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» Let is(7) be the length of the longest increasing sequence in
the permutation 7.

> Let
ug(n) = {m € &, :is(m) < k}|,
and
$2n
Ur(z) = Zuk(n)ﬁ'
n>0 )

» Theorem (Gessel, 1990).
Uk(z) = det(Ji—j(x))f,jzla

where ,
x2n+z

n>0
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Negative dependence

» There are many ways of introducing Lorentzian polynomials
Matroid theory

Convex geometry

>
>
» Geometry of zeros of polynomials
> Hodge theory

>

Negative dependence
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Negative dependence

P> Negative dependence traditionally models repelling particles or
“repelling” random variables in statistical physics or
probability theory.

» Let E be a finite set of sites, that can be either occupied by a
particle or vacant.

» Let X;, i € E, be a random variable

{0 if 4 is vacant,
Z' =

1 if 7 is occupied.

> If the particles are repelling, then one would expect different
sites 7, j to be negatively correlated:

PIX; = X; = 1] <P[X; = 1] - P[X; = 1]



Quest for a theory of negative dependence

“There is a natural and useful theory of positively dependent
events. There is, as yet, no corresponding theory of negatively
dependent events. There is, however, a need for such a theory.”

Robin Pemantle, (UPenn), J. of Math. Physics, 2000.




Quest for a theory of negative dependence

“There is a natural and useful theory of positively dependent
events. There is, as yet, no corresponding theory of negatively
dependent events. There is, however, a need for such a theory.”
Robin Pemantle (UPenn) J. of Math. Physics, 2000.

» Since then two successful approaches to negative dependence
has been developed.

» One using the geometry of zeros of polynomials, and the other
using ideas from Hodge theory.

» The theory of Lorentzian polynomials merges the two.



Negative dependence

Other important negative dependence inequalities are
» Log-concavity:
2>
Tk 2 Tk—1Tk+15

where
TR = P[Z X; = k} = P[exactly k sites are occupied].
» Newton's inequalities (1707). If all the zeros of a polynomial

ro + ria + rox® + - + rpz™ are real, then

2
Tk Tk—1 Tkt

PR AS)

P Real zeros are repelling.

0<k<n.



Fundamental problems on independence

» Many problems on independence exhibit strong negative
dependence properties.

» E =/{a,b,c,...} is a finite set of vectors in a vector space.

» fi. = the number of linearly independent subsets of E of size k

> (f07f17f27f3) - (17579,5)

» What can be said about the sequence fy, f1, fo,...7



Mason's conjecture

» Mason's strong conjecture (1972).
The sequence fo, f1,..., fn, n = |E|, satisfies Newton's
inequalities, i.e.,

/7 o Ser fen
el . )
M* (M) Gh)
i k-1 k+1
» The general form of the conjecture concerns independent sets
in matroids.

0<k<n.




Graph colorings

» Let G = (V, E) be a graph. A proper k-coloring of G is a
function k : V' — {1,2,...,k} such that

{i,j}isan edge — k(i) # k(j).

-
AN

<7



Graph colorings

» Let G = (V, E) be a graph. A proper k-coloring of G is a
function k : V' — {1,2,...,k} such that

{i,j} isan edge = k(i) # K(j).
» What can be said about the chromatic polynomial?

Xa (k) = the number of proper k-colorings.




Graph colorings

» Let G = (V, E) be a graph. A proper k-coloring of G is a
function k : V' — {1,2,...,k} such that

{i,j} isan edge = k(i) # K(j).
> What can be said about the chromatic polynomial:
Xa (k) = the number of proper k-colorings.

» Introduced by George D. Birkhoff in 1912 to study the four
color conjecture.




Read-Heron-Rota-Welsh conjecture
> We may write
Xa(2) = woa™ —wiz" 4 4 (1) wa, 0=V,

where wq, wi, ..., w, are nonnegative integers called the
Whitney numbers of the first kind.

» Conjecture (Read-Heron-Rota-Welsh, 1968-76).
{wi}7_, is a log-concave sequence, i.e.,

w,% > Wh—1Wh+1, 0<k<n.

» Proved by June Huh using Hodge theory.

» In its full generality, the conjecture applies to the
characteristic polynomial of a geometric lattice.

» Proved Adiprasito, Huh and Katz by developing a Hodge
theory for matroids.



Matroid theory

» Matroid theory is a discrete axiomatization of independence in
algebra and graph theory.

» Introduced by Nakasawa and Whitney in the 1930's.




Matroid theory

» Let M be a collection of subsets of a finite set E.
» M is the set of bases of a matroid if for all By, By € M:

1€ B \BQ = dj € BQ\Bl such that (Bl\{l})U{j} € M.

> Example. F is a finite set of vectors that span a linear space
V. M is the set of bases of V' drawn from E. M is called a
linear matroid.

» Example. G = (V, E) is a connected graph. M is the
collection of spanning trees of G.

b



M = {abc, abd, abe, acd, ace}



Matroid Potts model
» Let M be a matroid on E. The rank of a subset A of E is
r(A) = max{|ANB|: B € M}.

» A subset I of E is independent if »(I) = |I|.

» For positive numbers ¢ and z.,e € E, define a probability
measure on 27 = {S: S C E} by

:“Jq( q H Le,
eeS

where Z, is the normalizing factor, or the partition function.
» g > 1: Favors low rank. Positively dependent.
» ¢ < 1: Favors high rank. Negatively dependent?



Matroid Potts model

> Recall

> Let g — 0:

1 |1 ifS independent,
S) — —
Ha(S) Z {0 otherwise.

» Hence if we can prove negative dependence for p, for all
0 < g <1, then we can prove negative dependence for
independent sets.



Random cluster-model

» When M is a graphic matroid corresponding to a graph

G = (V, E), then p, is called the Random-cluster model (RC).
» ¢ = 2: Ising model (Ferromagnet),
» g € Z~o: g-state Potts model.




Negative dependence conjectures for Potts models

>
>
>

For ¢ > 1, the matroid Potts model is positively dependent.
For 0 < ¢ <1, RC is conjectured to be negatively dependent.

Conjecture (Pemantle, Kahn, Grimmett,...). RC is negatively
correlated for 0 < ¢ < 1.

Theorem (Kirchhoff). If G is connected, and z.,e € E are
positive numbers then the measure on 2%:

na(S) =

1 JIl.esze if S is a spanning tree,
Z |0 otherwise.

is negatively correlated.

Unknown for the random forest measure.



Negative dependence for Potts models

» Let rp = IP[k sites are occupied] and n = |E].
» Conjecture (Pemantle, 2000). For 0 < ¢ < 1, RC satisfies
Newton's inequalities:

7”1% > Tk—1  Th+1
M~ (M) G

P It is natural to extend this conjecture to all matroids.

» Extended Pemantle's conjecture was proved by B. and Huh in
2020. = Mason's conjecture.

» Theorem (B., Huh, 2020). For 0 < ¢ <1 and distinct sites ¢
and 7,

PIX; = X; = 1] <2-P[X; = 1] - P[X; = 1].

» The proofs use Lorentzian polynomials.



Gian-Carlo Rota’s idea

» Gian-Carlo Rota (1932-1999) believed that matroid negative
dependence conjectures should be approached by geometric
inequalities from Brunn-Minkowski theory.




Motivation: Geometric inequalities

» Brunn-Minkowski inequality (1887). For convex bodies
K1, K, C RY,

Vol(K1 4 K3)Y4 > Vol(K1)? + Vol (K,) ',

where K1 + Ko = {z1 + z2: z1 € K and 3 € K»}.

» Minkowski. For convex bodies K1,..., K,,, and
T1,...,Tm >0,
Vol(x1 K1 + -+ + 2 Kipy) ZV iy Kig)Tiy e Ty,
7/
where V(K1, ..., K4) > 0 are the mixed volumes.

» Alexandrov-Fenchel inequalities (1937).

V(K1, Ko, ..., Kn)2 >V(Ki,K1,Ks...,K,)V(Ky, Ko, Ks,...,K,)



Lorentzian polynomials

» Let f € R[zy,...,x,] be a homogeneous degree d polynomial
and vi,..., vy, € R® Then

F@ivs + -+ Tvin) :d,z v Do D i,

where Dy, = wla%l + .- +wn%.

» f is called Lorentzian if f has nonnegative coefficients, and
for all vi,...,vqg € R,

(AF) (DV1DV2 T Dvdf)2 > (DV1DV1 o 'Dvdf)(DV2DV2 T DVdf)
> If ap = Df,lDfl,z_kf, then az > Qf—1Qk+1-



Lorentzian polynomials

» Let f € R[zy,...,x,] be a homogeneous degree d polynomial
and vi,..., vy, € R® Then

f(xlvl++$mvm - d' Z VLI : Vzdf)xh"'x’id

U1yeenid

where Dy, = wla%l + .- +wn%.

> f is called Lorentzian if f has nonnegative coefficients, and
for all vi,...,vqg € R,

(AF) The Hessian
( &g >n
O0x;0z; i1

of the quadratic polynomial g = Dy, --- Dy, , f has at most
one positive eigenvalue.




Exercise

» Let f € R>o[x1,...,xy,] be a quadratic polynomial, and write
1 1
f= ixTAx =3 Z Qi x;.
i,

» The following are equivalent:
(a)
(b) A has at most one positive eigenvalue,
)

(c) Forall u,v € RZ,

f is Lorentzian,

(ufAv)? > (uT Au) - (v Av).



Examples of Lorentzian polynomials

| 2

v

Determinantal polynomials: det(z1 A1 + 2242 + -+ + x,4,),
where Ay, ..., A, are symmetric positive semidefinite d x d
matrices.

Stable polynomials: f € R>q[z1,...,z,], homogeneous of
degree d, such that

Im(z;) >0 for all j = f(x1,...,2,) #0.

Volume polynomials of convex bodies or projective varieties.
Various matroid polynomials.

Normalized Schur polynomials (Huh, Matherne, Mészaros, St.
Dizier).



Properties of Lorentzian polynomials

>

>
>

Theorem (B., Huh, 2020). If f and g are Lorentzian, then so
is fg.

If fis Lorentzian and v € RY,, then Dy f is Lorentzian.

If feR[xy,...,zq]is Lorentzian and A is an m x n matrix
with nonnegative entries, then f(Ax) is Lorentzian.

A bi-variate polynomial ZZ:O apxFy?=* with positive
coefficients is Lorentzian iff the Newton inequalities are

satisfied: )
ay ap—1  Ak+1

@2 6L GL)

Suppose u,v € R, and f is Lorentzian. Write

L d
flsu+tv) = Z ay (kz) shpd—k

k=0

Then {ay}{_, is log-concave.



Lorentzian polynomials and Matroid theory

> A finite subset J of Z™ is M-convex if
a,8€Jand o > 3 =
there is a j such that §; > a; and a —e; +¢; € J.

A<



Lorentzian polynomials and Matroid theory

> A finite subset J of Z™ is M-convex if
a,8€Jand o > 3 =
there is a j such that §; > a; and a —e; +¢; € J.
» Also called polymatroids or integer points of generalized

permutahedra.

» If J C{0,1}", then J is M-convex iff .J is the set of bases of
a matroid.

» The support of a polynomial

f= E aq T71XH? aq € R,
aeNn

supp(f) = {a € N" : a, # 0}.



Characterization of Lorentzian polynomials

Theorem (B., Huh, 2020). Let f be a degree d homogenous
polynomial with nonnegative coefficients. Then f is Lorentzian iff
(M) supp(f) is M-convex, and
(L) for all 41,19,...,i4—2, the Hessian of the quadratic

0 0 s

6%’1'1 aiﬁid72

has at most one positive eigenvalue.

> Non-example. 2§ + 23 is not Lorentzian.

4\




Characterization of Lorentzian polynomials
Theorem (B., Huh, 2020). Let f be a degree d homogenous
polynomial with nonnegative coefficients. Then f is Lorentzian iff
(M) supp(f) is M-convex, and
(L) for all 41,12,...,i4—2, the Hessian of the quadratic
0 0 s

6:1:1'1 al'id72

has at most one positive eigenvalue.

» Non-example. x? + 23 is not Lorentzian.

» Example. 27 + 37129 + 23 is Lorentzian.

12 L= -5
So B has exady
g 2 o PO(_ e;ﬁ%v



Characterization of Lorentzian polynomials
Theorem (B., Huh, 2020). Let f be a degree d homogenous
polynomial with nonnegative coefficients. Then f is Lorentzian iff
(M) supp(f) is M-convex, and
(L) for all 41,12,...,i4—2, the Hessian of the quadratic
0 0 s

61‘1’1 al'id72

has at most one positive eigenvalue.
Theorem (B., Huh, 2020). If J C N" is M-convex, then
Qn

1 . .
E ——— ' ---apm s Lorentzian.
ap!l-ap!

» Hence Lorentzian polynomials characterize M-convex sets and
matroids.



Bivariate polynomials
» When is a bivariate polynomial Lorentzian? Write
yi—k

d
_ 1 d k d k
f_d!kzoak<k> Z“’“kv (d— k)

(M) says that {ay}{_, has no internal zeros.

>
» (L) says that the Hessian H of

8k—1 8d—k—1 2 $2

y
9aF T iR = W1 Fakry+ G150

has at most one positive eigenvalue.

H = (ak+1 o ) , Atdg = det(H) = ap_ap1—ai < 0.
ak ar—1

» Hence Lorentzian iff {ax} no internal zeros and log-concave.



Multivariate Tutte polynomial

» The partition function for the Potts model of M is

Zna(xiq) =Y q "] e

ACE ecA
> Let )
—r(A) _|F
Hu(xiq) = Y ¢ W™ ] .
ACFE ecA
» Notice

o Hy(x;q) = ¢ "D Hy o (x;q),

where M /e is the contraction of M by e:

M/e ={B\ {e} : B is a basis of M and e € B}.



Matroid Potts model is Lorentzian

Theorem (B., Huh, 2020). If 0 < ¢ < 1, then Hy(x;q) is
Lorentzian as a polynomial in x.
Proof.

» We should verify conditions (M) and (L) of the
characterization.

» supp(Hy(x;q)) is M-convex.
P> Recall

o Hy(x;q) = ¢ "D Hyy o (x: q).

» By induction on (M) (and by taking truncations if necessary)
it suffices to prove for r(M) = 2.

» The case when (M) = 2 is an exercise in linear algebra. [



Consequences

» Let £ ={1,...,n}. The previous theorem says

S . .
Hy(zo,21,...,2 Z q 1: n—|] H x. is Lorentzian.
SCE ecS

» Thensois f(s,t) = Hum(s,z1t, xat,. .., xnt), where z; >0
for all j.

n

f(s,t) = Z s R R,

k=0
» From this follows the extended Pemantle conjecture, and
Mason's conjecture.



Motivation: Elements of Hodge theory
> Let

A:R[wl,...,xn]/I:@Ak

be a graded R-algebra.
» Suppose A% is one-dimensional, and let

deg: A 5 R

be a linear isomorphism.

» Suppose K C Al is an open convex cone.



Kahler package

Desirable properties of A.

Poincaré duality (PD)
The bilinear map,

AR x AR R (z,y) — deg(zy),
is nondegenerate.

Hard Lefschetz property (HL)
For each 0 < k < d/2, and any ¢1,0a,...,03_or € K, the linear
map

AP — Ad_k, > l1ly - Ly_opx,

is bijective.



Kahler package

Hodge-Riemann relations (HR)
For each 0 < k < d/2, and any 4y, ¢1,...,l4_o € K, the bilinear
map

AP AP — R, (2,y) — (=1)" deg(bils -+ La—apy)
is positive definite on {x € A* : oty - Ly _opz = 0}.

Let 41,...,0; € K.
(P) For k =0, (HR) says deg(¢142---£4) > 0.
(AF) For k =1, (HR) says
deg(€1€2£3 e Ed)2 Z deg(€1€1£3 e Ed) deg(€2€2€3 cee fd)
(LC) In particular, the sequence aj, = deg(£¥¢4") is log-concave

ai > ag—10p+1, 0<k<d.



Examples

» Classical examples of Kahler package comes from compact
Kahler manifolds and projective varieties,

» Polytopes (Stanley, McMullen),

» Chow rings of matroids (Adiprasito, Huh, Katz), and similar
Chow rings.



Beyond Hodge theory

| 2

>

Is there a common “geometry of polynomials” setting for
these examples?

The degree map defines a homogeneous degree d polynomial
in Rlt1,...,t,):

d
vola(t) deg (Zt xl> . (volume polynomial)

Let £ = ayz1 + -+ apzy, € AL, v = (ay,...,a,) € R™.
Then

d—1
1
Dy vola(t Zaz o, vola(t (d deg (Z tm)

Iterate: Dy, Dy, - -+ Dy, vola(t) = deg(€142-- - £g).



Lorentzian polynomials on cones

» Let f € R[t1,...,t,) be a homogeneous degree d polynomial.
» Let X be an open convex cone in R™.
» fis called K-Lorentzian if for all vq,...,vg € X,
(P) Dy, ---Dy,f >0, and
) (DV1DV2 e DVdf)2 > (DV1DV1 o 'DVdf)(DV2DV2 e DVdf)

» Hence we get K-Lorentzian polynomials from the examples
from Hodge theory above.

> Example. Lorentzian polynomials are the same as

¢ y-Lorentzian polynomials.

» Example. The determinant A — det(A) is Lorentzian on the
cone of positive definite matrices.

» There are K-Lorentzian polynomials that do not come from
any of the examples from Hodge-theory above.



Quadratic Lorentzian polynomials on cones

> Let A= (a;;);';—; be a (non-zero) symmetric n x n matrix.

» The polynomial

F#) = aitit,
i

is Lorentzian with respect to some cone iff A has exactly one
positive eigenvalue ).

Av = Ay ) A=o
K= connecledd LMIDM
of Ftek’: fl¢)=0f

¢ zm(q,‘mwﬁ V.



Chow rings of fans

> Let A be a pure abstract simplicial complex on V.

» Let ¥ = {Cg}sea be a collection of |S|-dimensional
polyhedral cones such that

» Each face of Cg is a cone in X, and
» CsnNCr=Csar.

{ I




Chow rings of fans

> Let A be a pure abstract simplicial complex on V.

» Let ¥ = {Cs}sen be a collection of |S|-dimensional
polyhedral cones such that

» Each face of Cg is a cone in X, and
» CsnNCr=Csar.

> X is called a simplicial fan.
> Let p;, i €V, be specified vectors of the rays Cl;y.
> Let L= L(X) = {(Mpi))iev : A € (RV)"}.



Chow rings of fans

» Define two ideals in R[z; : i € V]:
» I(A) is generated by the monomials Hmi, T & A.

ieT
> J(L) is generated by the linear forms Z&xi, (4;)iev € L.
eV
» The graded ring
d
AZ) = P AHE) == Rla; i € V]/(I(A) + J(L))
k=0

is the Chow ring of .
» Important examples of Chow rings that satisfy the Kahler
package are

» The normal fan of a simple polytope (Stanley, McMullen).
» The Chow ring of a matroid (Adiprasito, Huh and Katz), and
related Chow rings.



d L(2) "i(q///h,%) : /}If%ztfisfoj
A(i): 3 ssluz gy ! 51<2 §
I(i) e < Xl)(z)(§>
§ 51 3(2):(/(:)(:+/f2)(1+/{;{3 : /{éL(Z)>
Z = K Xe, k=K ) Xy =5 D
Az = R, A(Z)Z R
Kl = e

0(4&9 /\Z(Z)—‘)/f{ ) ”Qj(xixj):i 2 "}J'
V()Iz((f()f“ég) :'—lz-io(ﬁ((x,flfylélﬁ.)(% )

)]

(¢,¢€atts)"



Goals

» Try to find “polynomial proofs” of Hodge-Riemann relations
of degree zero and one for Chow rings of fans.

> Would give new and elementary proofs of the
Heron-Rota-Welsh conjecture and similar results.

» Characterize the Chow rings of fans that satisfy
Hodge-Riemann relations of degree zero and one.

» Extend beyond fans and Hodge theory.



Volume polynomials of Chow rings of fans

> Let deg: A%(X) — R be a linear function, and consider the
volume polynomial

d
volx (t) deg ((Zt xl> ) )
eV

> Properties: Let §° := HieS 0;, where 0; := 0/0t;.

d—|9|
S€A(E):>asvolg_( |S| deg(Haz, (Ztml> ) =0

i€S 1<%

d—1
e L(Y) = (d—ll)!De voly, = deg (Z lix; (Z tixi> ) =0

eV 1%



Hereditary polynomials

» Let A be a pure (d — 1)-dimensional simplicial complex on a
finite set V.

> Let L be a linear subspace of RV .

» The pair (A, L) is called hereditary if for each S € A

{(t;)ies : (Li)iev € L} =R,

L=1(Als), A(t), A(F5),-) ?
Ae(RY)*




Hereditary polynomials

» Let A be a pure (d — 1)-dimensional simplicial complex on a
finite set V.

» Let L be a linear subspace of RV,
» The pair (A, L) is called hereditary if for each facet S € A

{(li)ies : (li)icy € L} = RS,

» If ¥ is a simplicial fan, then (A(X), L(X)) is hereditary.

» Let P(A, L) be the set of all degree d homogeneous
polynomials f € R[¢; : i € V] such that

S¢A = 9°f=0, and
vel = Dyf=0.

» If (A, L) is hereditary, then f € P(A, L) is called hereditary.



Hereditary polynomials
> If S € A, then the link of S in A is the simplicial complex
Ka(S):={T CV\S:SUT € A}

Vo={ieV\S:SU{i} € A}

N = 4 MA(M):



Hereditary polynomials
> If S € A, then the link of S in A is the simplicial complex
Ka(S):={T CV\S:SUT € A}

Vo={ieV\S:SU{i} € A}

» Lemma. If (A, L) is hereditary and S € A, then (Ika(S), Ls)
is hereditary, where

Lg = {(gi)iGVs : (&)iev € L and ﬁj =0 forallic S}
» Lemma. If f € P(A,L) and S € A, then

F() = 0, _gies € Pka(S), Ls).



Hereditary polynomials

» ForieV, let £ € L be such that /; = 1, and define a
projection m; : RV — RY4i} by

mi(v) = (wj)jevy,,, where w =v —u;l.
We associate an open convex cone K(A, L) in RV to any
hereditary (A, L):
> If d =1, then X(A, L) =RY, + L.
> If d > 1, then

K(A, L) = (RYy+ L) N () 7" (K(Aka({i}), Lisy)) -
eV

» fc P(A, L) is positive if 9 f > 0 for all facets F € A.
Write P (A, L).



Hereditary Lorentzian polynomials

» A is H-connected if for each S € A, |S| < d — 2, the graph

{{i,j}:Sﬂ{i,j}zgand SU{i,j}EA}

is connected.

» Definition. f € P, (A, L) is hereditary Lorentzian if f° is
K(Ika(S), Ls)-Lorentzian for each S € A.

» Theorem (B., Leake). Let f € PL(A, L), where (A, L) is
hereditary and K(A, L) # &.
Then f is hereditary Lorentzian if and only if

(C) A'is H-connected, and
(L) For each S € A with |S| = d — 2, the Hessian of f° has at
most one positive eigenvalue.



Example

> Let A={SC{l,...,n} and |S| < n} and
L:{t1+t2—|—'--+tn:0}, and

1 _
f= (n_l)!(t1+t2+---+tn)” Lep (A, L).

> A is trivially H-connected.
> K(A,L)={t1 +ta+---+t, > 0}.
> If S ={3,4,...,n— 1}, then f% = (t; +t3)%/2.

» Hence f is hereditary Lorentzian.



Hereditary polynomials

» Question. For which simplicial complexes A is there a
hereditary Lorentzian polynomial f for which

{§:0%f#£0} =A?



Balancing condition

Theorem (B., Leake).
» Suppose (A, L) is hereditary, and

w(S), S is a facet of A

are nonzero real numbers. Then there is at most one
f € P(A, L) for which

O°f =w(S) for all facets S.

» Moreover this polynomial exists iff for each S € A,
|S| = d — 1, the linear form

> w(Su{it;

iZS

is identically zero on Lg.



Lorentzian polynomials for geometric lattices
» A flat of a matroid M on E is a subset F' of E for which
e€c E\F = r(FuU{e})>r(F).
» The set of all flats is a geometric lattice £ = £(M).

abede

M = {abc, abd, abe, acd, ace}



Lorentzian polynomials for geometric lattices

| 2
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Let £ be the lattice of flats of a matroid M on E, with set of
loops K, and let £L = L\ {K, E}.

The faces of the order complex, A(£), are
{F1 < Fy <+ < F}}, where F; € £ for all i.

Let M be the subspace R% of all (yp)peg for which there are
real numbers w;, i € E'\ K, such that

Z w; =0 and yp= Z w; for all ' € L.
IEE\K i€F\K

Lemma. (A(L),M) is hereditary.

By using the theorem on the previous slide, there is a unique
polynomial pol, € P(A(L), M) for which

d°poly =1,  for all facets S of A(L).



Lorentzian polynomials for geometric lattices

» If r(£) = 2, then

pol, = Z tr.

K<F<E
> If (L) =3, then
2 2
2polﬁz<z tp> —Z (tg— Z tp> .
K<F G<E K<F<G

> K(A(L), M) is nonempty and contains all strictly submodular
vectors:

ys +yr > ysur +Ysnr, Yk =y =0,

whenever S and T' are incomparable.



Lorentzian polynomials for geometric lattices

>

Proof.

>
>
>

Theorem (B., Leake, after Adiprasito, Huh, Katz). pol, is
hereditary Lorentzian.

According to the characterization we need to verify properties
(C) and (L).

(C) follows from semimodularity of £.

Notice that Ika oy ({F'}) = A((K, F)) x A((F, E)).

By the uniqueness in the characterization of hereditary
polynomials it follows that

0
POI{ b = otp polg ‘t _o = Polik p - POlF g -

Hence if S € A(L), |S| = r — 3, then either pol? is a product
of two linear polynomials, or of the form

(th>2—z<tg— Z tp>2. O

K<F G<E K<F<G



Heron-Rota-Welsh

» Recall the characteristic polynomial of a geometric lattice

Xe(t) =Y (0, F)t =) = wot” —wyt" 4
Fel
where w; > 0 are the Whitney numbers of the first kind.

» Conjecture (Read-Heron-Rota-Welsh, 1968-76).
{wi}}_, is a log-concave sequence, i.e.,

w,% > Wr—1 Wkt 1, 0<k<n.
» Proved by Adiprasito, Huh and Katz (2018) by developing a
Hodge theory for matroids.

» In fact they proved log-concavity of the coefficients of the
reduced characteristic polynomial

Xe(t) = (=1)"xg(—t)/(t +1) =Wpt" ' +wit" %+ -



Heron-Rota-Welsh conjecture

» Recall that if f is K-Lorentzian of degree d and «, 3 € K,
then the sequence

D’;Dg*kf, 0<k<d,

is log-concave.
> Let o, 8 € K(A(L),M) be

F\K E\F
w (VD) e o (M)
‘E\K’ Fel ’E\K’ Fel

> Then wk:Dngﬁl*kvolL,for()gkgr—l.

» Heron-Rota-Welsh conjecture now follows from the
Alexandrov-Fenchel inequalities for pol,.




Lorentzian Chow rings

» Let A(X) be a Chow ring of a simplicial fan.
> If S € A(X), then star(S, X) is the simplicial fan with
A(star(S,X)) = lka(S), and the cones of star(.S,X) are

CSUT/RCS, T e lkA(S).

» If deg: A%(X) — R is a linear map and S € A(X), then
degg : A* 18I (star(S, %)) — R

degg(y) = deg( H%)

€S

is linear.

» It follows that the volume polynomials of ¥ and star(.S, X) are
related by

= vol, .
t;=0,i€S

VOlstar(S,E) =0° voly,



Lorentzian Chow rings

» A functional deg : A%(X) — R is positive if

deg Ha:j >0
jeS

for all facets S of A(X).
> Let K(X) = K(A(X), L(X)).

» The pair (X, deg), where deg is positive, is called hereditary
Lorentzian if voly, is hereditary Lorentzian (w.r.t. K(X)).

» This is equivalent to that for all S € A(X), the Chow ring
A(star(S, X))

satisfies the Hodge-Riemann relations of degree 0 and 1.



Lorentzian Chow rings

Theorem (B., Leake). Let A(X) be a Chow ring of a simplicial fan,
and deg : A%(X) — R positive.

If X(X) # @, then A(X) and all its stars satisfy the
Hodge-Riemann relations of degree 0 and 1 if and only if

(C) A(X) is H-connected, and
(L) For each S € A(X) with |S| = d — 2, the Chow ring of the

star of S in X satisfies the Hodge-Riemann relations of degree
zero and one.



Applications
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The Chow ring of the normal fan of a simple polytope
(Stanley-McMullen).

This implies the Alexandrov-Fenchel inequalities for convex
bodies.

The Chow ring of a matroid (Adiprasito-Huh-Katz).

This implies the Heron-Rota-Welsh conjecture on the
characteristic polynomial of a matroid.



Working with Lorentzian polynomials

» What operations preserve the Lorentzian property?

v

Which linear operators preserve the Lorentzian property?

» Let k € N”, and let R,;[x] be the linear space of all
polynomials in R[zy,...,x,] that have degree at most «; in
the variable x; for all 7.

» The symbol of a linear operator T : R [x] — R[x'] is the
polynomial

Grl.y) = T((x+y)9) = 3 () Tty

a<lk

> Example.



Working with Lorentzian polynomials

» Theorem (B., Huh). If the symbol G is Lorentzian, then T’
preserves the Lorentzian property.

> Example. If f and g are Lorentzian, then so is fg.

Proof. First fix g(x), and consider T'(f) = fg. We want to prove
that the symbol (x 4+ y)"g is Lorentzian.

To do this, consider the linear operator S(g) = (x +y)"g.
The symbol of S'is (x +y)"(x + z)"

This polynomial is stable, and hence Lorentzian. O

vvyyy

The special case for bivariate polynomials is: If {a}}}_, and
{br}1r, satisfy Newton's inequalities, then so does the

convolution {c; }1 )"

k
L = E a;by_;.
J=0



A non-linear operator

» Theorem (B., Huh). Suppose

forall 0 < s <1.

» Hence this defines a contraction of any Lorentzian polynomial
to the exponential generating polynomial of its support.



Stellar subdivisions

» Let S € A, where |S| > 2. The stellar subdivision, Ag, of A
on S is the simplicial complex on V U {0}, where 0 ¢ V,
obtained by

» removing all faces containing S, and
» adding all faces RU {0}, where S Z R and RU S € A.



Stellar subdivisions

>

Let S € A, where |S| > 2. The stellar subdivision, Ag, of A
on S is the simplicial complex on V U {0}, where 0 ¢ V,
obtained by

» removing all faces containing S, and
» adding all faces RU {0}, where S Z R and RU S € A.

The stellar subdivision of a fan X is defined analogously. Add
aray p=> .cgcCip; in the interior of Cg.

For positive real numbers ¢ = (¢;)ies, let

L¢ = {(zo,z) €RxRY:lcLandfy= Zcm,}.
€S



Stellar subdivisions

> If (A, L) is hereditary, then so is (Ag, L€).
» Let z =ty — ) ;g Cit; and define a linear operator by

SWE(f) = [~ ("3 2 b (@85S, where s = 5],

where hj(0) is the complete homogeneous symmetric
polynomial of degree k in the variables 0; = 9;/¢;, i € S.



Stellar
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>

subdivisions

Theorem (B., Leake). Let (A, L) be hereditary. Then

subg : PUA, L) — PY(Ag, L°) is bijective.

Theorem (B., Leake). Let f € P4(A, L) and g = subg(f). If
K(A,L) and K(Ag, L) are nonempty, then f is hereditary
Lorentzian iff g is.

The support of a fan is the union of its cones.

Fact. Two fans have the same support iff one can be derived
from the other by a sequence of stellar and inverse stellar
subdivisions.

Corollary (B., Leake). Suppose % and ¥/ are fans with the
same support, and that K(X) and X(X') are nonempty. If
A?(Y) is one-dimensional, then voly is hereditary Lorentzian
iff volsy is.

An analogous theorem was proved for the Kahler package by
Ardila, Denham and Huh.



Topology of spaces of Lorentzian polynomials

» Topological spaces defined in terms of zeros of univariate or
multivariate polynomials have been studied by e.g. Arnold,
Nui, Shapiro-Welker.

» Many combinatorially defined spaces are (conjectured to be)
homeomorphic to closed Euclidean balls, and sometimes admit
a division into cells so as to form a regular CW-complex.

» For example the totally positive Grassmannian (Galashin,
Karp, Lam).



Topology of spaces of Lorentzian polynomials

> Let £ﬁ be the space of all Lorentzian polynomial
f € Rlxy,...,x,] of degree d for which f(1) =1, where

1=(1,1,...,1).
» The topology is taken from the linear (Euclidean) space of all
homogeneous degree polynomials in R[x1, ..., xz,] of degree d.

> Let L% be the intersection of £& with the space of multiaffine
polynomials (degree at most one in each variable).

» Theorem (B., Huh). £¢ and £¢ are compact contractable
sets, which are equal to the closures of their interiors.




Topology of spaces of Lorentzian polynomials

> Let Eﬁ be the space of all Lorentzian polynomial
f € Rlzy,...,xy,] of degree d for which f(1) =1, where

1=(1,1,...,1).
» The topology is taken from the linear (Euclidean) space of all
homogeneous degree polynomials in R[zq,. .., z,] of degree d.

> Let L% be the intersection of £& with the space of multiaffine
polynomials (degree at most one in each variable).

» Theorem (B., Huh). £¢ and £¢ are compact contractable
sets, which are equal to the closures of their interiors.

» Conjecture (B., Huh). £¢ and £¢ are homeomorphic to
closed Euclidean balls.



Topology of spaces of Lorentzian polynomials
> Example.

LJ%L: {Zn:aia:i:aiEOand Zn:aizl}.

i=1 =1

A simplex




Topology of spaces of Lorentzian polynomials
> Example.
L3 ={az® + by +cy® 1 a,b,c >0,a+b+c=1and b* > dac} .

Two parameters a, c.

€y

| 4




Contractive flows
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>

Let V' be a Euclidean space and T': R x V' — V a continuous
map.
Write Ts(x) for T'(s,x).
T is a contractive flow if for all x € V,

(a) Tsyt(x) = Ts(Ti(x)) for all s, € R, and

(b) Th(x) = %, and

(c) ITs(x)|| < ||x]|, for all x # 0 and s > 0.

Lemma (Galashin, Karp, Lam). If U is an open and bounded
set in V and T is a contractive flow such that

Ts(U) c U, forall s>0,

then U is homeomorphic to a closed Euclidean ball.



Contractive flows

» Map C to B,
» Map AU B to A.



Symmetric exclusion process

» Can we find a constructive flow for multiaffine Lorentzian
polynomials?

» The symmetric exclusion process (SEP) is one of the most
studied models in Interacting particle systems.

» It models particles moving on a finite or countable set in a
continuous way.



Symmetric exclusion process

» Let £ = [n] be a set of sites that can either be vacant or
occupied by one particle.

> At each time t a particle at site 7 jumps to site j (if vacant)
at rate ¢;; > 0, where ¢;; = gj; for all 7, j.

O
o @
® A



Symmetric exclusion process

» Let £ = [n] be a set of sites that can either be vacant or
occupied by one particle.

> At each time t a particle at site 7 jumps to site j (if vacant)
at rate ¢;; > 0, where ¢;; = gj; for all 7, j.

» A discrete probability measure ; on 2 may be represented by
its multivariate partition function

fu(x) = Z w(S) H x;, where f,(1) = 1.

SCE el

» The symmetric group on E = [n] acts on polynomials f by

U(f) = f(xa(l)a s 7560'(1))'



Symmetric exclusion process
P Particles jump between sites ¢ and j at rate g corresponds to
Ju— Q=) fu+ar(fu), 7=7(j).
» For each transposition 7 associate a rate g, > 0 so that

ZQT =1
p

» In terms of polynomials, SEP (with rates {¢;}) is the flow on
multiaffine polynomials:

Ty(f) =D, where L = ZQTT and I = identity.



Symmetric exclusion process

» Theorem (Borcea, B., Liggett, 2009, B. Huh, 2020). If s > 0,
then T preserves stability and the Lorentzian property.

» Assume from now that ¢, = 1/(’2‘) for all 7.

» T, is a flow on M?, the linear space of multiaffine polynomials
in R[z1,...,x,] of degree d.

> Notice that L =>_¢,7 : M2 — M is symmetric when
viewed as matrix.



Symmetric exclusion process

Lemma. Suppose A is a symmetric n X n matrix with nonnegative
entries.

e Suppose AN has positive entries for N sufficiently large.
e Let w and A be the Perron eigenvector and eigenvalue of A.
Then
oS(A=AD)
is a contractive flow on w, the orthogonal complement of w.
> Let fo = eq(x)/(])), the normalized elementary symmetric
polynomial of degree d. Then L(fy) = fo.
> Since the set of transpositions generate &,,, LV has positive
entries for NV sufficiently large.
» Corollary. Ty is a contractive flow on the orthogonal
complement fg- of fo in MZ.



Symmetric exclusion process

> We may view Qﬁ as a topological space in fOL.
» Theorem(B., 2021). £2 and £¢ are homeomorphic to closed
Euclidean balls.

» A similar proof applies to prove that the projective space of
homogeneous degree d stable polynomials in n variables is
homeomorphic to a Euclidean ball.

> Let J be an M-convex set, and £(J) the space of
polynomials in Lfl with support contained in J.

» Conjecture. £&(.J) is homemorphic to a closed Euclidean ball.

» Problem. Can we decompose £% into cells so as to make it
into a regular CW-complex?



