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
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Graham–Pollak ‘71
detM(T ) = (−1)n−1(n − 1)2n−2
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# orientations
of T − e

sign of a
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Enumeration of catalysts

First step:

detM(T ) =
∑
σ∈Sn

sgn(σ)d(1, σ(1)) · · · d(n, σ(n)).

# edges between
1 and σ(1)

Def. A catalyst is a pair (σ, f ) with σ ∈ Sn and f : V → E such that

f (i) is an edge between i and σ(i) for all i .
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σ : V → V
1 7→ 6
2 7→ 5
3 7→ 8
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6 7→ 2
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3 7→ 13
4 7→ 47
5 7→ 12
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σ : V → V
1 7→ 6
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8 7→ 4
9 7→ 1

f : V → E
1 7→ 12
2 7→ 25
3 7→ 13
4 7→ 47
5 7→ 12
6 7→ 26
7 7→ 49
8 7→ 48
9 7→ 14

Note (for later): can define equivalently (σ, f⃗ ) with f⃗ : V → E⃗ .
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∑
(σ,f )

catalyst

sgn(σ)

Goal:
Define involution on the set of catalysts such that

detM(T ) = (−1)n−1 ·#fixed points of the involution.

We will define one involution per arrowflow.
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Arrowflows

Def. An arrowflow is a multiset of n directed edges of E⃗ .

zero-sum zero-sum unital

detM(T ) =
∑

A arrowflow

∑
(σ,f ) catalyst of A sgn(σ).

Theorem∑
(σ,f ) catalyst of A sgn(σ) =

{
0 if A is zero-sum,

(−1)n−1 if A is unital.

Cor. detM(T ) = (−1)n−1 ·#unital arrowflows = (−1)n−1(n − 1)2n−2.
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The zero-sum involution

Second step:
catalyst (σ, f ) zero-sum arrowflow A

another catalyst (σ′, f ′)

Changes σ by a transposition.

It’s an involution.

This shows
∑

(σ,f ) catalyst of A

sgn(σ) = 0.
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The unital involution

Third and final step:

Lindström ‘73, Gessel–Viennot ‘85

G acyclic digraph. Two sets {v(1), ..., v(n)} and {v ′(1), ..., v ′(n)} of
distinguished points. Then,∑

P=(P1,...,Pn)

sgn(σP) =
∑

P=(P1,...,Pn)
non-intersecting

sgn(σP)

where Pi is a path v(i)→ v ′(σP(i)).

Strategy: given A unital arrowflow, construct GA such that

{catalysts of A} ←→ {n-paths in GA}
(σ, f ) 7→ P(σ,f ) = (P1, ...,Pn)

and such ∃! non-intersecting P.
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