On the determinant of the distance matrix of a tree

Álvaro Gutiérrez (University of Sevilla, University of Bristol) Joint with E. Briand, L. Esquivias, A. Lillo, M. Rosas

The Graham-Pollak formula

The Graham-Pollak formula

$$
\begin{gathered}
M(T)=\left(\begin{array}{llllllllll}
0 & 1 & 1 & 1 & 2 & 2 & 2 & 2 & 2 \\
1 & 0 & 2 & 2 & 1 & 1 & 3 & 3 & 3 \\
1 & 2 & 0 & 2 & 3 & 3 & 3 & 3 & 3 \\
1 & 2 & 2 & 0 & 3 & 3 & 1 & 1 & 1 \\
2 & 1 & 3 & 3 & 0 & 2 & 4 & 4 & 4 \\
2 & 1 & 3 & 3 & 2 & 0 & 4 & 4 & 4 \\
2 & 3 & 3 & 1 & 4 & 4 & 0 & 2 & 2 \\
2 & 3 & 3 & 1 & 4 & 4 & 2 & 0 & 2 \\
2 & 3 & 3 & 1 & 4 & 4 & 2 & 2 & 0
\end{array}\right) \\
M(T)_{i j}=d(i, j)
\end{gathered}
$$

The Graham-Pollak formula

$$
\begin{gathered}
M(T)=\left(\begin{array}{lllllllll}
0 & 1 & 1 & 1 & 2 & 2 & 2 & 2 & 2 \\
1 & 0 & 2 & 2 & 1 & 1 & 3 & 3 & 3 \\
1 & 2 & 0 & 2 & 3 & 3 & 3 & 3 & 3 \\
1 & 2 & 2 & 0 & 3 & 3 & 1 & 1 & 1 \\
2 & 1 & 3 & 3 & 0 & 2 & 4 & 4 & 4 \\
2 & 1 & 3 & 3 & 2 & 0 & 4 & 4 & 4 \\
2 & 3 & 3 & 1 & 4 & 4 & 0 & 2 & 2 \\
2 & 3 & 3 & 1 & 4 & 4 & 2 & 0 & 2 \\
2 & 3 & 3 & 1 & 4 & 4 & 2 & 2 & 0
\end{array}\right) \\
M(T)_{i j}=d(i, j)
\end{gathered}
$$

Graham-Pollak '71

 $\operatorname{det} M(T)=(-1)^{n-1}(n-1) 2^{n-2}$
The Graham-Pollak formula

$$
\begin{gathered}
M(T)=\left(\begin{array}{lllllllll}
0 & 1 & 1 & 1 & 2 & 2 & 2 & 2 & 2 \\
1 & 0 & 2 & 2 & 1 & 1 & 3 & 3 & 3 \\
1 & 2 & 0 & 2 & 3 & 3 & 3 & 3 & 3 \\
1 & 2 & 2 & 0 & 3 & 3 & 1 & 1 & 1 \\
2 & 1 & 3 & 3 & 0 & 2 & 4 & 4 & 4 \\
2 & 1 & 3 & 3 & 2 & 0 & 4 & 4 & 4 \\
2 & 3 & 3 & 1 & 4 & 4 & 0 & 2 & 2 \\
2 & 3 & 3 & 1 & 4 & 4 & 2 & 0 & 2 \\
2 & 3 & 3 & 1 & 4 & 4 & 2 & 2 & 0
\end{array}\right) \\
M(T)_{i j}=d(i, j)
\end{gathered}
$$

Graham-Pollak '71

$\operatorname{det} M(T)=(-1)^{n-1}(n-1) 2^{n-2}$

\# ways of choosing an edge e

The Graham-Pollak formula

$$
\begin{gathered}
M(T)=\left(\begin{array}{lllllllll}
0 & 1 & 1 & 1 & 2 & 2 & 2 & 2 & 2 \\
1 & 0 & 2 & 2 & 1 & 1 & 3 & 3 & 3 \\
1 & 2 & 0 & 2 & 3 & 3 & 3 & 3 & 3 \\
1 & 2 & 2 & 0 & 3 & 3 & 1 & 1 & 1 \\
2 & 1 & 3 & 3 & 0 & 2 & 4 & 4 & 4 \\
2 & 1 & 3 & 3 & 2 & 0 & 4 & 4 & 4 \\
2 & 3 & 3 & 1 & 4 & 4 & 0 & 2 & 2 \\
2 & 3 & 3 & 1 & 4 & 4 & 2 & 0 & 2 \\
2 & 3 & 3 & 1 & 4 & 4 & 2 & 2 & 0
\end{array}\right) \\
M(T)_{i j}=d(i, j)
\end{gathered}
$$

Graham-Pollak '71

$\operatorname{det} M(T)=(-1)^{n-1}(n-1) 2^{n-2}$

The Graham-Pollak formula

$$
\begin{gathered}
M(T)=\left(\begin{array}{lllllllll}
0 & 1 & 1 & 1 & 2 & 2 & 2 & 2 & 2 \\
1 & 0 & 2 & 2 & 1 & 1 & 3 & 3 & 3 \\
1 & 2 & 0 & 2 & 3 & 3 & 3 & 3 & 3 \\
1 & 2 & 2 & 0 & 3 & 3 & 1 & 1 & 1 \\
2 & 1 & 3 & 3 & 0 & 2 & 4 & 4 & 4 \\
2 & 1 & 3 & 3 & 2 & 0 & 4 & 4 & 4 \\
2 & 3 & 3 & 1 & 4 & 4 & 0 & 2 & 2 \\
2 & 3 & 3 & 1 & 4 & 4 & 2 & 0 & 2 \\
2 & 3 & 3 & 1 & 4 & 4 & 2 & 2 & 0
\end{array}\right) \\
M(T)_{i j}=d(i, j)
\end{gathered}
$$

Graham-Pollak '71

$\operatorname{det} M(T)=(-1)^{n-1}(n-1) 2^{n-2}$

sign of a permutation?

Enumeration of catalysts

First step:

$$
\operatorname{det} M(T)=\sum_{\sigma \in \mathbb{S}_{n}} \operatorname{sgn}(\sigma) d(1, \sigma(1)) \cdots d(n, \sigma(n))
$$

Enumeration of catalysts

First step:

$$
\begin{aligned}
& \operatorname{det} M(T)=\sum_{\sigma \in \mathbb{S}_{n}} \operatorname{sgn}(\sigma) \underbrace{d(1, \sigma(1))} \cdots d(n, \sigma(n)) . \\
& \\
& \begin{array}{c}
\text { \# edges between } \\
1 \text { and } \sigma(1)
\end{array}
\end{aligned}
$$

Enumeration of catalysts

First step:

$$
\begin{aligned}
& \operatorname{det} M(T)=\sum_{\sigma \in \mathbb{S}_{n}} \operatorname{sgn}(\sigma) \underbrace{d(1, \sigma(1))} \cdots d(n, \sigma(n)) . \\
& \\
& \begin{array}{c}
\text { edges between } \\
1 \text { and } \sigma(1)
\end{array}
\end{aligned}
$$

Def. A catalyst is a pair (σ, f) with $\sigma \in \mathbb{S}_{n}$ and $f: V \rightarrow E$ such that $f(i)$ is an edge between i and $\sigma(i)$ for all i.

Enumeration of catalysts

Def. A catalyst is a pair (σ, f) with $\sigma \in \mathbb{S}_{n}$ and $f: V \rightarrow E$ such that $f(i)$ is an edge between i and $\sigma(i)$ for all i.

Enumeration of catalysts

Def. A catalyst is a pair (σ, f) with $\sigma \in \mathbb{S}_{n}$ and $f: V \rightarrow E$ such that $f(i)$ is an edge between i and $\sigma(i)$ for all i.

Enumeration of catalysts

Def. A catalyst is a pair (σ, f) with $\sigma \in \mathbb{S}_{n}$ and $f: V \rightarrow E$ such that $f(i)$ is an edge between i and $\sigma(i)$ for all i.

Enumeration of catalysts

Def. A catalyst is a pair (σ, f) with $\sigma \in \mathbb{S}_{n}$ and $f: V \rightarrow E$ such that $f(i)$ is an edge between i and $\sigma(i)$ for all i.

Enumeration of catalysts

Def. A catalyst is a pair (σ, f) with $\sigma \in \mathbb{S}_{n}$ and $f: V \rightarrow E$ such that $f(i)$ is an edge between i and $\sigma(i)$ for all i.

Note (for later): can define equivalently (σ, \vec{f}) with $\vec{f}: V \rightarrow \vec{E}$.

Enumeration of catalysts

$$
\operatorname{det} M(T)=\sum_{\sigma \in \mathbb{S}_{n}} \operatorname{sgn}(\sigma) d(1, \sigma(1)) \cdots d(n, \sigma(n))
$$

Enumeration of catalysts

$$
\operatorname{det} M(T)=\sum_{\sigma \in \mathbb{S}_{n}} \operatorname{sgn}(\sigma) \underbrace{d(1, \sigma(1)) \cdots d(n, \sigma(n))}_{\# \text { catalysts }(\sigma, f)}
$$

Enumeration of catalysts

$$
\operatorname{det} M(T)=\sum_{\sigma \in \mathbb{S}_{n}} \operatorname{sgn}(\sigma) \underbrace{d(1, \sigma(1)) \cdots d(n, \sigma(n))}_{\text {\# catalysts }(\sigma, f)}=\sum_{\substack{(\sigma, f) \\ \text { catalyst }}} \operatorname{sgn}(\sigma)
$$

Enumeration of catalysts

$$
\operatorname{det} M(T)=\sum_{\sigma \in \mathbb{S}_{n}} \operatorname{sgn}(\sigma) \underbrace{d(1, \sigma(1)) \cdots d(n, \sigma(n))}_{\text {\# catalysts }(\sigma, f)}=\sum_{\substack{(\sigma, f) \\ \text { catalyst }}} \operatorname{sgn}(\sigma)
$$

Goal:

Define involution on the set of catalysts such that
$\operatorname{det} M(T)=(-1)^{n-1} \cdot \#$ fixed points of the involution.

Enumeration of catalysts

$$
\operatorname{det} M(T)=\sum_{\sigma \in \mathbb{S}_{n}} \operatorname{sgn}(\sigma) \underbrace{d(1, \sigma(1)) \cdots d(n, \sigma(n))}_{\text {\# catalysts }(\sigma, f)}=\sum_{\substack{(\sigma, f) \\ \text { catalyst }}} \operatorname{sgn}(\sigma)
$$

Goal:

Define involution on the set of catalysts such that

$$
\operatorname{det} M(T)=(-1)^{n-1} \cdot \# \text { fixed points of the involution. }
$$

We will define one involution per arrowflow.

catalyst

Arrowflows

Def. An arrowflow is a multiset of n directed edges of \vec{E}.

Arrowflows

Def. An arrowflow is a multiset of n directed edges of \vec{E}.

zero-sum

zero-sum

unital

$$
\operatorname{det} M(T)=\sum_{A \text { arrowflow }} \sum_{(\sigma, f) \text { catalyst of } A} \operatorname{sgn}(\sigma)
$$

Theorem

$\sum_{(\sigma, f) \text { catalyst of } A} \operatorname{sgn}(\sigma)= \begin{cases}0 & \text { if } A \text { is zero-sum, } \\ (-1)^{n-1} & \text { if } A \text { is unital. }\end{cases}$

Arrowflows

Def. An arrowflow is a multiset of n directed edges of \vec{E}.

$$
\operatorname{det} M(T)=\sum_{A \text { arrowflow }} \sum_{(\sigma, f) \text { catalyst of } A} \operatorname{sgn}(\sigma)
$$

Theorem

$\sum_{(\sigma, f) \text { catalyst of } A} \operatorname{sgn}(\sigma)= \begin{cases}0 & \text { if } A \text { is zero-sum, } \\ (-1)^{n-1} & \text { if } A \text { is unital. }\end{cases}$
Cor. $\operatorname{det} M(T)=(-1)^{n-1} \cdot$ \#unital arrowflows $=(-1)^{n-1}(n-1) 2^{n-2}$.

The zero-sum involution

Second step:
catalyst (σ, f)

zero-sum arrowflow A

The zero-sum involution

Second step:
catalyst (σ, f)

zero-sum arrowflow A

another catalyst $\left(\sigma^{\prime}, f^{\prime}\right)$

The zero-sum involution

Second step:
catalyst (σ, f)

Changes σ by a transposition. It's an involution.
This shows

$$
\sum_{(\sigma, f)} \operatorname{sgn}(\sigma)=0 .
$$

zero-sum arrowflow A

another catalyst $\left(\sigma^{\prime}, f^{\prime}\right)$

The zero-sum involution

$$
\begin{aligned}
\operatorname{det} M(T) & =\sum_{\sigma \in \mathbb{S}_{n}} \operatorname{sgn}(\sigma) \overbrace{d(1, \sigma(1)) \cdots d(n, \sigma(n))}^{\# \text { catalysts }(\sigma, f)} \\
& =\sum_{(\sigma, f) \text { catalyst }} \operatorname{sgn}(\sigma) \\
& =\sum_{A \text { arrowflow }} \sum_{(\sigma, f) \text { catalyst of } A} \operatorname{sgn}(\sigma)
\end{aligned}
$$

Theorem

$\sum_{(\sigma, f) \text { catalyst of } A} \operatorname{sgn}(\sigma)= \begin{cases}0 & \text { if } A \text { is zero-sum, } \\ (-1)^{n-1} & \text { if } A \text { is unital. }\end{cases}$
Cor. det $M(T)=(-1)^{n-1} \cdot \#$ unital arrowflows $=(-1)^{n-1}(n-1) 2^{n-2}$.

The zero-sum involution

$$
\begin{aligned}
\operatorname{det} M(T) & =\sum_{\sigma \in \mathbb{S}_{n}} \operatorname{sgn}(\sigma) \overbrace{d(1, \sigma(1)) \cdots d(n, \sigma(n))}^{\# \text { catalysts }(\sigma, f)} \\
& =\sum_{(\sigma, f) \text { catalyst }} \operatorname{sgn}(\sigma) \\
& =\sum_{A \text { arrowflow }} \sum_{(\sigma, f) \text { catalyst of } A} \operatorname{sgn}(\sigma)
\end{aligned}
$$

Theorem

$\sum_{(\sigma, f) \text { catalyst of } A} \operatorname{sgn}(\sigma)= \begin{cases}0 & \text { if } A \text { is zero-sum, } \checkmark \\ (-1)^{n-1} & \text { if } A \text { is unital. }\end{cases}$
Cor. det $M(T)=(-1)^{n-1} \cdot \#$ unital arrowflows $=(-1)^{n-1}(n-1) 2^{n-2}$.

The unital involution

Third and final step:

Lindström '73, Gessel-Viennot '85

G acyclic digraph. Two sets $\{v(1), \ldots, v(n)\}$ and $\left\{v^{\prime}(1), \ldots, v^{\prime}(n)\right\}$ of distinguished points. Then,

$$
\sum_{P=\left(P_{1}, \ldots, P_{n}\right)} \operatorname{sgn}\left(\sigma_{P}\right)=\sum_{\substack{P=\left(P_{1}, \ldots, P_{n}\right) \\ \text { non-intersecting }}} \operatorname{sgn}\left(\sigma_{P}\right)
$$

where P_{i} is a path $v(i) \rightarrow v^{\prime}\left(\sigma_{P}(i)\right)$.

The unital involution

Third and final step:

Lindström ‘73, Gessel-Viennot '85

G acyclic digraph. Two sets $\{v(1), \ldots, v(n)\}$ and $\left\{v^{\prime}(1), \ldots, v^{\prime}(n)\right\}$ of distinguished points. Then,

$$
\sum_{P=\left(P_{1}, \ldots, P_{n}\right)} \operatorname{sgn}\left(\sigma_{P}\right)=\sum_{\substack{P=\left(P_{1}, \ldots, P_{n}\right) \\ \text { non-intersecting }}} \operatorname{sgn}\left(\sigma_{P}\right)
$$

where P_{i} is a path $v(i) \rightarrow v^{\prime}\left(\sigma_{P}(i)\right)$.
Strategy: given A unital arrowflow, construct G_{A} such that
\{catalysts of $A\} \longleftrightarrow\left\{n\right.$-paths in $\left.G_{A}\right\}$

$$
(\sigma, f) \mapsto P_{(\sigma, f)}=\left(P_{1}, \ldots, P_{n}\right)
$$

and such \exists ! non-intersecting P.

A glimpse at G_{A}

A glimpse at G_{A}

