where $C=\left(0,1,2, m-1,3, m-2, \ldots, \frac{m}{2}-1, \frac{m}{2}+2, \frac{m}{2}, \frac{m}{2}+1\right)$.

$$
\begin{align*}
& K_{m} \cong \underbrace{C_{m} \oplus C_{m} \oplus \ldots \oplus C_{m}}_{\frac{m-1}{2}} \Rightarrow K_{m}^{*} \cong C_{m}^{*} \oplus C_{m}^{*} \oplus \ldots \oplus C_{m}^{*} \tag{1}\\
& K_{m} \cong \underbrace{C \oplus C \oplus \ldots \oplus C}_{\frac{m-2}{2}} \oplus F_{m} \Rightarrow K_{m}^{*} \cong C^{*} \oplus C^{*} \oplus \ldots \oplus C^{*} \oplus F_{m}^{*} \tag{2}
\end{align*}
$$

Lemma (Walecki (1861))

For all odd $m \geq 3, K_{m}$ decomposes into $\left(\frac{m-1}{2}\right)$ Hamilton cycles.

Lemma (Walecki (1861))

Let F_{m} be a 1 -factor of K_{m} with edge set

$$
E\left(F_{m}\right)=\{\{0, m / 2\},\{i, m-i\}: 1 \leq i \leq(m / 2)-1\} .
$$

For all even $m \geq 4, K_{m}-F_{m}$ has an Hamilton cycle decomposition with prescribed cycles $\left\{C, \sigma(C), \sigma^{2}(C) \ldots, \sigma^{\frac{m-4}{2}}(C)\right\}$ for $\sigma=(0)(1,2,3 \ldots, m-2, m-1)$ where $C=\left(0,1,2, m-1,3, m-2, \ldots, \frac{m}{2}-1, \frac{m}{2}+2, \frac{m}{2}, \frac{m}{2}+1\right)$.

$$
\begin{gather*}
K_{m} \cong \underbrace{C_{m} \oplus C_{m} \oplus \ldots \oplus C_{m}}_{\frac{m-1}{2}} \Rightarrow K_{m}^{*} \cong C_{m}^{*} \oplus C_{m}^{*} \oplus \ldots \oplus C_{m}^{*} \tag{1}\\
K_{m} \cong \underbrace{C \oplus C \oplus \ldots \oplus C}_{\frac{m-2}{2}} \oplus F_{m} \Rightarrow K_{m}^{*} \cong C^{*} \oplus C^{*} \oplus \ldots \oplus C^{*} \oplus F_{m}^{*} \tag{2}
\end{gather*}
$$

We use Γ_{m}^{*} to denote $C^{*}[2] \oplus F_{m}^{*}[2]$, for the rest of the presentation.

Cayley Graphs

Definition

Let B be a finite additive group and let S be a subset of B, where S does not contain the identity of B. The Directed Cayley graph $\vec{X}(B ; S)$ on B with connection set S is a digraph with $V(\vec{X}(B ; S))=B$ and $A(\vec{X}(B ; S))=\{(x, y): x, y \in B, y-x \in S\}$.

Cayley Graphs

Definition

Let B be a finite additive group and let S be a subset of B, where S does not contain the identity of B. The Directed Cayley graph $\vec{X}(B ; S)$ on B with connection set S is a digraph with $V(\vec{X}(B ; S))=B$ and $A(\vec{X}(B ; S))=\{(x, y): x, y \in B, y-x \in S\}$.

Example

$\vec{X}\left(\mathbb{Z}_{9} ;\right.$

(1)

(6)
(5) (4)

Cayley Graphs

Definition

Let B be a finite additive group and let S be a subset of B, where S does not contain the identity of B. The Directed Cayley graph $\vec{X}(B ; S)$ on B with connection set S is a digraph with $V(\vec{X}(B ; S))=B$ and $A(\vec{X}(B ; S))=\{(x, y): x, y \in B, y-x \in S\}$.

Example

$\vec{X}\left(\mathbb{Z}_{9} ;\{-1\right.$,

Cayley Graphs

Definition

Let B be a finite additive group and let S be a subset of B, where S does not contain the identity of B. The Directed Cayley graph $\vec{X}(B ; S)$ on B with connection set S is a digraph with $V(\vec{X}(B ; S))=B$ and $A(\vec{X}(B ; S))=\{(x, y): x, y \in A, y-x \in S\}$.

Example

$\vec{X}\left(\mathbb{Z}_{9} ;\{-1,2\}\right)$

Let $l_{2 m}^{*}$ be a K_{2}^{*}-factor of $K_{2 m}^{*}\left(V\left(K_{2 m}^{*}\right)=\mathbb{Z}_{2 m}\right)$ with $A\left(l_{2 m}^{*}\right)=\left\{(i, m+i)^{*}: 0 \leq i \leq\right.$ $m-1\}$

Let $l_{2 m}^{*}$ be a K_{2}^{*}-factor of $K_{2 m}^{*}\left(V\left(K_{2 m}^{*}\right)=\mathbb{Z}_{2 m}\right)$ with $A\left(l_{2 m}^{*}\right)=\left\{(i, m+i)^{*}: 0 \leq i \leq\right.$ $m-1\}$ and define the bijective function $f: \mathbb{Z}_{2 m} \rightarrow \mathbb{Z}_{2} \times \mathbb{Z}_{m}$ with

$$
f(i)= \begin{cases}(0, i) & \text { if } i<m \\ (1, i) & \text { if } i \geq m\end{cases}
$$

Let $l_{2 m}^{*}$ be a K_{2}^{*}-factor of $K_{2 m}^{*}\left(V\left(K_{2 m}^{*}\right)=\mathbb{Z}_{2 m}\right)$ with $A\left(l_{2 m}^{*}\right)=\left\{(i, m+i)^{*}: 0 \leq i \leq\right.$ $m-1\}$ and define the bijective function $f: \mathbb{Z}_{2 m} \rightarrow \mathbb{Z}_{2} \times \mathbb{Z}_{m}$ with

$$
f(i)= \begin{cases}(0, i) & \text { if } i<m \\ (1, i) & \text { if } i \geq m\end{cases}
$$

- $A\left(l_{2 m}^{*}\right)$ can be restated as a set $\left\{((0, i),(1, i))^{*}: 0 \leq i \leq m-1\right\}$ on $\mathbb{Z}_{2} \times \mathbb{Z}_{m}$ using this bijective function.

Let $l_{2 m}^{*}$ be a K_{2}^{*}-factor of $K_{2 m}^{*}\left(V\left(K_{2 m}^{*}\right)=\mathbb{Z}_{2 m}\right)$ with $A\left(l_{2 m}^{*}\right)=\left\{(i, m+i)^{*}: 0 \leq i \leq\right.$ $m-1\}$ and define the bijective function $f: \mathbb{Z}_{2 m} \rightarrow \mathbb{Z}_{2} \times \mathbb{Z}_{m}$ with

$$
f(i)= \begin{cases}(0, i) & \text { if } i<m \\ (1, i) & \text { if } i \geq m\end{cases}
$$

- $A\left(\iota_{2 m}^{*}\right)$ can be restated as a set $\left\{((0, i),(1, i))^{*}: 0 \leq i \leq m-1\right\}$ on $\mathbb{Z}_{2} \times \mathbb{Z}_{m}$ using this bijective function.
- We will represent $C_{m}^{*}[2]$ and $C_{m}^{*}[2] \oplus I_{2 m}^{*}$ as the directed Cayley graphs $\vec{X}\left(\mathbb{Z}_{2} \times \mathbb{Z}_{m}, S\right)$ and $\vec{X}\left(\mathbb{Z}_{2} \times \mathbb{Z}_{m}, S \cup\{(1,0)\}\right)$ where $S=\{(0,1),(1,1),(0,-1)$, $(1,-1)\}$.
\square Also, a factor F_{m}^{*} is defined as a K_{2}^{*}-factor of K_{m}^{*} with $A\left(F_{m}^{*}\right)=\left\{(0, m / 2)^{*}\right.$, $\left.(i, m-i)^{*}: 1 \leq i \leq(m / 2)-1\right\}$. The arc set of F_{m}^{*} which is denoted by $A\left(F_{m}^{*}\right)$, can be expressed as $\left\{((0,0),(0, m / 2))^{*},((0, i),(0, m-i))^{*}: 1 \leq i\right.$ $\leq(m / 2)-1\}$ using above bijective function.
- Also, a factor F_{m}^{*} is defined as a K_{2}^{*}-factor of K_{m}^{*} with $A\left(F_{m}^{*}\right)=\left\{(0, m / 2)^{*}\right.$, $\left.(i, m-i)^{*}: 1 \leq i \leq(m / 2)-1\right\}$. The arc set of F_{m}^{*} which is denoted by $A\left(F_{m}^{*}\right)$, can be expressed as $\left\{((0,0),(0, m / 2))^{*},((0, i),(0, m-i))^{*}: 1 \leq i\right.$ $\leq(m / 2)-1\}$ using above bijective function.
■ Thus, the vertex set and the arc set of Γ_{m}^{*} can be represented as $V\left(\Gamma_{m}^{*}\right)=\mathbb{Z}_{2} \times \mathbb{Z}_{m}$ and $A\left(\Gamma_{m}^{*}\right)=\bigcup_{j=0}^{m-1}\left\{((i, j),(i, j+1))^{*},((i, j),(i+1, j+1))^{*}\right\}$ $\cup A\left(F_{m}^{*}\right)$ for $i=0,1$, respectively.

Example

$C_{6}^{*}, C_{6}^{*}[2], C_{6}^{*}[2] \oplus I_{12}^{*}$ and $F_{m}^{*}[2]$ can be graphed as follows.

Example

$C_{6}^{*}, C_{6}^{*}[2], C_{6}^{*}[2] \oplus I_{12}^{*}$ and $F_{m}^{*}[2]$ can be graphed as follows.

C_{6}^{*}

Example

$C_{6}^{*}, C_{6}^{*}[2], C_{6}^{*}[2] \oplus I_{12}^{*}$ and $F_{m}^{*}[2]$ can be graphed as follows.

Example

$C_{6}^{*}, C_{6}^{*}[2], C_{6}^{*}[2] \oplus I_{12}^{*}$ and $F_{m}^{*}[2]$ can be graphed as follows.

Example

$C_{6}^{*}, C_{6}^{*}[2], C_{6}^{*}[2] \oplus I_{12}^{*}$ and $F_{m}^{*}[2]$ can be graphed as follows.

Solutions to HWP* $\left(v ; m^{r},(2 m)^{s}\right)$

Lemma (F.Yetgin et al. (2023))
Let $m \geq 4$ be even integer, then Γ_{m}^{*} has a $\left\{\vec{C}_{m}^{r}, \vec{C}_{2 m}^{s}\right\}$-factorization for $r \in\{0,6\}$ and $r+s=6$.

Solutions to HWP* $\left(v ; m^{r},(2 m)^{s}\right)$

Lemma (F.Yetgin et al. (2023))
Let $m \geq 4$ be even integer, then Γ_{m}^{*} has a $\left\{\vec{C}_{m}^{r}, \vec{C}_{2 m}^{s}\right\}$-factorization for $r \in\{0,6\}$ and $r+s=6$.

Proof : $(r=0) \Gamma_{m}^{*}$ has a $\vec{C}_{2 m}$-factorization.

Solutions to HWP* $\left(v ; m^{r},(2 m)^{s}\right)$

Lemma (F.Yetgin et al. (2023))
Let $m \geq 4$ be even integer, then Γ_{m}^{*} has a $\left\{\vec{C}_{m}^{r}, \vec{C}_{2 m}^{s}\right\}$-factorization for $r \in\{0,6\}$ and $r+s=6$.

Proof : $(r=0) \Gamma_{m}^{*}$ has a $\vec{C}_{2 m \text {-factorization. }}$.
$(r=6) \Gamma_{m}^{*}$ has a \vec{C}_{m}-factorization for $m \equiv 0(\bmod 4)$.

When $m \equiv 2(\bmod 4)$, define the following directed m-cycles.

$$
\vec{C}_{m}^{(0)}=\left(v_{0}, v_{1}, \ldots-v_{m-1}\right) \quad \text { where } v_{i}=(0, i) \quad \text { for } 0 \leqslant i \leqslant m-1 .
$$

When $m \equiv 2(\bmod 4)$, define the following directed m-cycles.

$$
\begin{gathered}
\vec{C}_{m}^{(0)}=\left(v_{0}, v_{1}, \ldots-v_{m-1}\right) \quad \text { where } v_{i}=(0, i) \quad \text { for } 0 \leq i \leqslant m-1 . \\
\vec{C}_{m}^{(1)}=\left(x_{0}, x_{1}, \ldots x_{m-1}\right) \text { where } x_{0}=(0,0) \text { and for } 1 \leq i \leq m-1 \\
x_{i=} \begin{cases}\left(\frac{1-(-1)^{i}}{2}, \frac{m}{2}-\left\lfloor\frac{i}{2}\right\rfloor\right), \text { for } i \equiv 1,2 \quad(\bmod 4) \\
\left(\frac{1-(-1)^{i}}{2}, \frac{m}{2}+\left\lfloor\frac{i}{2}\right\rfloor\right), \text { for } i=0,3 \quad(\bmod 4)\end{cases} \\
\vec{C}_{m}^{(2)}=\left(u_{0}, u_{1}, \ldots, u_{m-1}\right) \text { where } u_{i}= \begin{cases}(1, m-1-i) & \text { if } 0 \leq i \leq \frac{m}{2}, \\
(0, m-1-i) & \text { if } \frac{m}{2}+1 \leq i \leq m-1 .\end{cases}
\end{gathered}
$$

$\vec{C}_{m}^{(3)}=\left(y_{0}, y_{1}, \ldots y_{m-1}\right)$ where $y_{0}=(0,0), y_{1}=\left(0, \frac{m}{2}\right), y_{2}=\left(1, \frac{m}{2}+1\right)$, $y_{3}=\left(1, \frac{m}{2}-1\right)$ and

$$
y_{i=}=\left\{\begin{array}{l}
\left(1, \frac{m}{2}+(-1)^{i+1}\left\lfloor\frac{i}{2}\right\rfloor\right) \text { if } i \equiv 0,1 \quad(\bmod 4) \\
\left(0, \frac{m}{2}+(-1)^{i}\left\lfloor\frac{i}{2}\right\rfloor\right) \text { if } i=2,3 \quad(\bmod 4)
\end{array} \quad \text { for } 4 \leq i \leq m-1\right.
$$

$\vec{C}_{m}^{(3)}=\left(y_{0}, y_{1}, \ldots y_{m-1}\right)$ where $y_{0}=(0,0), y_{1}=\left(0, \frac{m}{2}\right), y_{2}=\left(1, \frac{m}{2}+1\right)$, $y_{3}=\left(1, \frac{m}{2}-1\right)$ and

$$
y_{i=}=\left\{\begin{array}{l}
\left(1, \frac{m}{2}+(-1)^{i+1}\left\lfloor\frac{i}{2}\right\rfloor\right) \text { if } i \equiv 0,1 \quad(\bmod 4) \\
\left(0, \frac{m}{2}+(-1)^{i}\left\lfloor\frac{i}{2}\right\rfloor\right) \text { if } i=2,3 \quad(\bmod 4)
\end{array} \quad \text { for } 4 \leq i \leq m-1 .\right.
$$

$\vec{C}_{m}^{(4)}=\left(z_{0}, z_{1}, \ldots, z_{m-1}\right)$ where

$$
z_{i}=\left\{\begin{array}{ll}
y_{m-i}+(1,0) & \text { if } 1 \leq i \leq m-3 \\
y_{m-i} & \text { if } m-2 \leq i \leq m
\end{array} .\right.
$$

$\vec{C}_{m}^{(3)}=\left(y_{0}, y_{1}, \ldots y_{m-1}\right)$ where $y_{0}=(0,0), y_{1}=\left(0, \frac{m}{2}\right), y_{2}=\left(1, \frac{m}{2}+1\right)$, $y_{3}=\left(1, \frac{m}{2}-1\right)$ and

$$
y_{i=}=\left\{\begin{array}{l}
\left(1, \frac{m}{2}+(-1)^{i+1}\left\lfloor\frac{i}{2}\right\rfloor\right) \text { if } i \equiv 0,1 \quad(\bmod 4) \\
\left(0, \frac{m}{2}+(-1)^{i}\left\lfloor\frac{i}{2}\right\rfloor\right) \text { if } i=2,3 \quad(\bmod 4)
\end{array} \quad \text { for } 4 \leq i \leq m-1 .\right.
$$

$\vec{C}_{m}^{(4)}=\left(z_{0}, z_{1}, \ldots, z_{m-1}\right)$ where

$$
z_{i=}=\left\{\begin{array}{ll}
y_{m-i}+(1,0) & \text { if } 1 \leq i \leq m-3 \\
y_{m-i} & \text { if } m-2 \leq i \leq m
\end{array} .\right.
$$

$$
F_{0}=\vec{C}_{m}^{(0)} \cup\left(\vec{C}_{m}^{(0)}+(1,0)\right), F_{1}=\vec{C}_{m}^{(1)} \cup R\left(\vec{C}_{m}^{(1)}+(1,0)\right)
$$

$\vec{C}_{m}^{(3)}=\left(y_{0}, y_{1}, \ldots y_{m-1}\right)$ where $y_{0}=(0,0), y_{1}=\left(0, \frac{m}{2}\right), y_{2}=\left(1, \frac{m}{2}+1\right)$, $y_{3}=\left(1, \frac{m}{2}-1\right)$ and

$$
y_{i=}=\left\{\begin{array}{l}
\left(1, \frac{m}{2}+(-1)^{i+1}\left\lfloor\frac{i}{2}\right\rfloor\right) \text { if } i \equiv 0,1 \quad(\bmod 4) \\
\left(0, \frac{m}{2}+(-1)^{i}\left\lfloor\frac{i}{2}\right\rfloor\right) \text { if } i=2,3 \quad(\bmod 4)
\end{array} \quad \text { for } 4 \leq i \leq m-1 .\right.
$$

$\vec{C}_{m}^{(4)}=\left(z_{0}, z_{1}, \ldots, z_{m-1}\right)$ where

$$
z_{i}=\left\{\begin{array}{ll}
y_{m-i}+(1,0) & \text { if } 1 \leq i \leq m-3 \\
y_{m-i} & \text { if } m-2 \leq i \leq m
\end{array} .\right.
$$

$$
F_{0}=\vec{C}_{m}^{(0)} \cup\left(\vec{C}_{m}^{(0)}+(1,0)\right), F_{1}=\vec{C}_{m}^{(1)} \cup R\left(\vec{C}_{m}^{(1)}+(1,0)\right), F_{2}=R\left(F_{1}\right)
$$

$\vec{C}_{m}^{(3)}=\left(y_{0}, y_{1}, \ldots y_{m-1}\right)$ where $y_{0}=(0,0), y_{1}=\left(0, \frac{m}{2}\right), y_{2}=\left(1, \frac{m}{2}+1\right)$, $y_{3}=\left(1, \frac{m}{2}-1\right)$ and

$$
y_{i=}=\left\{\begin{array}{l}
\left(1, \frac{m}{2}+(-1)^{i+1}\left\lfloor\frac{i}{2}\right\rfloor\right) \text { if } i \equiv 0,1 \quad(\bmod 4) \\
\left(0, \frac{m}{2}+(-1)^{i}\left\lfloor\frac{i}{2}\right\rfloor\right) \text { if } i=2,3 \quad(\bmod 4)
\end{array} \quad \text { for } 4 \leq i \leq m-1 .\right.
$$

$\vec{C}_{m}^{(4)}=\left(z_{0}, z_{1}, \ldots, z_{m-1}\right)$ where

$$
z_{i}=\left\{\begin{array}{ll}
y_{m-i}+(1,0) & \text { if } 1 \leq i \leq m-3 \\
y_{m-i} & \text { if } m-2 \leq i \leq m
\end{array} .\right.
$$

$F_{0}=\vec{C}_{m}^{(0)} \cup\left(\vec{C}_{m}^{(0)}+(1,0)\right), F_{1}=\vec{C}_{m}^{(1)} \cup R\left(\vec{C}_{m}^{(1)}+(1,0)\right), F_{2}=R\left(F_{1}\right)$,
$F_{3}=\vec{C}_{m}^{(2)} \cup\left(\vec{C}_{m}^{(2)}+(1,0)\right), F_{4}=\vec{C}_{m}^{(3)} \cup\left(\vec{C}_{m}^{(3)}+(1,0)\right)$ and
$\vec{C}_{m}^{(3)}=\left(y_{0}, y_{1}, \ldots y_{m-1}\right)$ where $y_{0}=(0,0), y_{1}=\left(0, \frac{m}{2}\right), y_{2}=\left(1, \frac{m}{2}+1\right)$, $y_{3}=\left(1, \frac{m}{2}-1\right)$ and

$$
y_{i=}=\left\{\begin{array}{l}
\left(1, \frac{m}{2}+(-1)^{i+1}\left\lfloor\frac{i}{2}\right\rfloor\right) \text { if } i \equiv 0,1 \quad(\bmod 4) \\
\left(0, \frac{m}{2}+(-1)^{i}\left\lfloor\frac{i}{2}\right\rfloor\right) \text { if } i=2,3 \quad(\bmod 4)
\end{array} \quad \text { for } 4 \leq i \leq m-1 .\right.
$$

$\vec{C}_{m}^{(4)}=\left(z_{0}, z_{1}, \ldots, z_{m-1}\right)$ where

$$
z_{i=}=\left\{\begin{array}{ll}
y_{m-i}+(1,0) & \text { if } 1 \leq i \leq m-3 \\
y_{m-i} & \text { if } m-2 \leq i \leq m
\end{array} .\right.
$$

$F_{0}=\vec{C}_{m}^{(0)} \cup\left(\vec{C}_{m}^{(0)}+(1,0)\right), F_{1}=\vec{C}_{m}^{(1)} \cup R\left(\vec{C}_{m}^{(1)}+(1,0)\right), F_{2}=R\left(F_{1}\right)$,
$F_{3}=\vec{C}_{m}^{(2)} \cup\left(\vec{C}_{m}^{(2)}+(1,0)\right), F_{4}=\vec{C}_{m}^{(3)} \cup\left(\vec{C}_{m}^{(3)}+(1,0)\right)$ and
$F_{5}=\vec{C}_{m}^{(4)} \cup\left(\vec{C}_{m}^{(4)}+(1,0)\right)$.
$\vec{C}_{m}^{(3)}=\left(y_{0}, y_{1}, \ldots y_{m-1}\right)$ where $y_{0}=(0,0), y_{1}=\left(0, \frac{m}{2}\right), y_{2}=\left(1, \frac{m}{2}+1\right)$, $y_{3}=\left(1, \frac{m}{2}-1\right)$ and

$$
y_{i=}=\left\{\begin{array}{l}
\left(1, \frac{m}{2}+(-1)^{i+1}\left\lfloor\frac{i}{2}\right\rfloor\right) \text { if } i \equiv 0,1 \quad(\bmod 4) \\
\left(0, \frac{m}{2}+(-1)^{i}\left\lfloor\frac{i}{2}\right\rfloor\right) \text { if } i=2,3 \quad(\bmod 4)
\end{array} \quad \text { for } 4 \leq i \leq m-1 .\right.
$$

$\vec{C}_{m}^{(4)}=\left(z_{0}, z_{1}, \ldots, z_{m-1}\right)$ where

$$
z_{i=}=\left\{\begin{array}{ll}
y_{m-i}+(1,0) & \text { if } 1 \leq i \leq m-3 \\
y_{m-i} & \text { if } m-2 \leq i \leq m
\end{array} .\right.
$$

$F_{0}=\vec{C}_{m}^{(0)} \cup\left(\vec{C}_{m}^{(0)}+(1,0)\right), F_{1}=\vec{C}_{m}^{(1)} \cup R\left(\vec{C}_{m}^{(1)}+(1,0)\right), F_{2}=R\left(F_{1}\right)$,
$F_{3}=\vec{C}_{m}^{(2)} \cup\left(\vec{C}_{m}^{(2)}+(1,0)\right), F_{4}=\vec{C}_{m}^{(3)} \cup\left(\vec{C}_{m}^{(3)}+(1,0)\right)$ and
$F_{5}=\vec{C}_{m}^{(4)} \cup\left(\vec{C}_{m}^{(4)}+(1,0)\right)$.
Then, $\left\{F_{0}, F_{1}, F_{2}, F_{3}, F_{4}, F_{5}\right\}$ is a \vec{C}_{m}-factorization of Γ_{m}^{*}.
$\vec{C}_{m}^{(3)}=\left(y_{0}, y_{1}, \ldots y_{m-1}\right)$ where $y_{0}=(0,0), y_{1}=\left(0, \frac{m}{2}\right), y_{2}=\left(1, \frac{m}{2}+1\right)$, $y_{3}=\left(1, \frac{m}{2}-1\right)$ and

$$
y_{i=}=\left\{\begin{array}{l}
\left(1, \frac{m}{2}+(-1)^{i+1}\left\lfloor\frac{i}{2}\right\rfloor\right) \text { if } i \equiv 0,1 \quad(\bmod 4) \\
\left(0, \frac{m}{2}+(-1)^{i}\left\lfloor\frac{i}{2}\right\rfloor\right) \text { if } i=2,3 \quad(\bmod 4)
\end{array} \quad \text { for } 4 \leq i \leq m-1 .\right.
$$

$\vec{C}_{m}^{(4)}=\left(z_{0}, z_{1}, \ldots, z_{m-1}\right)$ where

$$
z_{i=}=\left\{\begin{array}{ll}
y_{m-i}+(1,0) & \text { if } 1 \leq i \leq m-3 \\
y_{m-i} & \text { if } m-2 \leq i \leq m
\end{array} .\right.
$$

$F_{0}=\vec{C}_{m}^{(0)} \cup\left(\vec{C}_{m}^{(0)}+(1,0)\right), F_{1}=\vec{C}_{m}^{(1)} \cup R\left(\vec{C}_{m}^{(1)}+(1,0)\right), F_{2}=R\left(F_{1}\right)$,
$F_{3}=\vec{C}_{m}^{(2)} \cup\left(\vec{C}_{m}^{(2)}+(1,0)\right), F_{4}=\vec{C}_{m}^{(3)} \cup\left(\vec{C}_{m}^{(3)}+(1,0)\right)$ and
$F_{5}=\vec{C}_{m}^{(4)} \cup\left(\vec{C}_{m}^{(4)}+(1,0)\right)$.
Then, $\left\{F_{0}, F_{1}, F_{2}, F_{3}, F_{4}, F_{5}\right\}$ is a \vec{C}_{m}-factorization of Γ_{m}^{*}.

Lemma (F.Yetgin et al. (2023))
Let $m \geq 4$ be even integer, then $C_{m}^{*}[2]$ has a $\left\{\vec{C}_{m}^{r}, \vec{C}_{2 m}^{s}\right\}$-factorization for $r \in\{0,2,4\}$ and $r+s=4$.

Lemma (F.Yetgin et al. (2023))
Let $m \geq 4$ be even integer, then $C_{m}^{*}[2]$ has a $\left\{\vec{C}_{m}^{r}, \vec{C}_{2 m}^{s}\right\}$-factorization for $r \in\{0,2,4\}$ and $r+s=4$.

Lemma (F.Yetgin et al. (2023))
Let $m \geq 4$ be even integer, then $C_{m}^{*}[2] \oplus l_{2 m}^{*}$ has a $\left\{\vec{C}_{m}^{r}, \vec{C}_{2 m}^{s}\right\}$ - factorization for $r \in\{0,1,3\}$ and $r+s=5$.

Lemma (F.Yetgin et al. (2023))
Let $m \geq 4$ be even integer, then $C_{m}^{*}[2]$ has a $\left\{\vec{C}_{m}^{r}, \vec{C}_{2 m}^{s}\right\}$-factorization for $r \in\{0,2,4\}$ and $r+s=4$.

Lemma (F.Yetgin et al. (2023))
Let $m \geq 4$ be even integer, then $C_{m}^{*}[2] \oplus l_{2 m}^{*}$ has a $\left\{\vec{C}_{m}^{r}, \vec{C}_{2 m}^{s}\right\}$ - factorization for $r \in\{0,1,3\}$ and $r+s=5$.

Theorem (F.Yetgin et al. (2023))

Let r, s be nonnegative integers, and let $m \geq 4$ be even. Then, HWP* $\left(v ; m^{r},(2 m)^{s}\right)$ has a solution if and only if $m \mid v, r+s=v-1$ and $v \geq 4$ except for $(s, v, m) \in\{(0,4,4),(0,6,3)\}$ and $(r, v, m) \in\{(0,6,6)\}$, and except possibly for $s \in\{1,3\}$.

Theorem (F.Yetgin et al. (2023))

Let r, s be nonnegative integers, and let $m \geq 4$ be even. Then, $\operatorname{HWP}^{*}\left(v ; m^{r},(2 m)^{s}\right)$ has a solution if and only if $m \mid v, r+s=v-1$ and $v \geq 4$ except for $(s, v, m) \in\{(0,4,4),(0,6,3)\}$ and $(r, v, m) \in\{(0,6,6)\}$, and except possibly for $s \in\{1,3\}$.

Proof : We can factorize $K_{2 m x}^{*}$ as follows :

$$
\begin{equation*}
K_{2 m x}^{*} \cong x K_{2 m}^{*} \oplus \underbrace{x K_{(m: 2)}^{*} \oplus x K_{(m: 2)}^{*} \oplus \ldots \oplus x K_{(m: 2)}^{*}}_{2 x-2} \tag{3}
\end{equation*}
$$

Theorem (F.Yetgin et al. (2023))

Let r, s be nonnegative integers, and let $m \geq 4$ be even. Then, $\operatorname{HWP}^{*}\left(v ; m^{r},(2 m)^{s}\right)$ has a solution if and only if $m \mid v, r+s=v-1$ and $v \geq 4$ except for $(s, v, m) \in\{(0,4,4),(0,6,3)\}$ and $(r, v, m) \in\{(0,6,6)\}$, and except possibly for $s \in\{1,3\}$.

Proof : We can factorize $K_{2 m x}^{*}$ as follows :

$$
\begin{equation*}
K_{2 m x}^{*} \cong x K_{2 m}^{*} \oplus \underbrace{x K_{(m: 2)}^{*} \oplus x K_{(m: 2)}^{*} \oplus \ldots \oplus x K_{(m: 2)}^{*}}_{2 x-2} \tag{3}
\end{equation*}
$$

Also, we can factorize $K_{2 m}^{*}$ as follows :

$$
K_{2 m}^{*} \cong K_{m}^{*}[2] \oplus I_{2 m}^{*}
$$

Theorem (F.Yetgin et al. (2023))

Let r, s be nonnegative integers, and let $m \geq 4$ be even. Then, $\operatorname{HWP}^{*}\left(v ; m^{r},(2 m)^{s}\right)$ has a solution if and only if $m \mid v, r+s=v-1$ and $v \geq 4$ except for $(s, v, m) \in\{(0,4,4),(0,6,3)\}$ and $(r, v, m) \in\{(0,6,6)\}$, and except possibly for $s \in\{1,3\}$.

Proof : We can factorize $K_{2 m x}^{*}$ as follows :

$$
\begin{equation*}
K_{2 m x}^{*} \cong x K_{2 m}^{*} \oplus \underbrace{x K_{(m: 2)}^{*} \oplus x K_{(m: 2)}^{*} \oplus \ldots \oplus x K_{(m: 2)}^{*}}_{2 x-2} \tag{3}
\end{equation*}
$$

Also, we can factorize $K_{2 m}^{*}$ as follows :

$$
\begin{equation*}
K_{2 m}^{*} \cong K_{m}^{*}[2] \oplus l_{2 m}^{*} \cong C_{m}^{*}[2] \oplus C_{m}^{*}[2] \oplus \ldots \oplus C_{m}^{*}[2] \oplus F_{m}^{*}[2] \oplus I_{2 m}^{*} \tag{4}
\end{equation*}
$$

Theorem (F.Yetgin et al. (2023))

Let r, s be nonnegative integers, and let $m \geq 4$ be even. Then, $\operatorname{HWP}^{*}\left(v ; m^{r},(2 m)^{s}\right)$ has a solution if and only if $m \mid v, r+s=v-1$ and $v \geq 4$ except for $(s, v, m) \in\{(0,4,4),(0,6,3)\}$ and $(r, v, m) \in\{(0,6,6)\}$, and except possibly for $s \in\{1,3\}$.

Proof : We can factorize $K_{2 m x}^{*}$ as follows :

$$
\begin{equation*}
K_{2 m x}^{*} \cong x K_{2 m}^{*} \oplus \underbrace{x K_{(m: 2)}^{*} \oplus x K_{(m: 2)}^{*} \oplus \ldots \oplus x K_{(m: 2)}^{*}}_{2 x-2} \tag{3}
\end{equation*}
$$

Also, we can factorize $K_{2 m}^{*}$ as follows :

$$
\begin{equation*}
K_{2 m}^{*} \cong K_{m}^{*}[2] \oplus l_{2 m}^{*} \cong C_{m}^{*}[2] \oplus C_{m}^{*}[2] \oplus \ldots \oplus C_{m}^{*}[2] \oplus F_{m}^{*}[2] \oplus I_{2 m}^{*} \tag{4}
\end{equation*}
$$

So, $K_{2 m}^{*}$ has a $\left\{\left(C_{m}^{*}[2]\right)^{\frac{m-6}{2}}, C_{m}^{*}[2] \oplus I_{2 m}^{*}, \Gamma_{m}^{*}\right\}$-factorization.

Conclusion

- Case which remain to solve $\operatorname{HWP}^{*}\left(v ; m^{r},(2 m)^{s}\right)$ is $s \in\{1,3\}$,

Conclusion

■ Case which remain to solve $\operatorname{HWP}^{*}\left(v ; m^{r},(2 m)^{s}\right)$ is $s \in\{1,3\}$,
$1 C_{m}^{*}[2]$ must have a $\left\{\vec{C}_{m}^{r}, \vec{C}_{2 m}^{s}\right\}$-factorization for $s=1$
[$C_{m}^{*}[2] \oplus l_{2 m}^{*}$ must have a $\left\{\vec{C}_{m}^{r}, \vec{C}_{2 m}^{s}\right\}$-factorization for $s=1$
$3 \Gamma_{m}^{*}$ must have a $\left\{\overrightarrow{\mathrm{C}}_{m}^{r}, \vec{C}_{2 m}^{s}\right\}$-factorization for $s=1$
$4 K_{(m: 2)}^{*}$ must have a $\left\{\vec{C}_{m}^{r}, \vec{C}_{2 m}^{s}\right\}$-factorization for $s=1$

Thank You for Your Attention

References

[1] B. Alspach, H. Gavlas, M. Sajna, and H. Verrall, Cycle decompositions IV : complete directed graphs and fixed length directed cycles, J. Comb. Theory Ser. A. 103(1) (2003), 165-208.
[2] P. Adams, E. J. Billington, D. E. Bryant, and S. I. El-Zanati, On the HamiltonWaterloo problem, Graphs Combin. 18 (2002), 31-51.
[3] D. Bryant, P. Danziger, On bipartite 2-factorizations of $K_{n}-I$ and the Oberwolfach problem, J. Graph Theory 68(1) (2011), 22-37.
[4] D. Bryant, P. Danziger, and M. Dean, On the Hamilton-Waterloo Problem for Bipartite 2-Factors, J. Comb. Des. 21(2) (2013), 60-80.

References

[5] J. C. Bermond, A. Germa, and D. Sotteau, Resolvable decomposition of K_{n}^{*}, J. Comb. Theory Ser. A. 26(2) (1979), 179-185.
[6] F. E. Bennett, X. Zhang, Resolvable Mendelsohn designs with block size 4, Aequationes Math. 40(1) (1990), 248-260.
[7] A. Burgess, N. Francetic, and M. Sajna, On the directed Oberwolfach Problem with equal cycle lengths : the odd case, Australas. J. Comb. 71(2) (2018), 272-292.
[8] A. Burgess, M. Sajna, On the directed Oberwolfach Problem with equal cycle lengths, Electron. J. Comb. 21(1) (2014), 1-15.
[9] A. Burgess, P. Danziger, and T. Traetta, On the Hamilton-Waterloo problem with odd orders, J. Comb. Des. 25(6) (2017), 258-287.
[10] A. Burgess, P. Danziger, and T. Traetta, On the Hamilton-Waterloo problem with odd cycle lengths, J. Comb. Des. 26(2) (2018), 51-83.
[11] S. Bonvicini, M. Buratti, Octahedral, dicyclic and special linear solutions of some Hamilton-Waterloo problems, Ars Math. Contemp. 14(1) (2017), 1-14
[12] P. Danziger, G. Quattrocchi, and B. Stevens, The Hamilton-Waterloo problem for cycle sizes 3 and 4, J. Comb. Des., 17(4) (2009), 342-352.
[13] R. K. Guy, Unsolved combinatorial problems, In : Proceedings of the Conference on Combinatorial Mathematics and Its Applications , Oxford, 1967 (D. J. A. Welsh, Ed.), Academic Press, New York, 1971.
[14] R. Haggkvist, A lemma on cycle decompositions, North-Holland Mathematics Studies 115 (1985), 227-23
[15] W. Imrich, S. Klavzar Product graphs : Structure and Recognition, John Wiley and Sons Incorporated, New York, 2000.
[16] M. Keranen, S. Özkan, The Hamilton-Waterloo problem with 4-cycles and a single factor of n-cycles, Graphs Combin. 29 (2013), 1827-1837.
[17] J. Liu, The equipartite Oberwolfach problem with uniform tables, J. Comb. Theory Ser. A. 101 (2003), 20-34.
E. Shabani, M. Sajna, On the Directed Oberwolfach Problem with variable cycle lengths, 2020, arXiv preprint arXiv :2009.08731.
[19] U. Odabasi, S. Ozkan, The Hamilton-Waterloo problem with C_{4} and C_{m} factors, Discrete Math. 339(1) (2016), 263-269.
[20] F.Yetgin, U. Odabasi and S. Özkan, On the Directed Hamilton-Waterloo Poblem with Two Cycle Sizes, Contributions to Discrete Mathematics, (Accepted).
[21] F.Yetgin, U. Odabasi and S. Özkan, The Directed Uniform Hamilton-Waterloo Problem Involving Even Cycle Sizes, Discussiones Mathematicae Graph Theory, (Accepted).
[22] U. Odabasi, Factorizations of complete graphs into cycles and 1-factors,
Contributions to Discrete Mathematics 15(1) (2020), 80-89.
[23] E. Lucas, Recreations mathematiques, vol. 2, Gauthier-Villars, Paris, 1892.

