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Felix Klein

In his Erlangen Program, F. Klein, establishes the correspondence

groups ↔ geometries

E.g. euclidean geometry is defined by the euclidean group of
isometries. The geometric objects are the invariants.

IsomRn ≃



x1

On(R)
...

xn
0 · · · 0 1

 ≃ On(R)⋉Rn.
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Emmy Noether

Emmy Noether

A continuous symmetry of a Hamiltonian
system implies that some physical quantity is
preserved.

E.g.: preservation of energy, momentum,
angular momentum are a consequence of the
invariance of physical laws under time
translation, space translation, rotational
symmetry.
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Platonic solids: geometry and its symmetry groups
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The sphere

SO(3), SL(2), SU(2)
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Finite subgroups of SO(3)

type group group of rotations of

An Zn+1 n + 1-sided regular polygon

Dn D2(n+2) prism

E6 T ≃ A4 tetahedron

E7 O ≃ S4 cube & octahedron

E8 I ≃ A5 dodecahedron & icosahedron
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Dynkin diagrams and the ADE -phenomenon
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Kleinian/Du Val singularities

Source: Miles Reid, The Du Val singularities An,Dn,E6,E7,E8
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Groups and invariant rings

▶ Let the generator of G = Z2 act on A2 by u 7→ −u, v 7→ −v .
▶ The invariant ring C[u, v ]G is generated by the quadratic

monomials u2, v2, uv .

▶ C[u, v ]G can be identified with C[x , y , z ]/⟨xz = y2⟩.
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The McKay correspondence and representation theory

For each finite subgroup G of SL(2,C) (or, equivalently, SU(2)),
we get the corresponding Kleinian singularity C2/G and invariant
coordinate ring C[u, v ]G .

The classical McKay observation gives one-to-one correspondences:

{irreducible representations of G ⊆ SL(2,C)} ↔ basis of H∗(Y ,Z)

{conjugacy classes of G ⊆ SL(2,C)} ↔ basis of H∗(Y ,Z)

where f : Y −→ X is a crepant resolution.

Miles Reid, La correspondance de McKay, Astérisque(2002).
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Back to the noncommutative world
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Generalized Heisenberg algebras

A class of algebras named generalized Heisenberg algebras (GHA)
was introduced by physicists Curado, Rego-Monteiro et al. in 2013.

Motivated by the physics literature, the generalized Heisenberg
algebra H(f ), parametrized by a polynomial f , was introduced by
Lü and Zhao in 2015.

Definition.
The generalized Heisenberg algebra H(f ) is the unital asso-
ciative algebra with generators x , y , h and relations

hx = xf (h), yh = f (h)y , yx − xy = f (h)− h,

where f ∈ F[h].
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Quantum generalized Heisenberg algebras

In recent work with Razzavinia, we generalized all of the previous
classes of algebras as follows.

Definition. (qGHAs)
Let F be an arbitrary field and fix q ∈ F and f , g ∈ F[h].
The quantum generalized Heisenberg algebra is the algebra
Hq(f , g) generated by x , y , h with relations

hx = xf (h), yh = f (h)y , yx − qxy = g(h).

Example

Thus, generalized Heisenberg algebras are precisely the qGHA
with q = 1 and g = f (h)− h, i.e. H(f ) = H1(f , f − h).
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Smith algebras

S.P. Smith introduced a class of algebras similar to U(sl2), defined
by the relations

[H,A] = A, [H,B] = −B, [A,B] = g(H),

where g is a polynomial.

Smith’s algebras S(g) are the qGHAs H1(h − 1, g).

Smith’s algebras are related to:

▶ invariant rings of differential operators

▶ the Zhu algebra of a vertex operator algebra

▶ noncommutative Kleinian singularities!
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Rueda algebras

S. Rueda introduced a more general class of algebras, defined by
the relations

[H,A] = A, [H,B] = −B, AB − qBA = g(H),

where g is a polynomial and q ∈ F∗.

Rueda’s algebras are the qGHAs Hq(h − 1, g).
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The Weyl algebra

The Weyl algebra

A1(F) = ⟨ t, ∂ | [∂, t] = 1 ⟩

is the algebra of differential operators on F[t] with polynomial
coefficients, in case char(F) = 0.

A1(F) can be realized as H1(h, 1)/⟨h⟩.
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Representations of quantum generalized
Heisenberg algebras

Representations of quantum generalized Heisenberg algebras
classify a very large class of creation and annihilation opera-
tors under very general assumptions.
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Finite-dimensional representations

All finite-dimensional irreducible Hq(f , g)-modules have been
classified up to isomorphism, under that assumptions that q ̸= 0
and F is algebraically closed.

In particular, char(F) can be arbitrary.
This generalizes and unifies the classification for down-up algebras
(including sl2), generalized down-up algebras and generalized
Heisenberg algebras.

Theorem.
Any simple n-dimensional Hq(f , g)-module is isomorphic to
exactly one of the following (γ ∈ F∗ and λ, µ : Z→ F):
(a) Aq,f ,g (λ, µ)/F[t±1](tn − γ) [x acts invertibly]

(b) Bq,f ,g (λ, µ)/F[t±1](tn − γ) (duals to the above)
[x does not act invertibly but y acts invertibly]

(c) Cq,f ,g (α)/F[t]tn [neither x not y act invertibly]
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Representations of sl2 in characteristic 0
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let’s thank the organizers for this day!
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Back to Kleinian singularities of type A
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Deformations of Kleinian singularities in type A

A natural noncommutative analog of the affine plane A2 is the
Weyl algebra A1(F).

Thus the noncommutative analog of a Kleinian singularity is
the fixed ring of A1(F) under the action of a finite group G .

▶ Let G = Zn act on A1(F) by t 7→ ωt, ∂ 7→ ω−1∂, where ω is
a primitive n-th root of unity.

▶ The fixed ring is A1(F)Zn = F[tn, t∂, ∂n].
▶ It can be seen that A1(F)Zn = F[tn, t∂, ∂n] is isomorphic to a

quotient of the Smith algebra S(g) by an ideal generated by a
suitable Casimir element.

▶ For the above choice, there is a filtration by finite-dimensional
subspaces of A1(F)Zn such that the graded ring has the form

F[X ,Y ,Z ]/⟨XZ − Y n⟩.
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Free actions on the Cartan subalgebra

What follows is joint work with V. Futorny & E. Mendonça.

▶ In Block’s classification of irreducible of simple sl2-modules
one finds, along with the weight modules, also Whittaker
modules and modules which are torsionfree over the Cartan
subalgebra Fh.

▶ The latter are opposite to weight modules in the sense that
the action is as far from semisimple as possible.
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Set-up

We are interested in actions of S(g) on F[h]n where h acts freely.

▶ F algebraically closed with char(F) = 0

▶ S(g) = Su denotes the Smith algebra, where g ̸= 0 and
g(h) = u(h − 1)− u(h),

for some u ∈ F[h] (for simplicity, assume that u is monic).

▶ zu = xy − u(h) is the Casimir (generates the center)

▶ Use a correspondence between finite multisets in F and monic
polynomials in F[h]:

X 7→ polyX =
∏

λ∈X (h − λ)

Rf ←[ f

▶ X is the underlying set obtained from X .
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Rank n case

Find Q,P ∈ Mn(F[h]) such that

Q(h − 1)P(h)− P(h + 1)Q(h) = g(h)I ,

where I ∈ Mn(F[h]) is the identity matrix.

Using actions by differential operators we have constructed
families of simple F[h]-torsionfree modules for n arbitrary.
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Rank 1 case

▶ We have a complete classification.

▶ All F[h]-torsionfree have some central charge C ∈ F.
▶ The skeleton of the category of such modules is given by

FλAC (X ) = F[h], where

◦ C ∈ F is the central charge;

◦ λ ∈ F×;

◦ X is a submultiset of roots of u(h) + C .

The category of these modules is not semisimple, but...

The combinatorics of the multiset X control FλAC (X ):

◦ finite length;

◦ simple socle FλAC (X
⋆);

◦ composition factors in category O except for FλAC (X
⋆);

◦ explicit computation of composition length.
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Rank 1 case: details

Let U1 denote the category of K[h]-free Su-modules.

▶ Fix C ∈ F
▶ Ru(h)+C = X

∐
Y multiset partition

▶ q(h) = polyX
▶ p(h) = polyY+1 (so p(h + 1) = polyY )

AC (X ) = F[h] (regular F[h]-module) with action

xf (h) = f (h + 1)q(h) and yf (h) = f (h − 1)p(h),

for all f (h) ∈ F[h].
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Classification

Theorem.
The following is a skeleton of the category U1{
FλAC (X ) | C ∈ F, λ ∈ F× and X ⊆ Ru+C (submultiset)

}
.

(Fλ twists the action by x 7→ λx , y 7→ λ−1y .)

Theorem.
AC (X ) is simple if and only if (X − Y ) ∩ Z≥1 = ∅.
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Algorithm to determine all composition series for AC (X ).

For α, β ∈ F, set

α ≼ β ⇐⇒ β − α ∈ N ⊆ F.

▶ If (X − Y ) ∩ Z≥1 = ∅ then AC (X ) is simple so AC (X ) ⊋ (0)
is a composition series.

▶ Otherwise, given β ∈ X such that Y≼− β ̸= ∅, set

X ⋆ β = {β̂} ∪ X \ {β}

where β̂ ∈ Y≼− β is such that κβ = β − β̂ ≥ 1 is minimum.

Say that β ∈ X is regular if

β̂ + 1, β̂ + 2, · · · , β̂ + (κβ − 1) are not in X .
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Composition series classification

Theorem.
The composition series for AC (X ) are of the form

AC (X0) ⊋ AC (X1) ⊋ AC (X2) ⊋ · · · ⊋ AC (Xm) ⊋ (0)

where, for 0 ≤ k ≤ m − 1,

▶ X0 = X and Xk+1 = Xk ⋆ βk+1;

▶ βk+1 ∈ Xk is regular with respect to Xk ;

▶ Ru+C = Xk+1
∐

Yk+1;

▶ (Xm − Ym) ∩ Z≥1 = ∅.
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Main results

Theorem.

(a) AC (X ) has finite length m + 1, with

m ≤ ℓ(X ) :=
∑
β∈X
|Y≼− β| ≥ 0.

(b) m and X ⋆ = X ⋆ β1 ⋆ · · · ⋆ βm do not depend on the
choices of the βk and AC (X

⋆) = soc (AC (X )) is simple
(in fact the unique simple submodule of AC (X )).

(c) AC (X )/AC (X ⋆ β), for β ∈ X regular is simple and
finite-dimensional, with

dimAC (X )/AC (X ⋆ β) = κβ.

(d) All simple finite-dim’l Su-modules occur as composition
factors of AC (X ), for suitable C ∈ F and X ⊆ Ru+C .

S.A. Lopes Torsionfree representations and operations on multisets



Main results (cont’d)

Theorem.
In the Grothendieck group K0(Su) = {[M] | M ∈ Su−mod},
we have:

[AC (X )] = [AC (X
⋆)] +

∑
β∈Ru+C

φX (β)[L(β)],

where φX (β) = min
{
|Y≼− β|, |X≽β|

}
.

Corollary.

The module AC (X ) has length 1 +
∑

β∈Ru+C

φX (β).
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