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In his Erlangen Program, F. Klein, establishes the correspondence

groups

<  geometries

E.g. euclidean geometry is defined by the euclidean group of
isometries. The geometric objects are the invariants.
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A continuous symmetry of a Hamiltonian
system implies that some physical quantity is
preserved.

E.g.: preservation of energy, momentum,
angular momentum are a consequence of the
invariance of physical laws under time
translation, space translation, rotational
symmetry.

Emmy Noether
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SO(3), SL(2), SU(2)
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type | group group of rotations of

An Zns1 n + 1-sided regular polygon E>

D, D2(,,+2) prism ’

Es T~ A, tetahedron ‘

E2 | O~ 5, cube & octahedron ‘ Q

Eg | ~ As | dodecahedron & icosahedron g @
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Name Equation Group Resolution graph
An | 22+ 92+ 2" |eyclic Z/(n+1) o 6..0
Dy |22 +y?z+ 21 bin;rg dihedral °— <|> —o-0
4(n—2) .
binar 0O—o0—0-—0—0
B = y3 +2t tetrahegra,l |
. S N
Br | e byityst | omay !
bi 06— 0 —0—0_—0_0_—_0%
2 z? 4+ y° + 2P icos;ﬁgral |
o]

Source: Miles Reid, The Du Val singularities A,, Dp, Es, E7, Es
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http://homepages.warwick.ac.uk/~masda/surf/more/DuVal.pdf

=g P2

=2 4y =2

> Let the generator of G = Zy act on A? by u '+ —u, v — —v.

» The invariant ring C[u, v]® is generated by the quadratic

monomials u?, v, uv.

» Clu, v]® can be identified with C[x, y, z]/(xz = y?).
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For each finite subgroup G of SL(2,C) (or, equivalently, SU(2)),
we get the corresponding Kleinian singularity C2/G and invariant
coordinate ring Cu, v]°.
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For each finite subgroup G of SL(2,C) (or, equivalently, SU(2)),
we get the corresponding Kleinian singularity C2/G and invariant
coordinate ring C[u, v]°.

The classical McKay observation gives one-to-one correspondences:
{irreducible representations of G C SL(2,C)} <+ basis of H*(Y,Z)

{conjugacy classes of G C SL(2,C)} <+ basis of H.(Y,Z)
where f : Y — X is a crepant resolution.

Miles Reid, La correspondance de McKay, Astérisque(2002).
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Back to the noncommutative world
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A class of algebras named generalized Heisenberg algebras (GHA)
was introduced by physicists Curado, Rego-Monteiro et al. in 2013.
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A class of algebras named generalized Heisenberg algebras (GHA)
was introduced by physicists Curado, Rego-Monteiro et al. in 2013.
Motivated by the physics literature, the generalized Heisenberg

algebra 7 (f), parametrized by a polynomial /', was introduced by
Li and Zhao in 2015.
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A class of algebras named generalized Heisenberg algebras (GHA)
was introduced by physicists Curado, Rego-Monteiro et al. in 2013.
Motivated by the physics literature, the generalized Heisenberg
algebra 7(f), parametrized by a polynomial , was introduced by
Li and Zhao in 2015.

Definition.
The generalized Heisenberg algebra H(f) is the unital asso-
ciative algebra with generators x, y, h and relations

hx = xf(h), yh=f(h)y, yx—xy=f(h)—h,

where f € F[h].
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In recent work with Razzavinia, we generalized all of the previous
classes of algebras as follows.

Definition. (qGHAs)

Let IF be an arbitrary field and fix g € F and f,g € F[h].
The quantum generalized Heisenberg algebra is the algebra
Hq(f, g) generated by x, y, h with relations

hx = xf(h), yh=f(h)y, yx—axy=z(h).
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In recent work with Razzavinia, we generalized all of the previous
classes of algebras as follows.

Definition. (qGHAs)

Let IF be an arbitrary field and fix g € F and f,g € F[h].
The quantum generalized Heisenberg algebra is the algebra
Hq(f, g) generated by x, y, h with relations

hx = xf(h), yh=f(h)y, yx—axy=z(h).

Thus, generalized Heisenberg algebras are precisely the qGHA
with g =1 and g = f(h) — h, i.e. H(f) = Ha(f,f — h).
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S.P. Smith introduced a class of algebras similar to U(slz), defined
by the relations

[H’A]:Av [H’B]:_Bv [A,B]:g(H),

where g is a polynomial.

Smith’s algebras S(g) are the qGHAs Hi(h — 1, g).




S.P. Smith introduced a class of algebras similar to U(slz), defined
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[H’A]:Av [H’B]:_Bv [A,B]:g(H),

where g is a polynomial.

Smith’s algebras S(g) are the qGHAs Hi(h — 1, g).




S.P. Smith introduced a class of algebras similar to U(slz), defined
by the relations

[H’A]:Av [H’B]:_Bv [A,B]:g(H),

where g is a polynomial.

Smith’s algebras S(g) are the qGHAs Hi(h — 1, g).
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S. Rueda introduced a more general class of algebras, defined by
the relations

[H,A|=A, [H,B]=-B, AB-gBA=g(H),
where g is a polynomial and g € F*.

Rueda’s algebras are the qGHAs #,(h — 1. g).
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The Weyl algebra
AI(IEFI) = ( taa | [87t] =1 >

is the algebra of differential operators on F[t] with polynomial
coefficients, in case char(F) = 0.
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The Weyl algebra
A(F)=(t,0[[0,t]=1)

is the algebra of differential operators on F[t] with polynomial
coefficients, in case char(F) = 0.

A1(F) can be realized as H1(h.1)/(h).
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Representations of quantum generalized
Heisenberg algebras
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All finite-dimensional irreducible H4(f, g)-modules have been
classified up to isomorphism, under that assumptions that g # 0
and F is algebraically closed.
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All finite-dimensional irreducible H4(f, g)-modules have been
classified up to isomorphism, under that assumptions that g # 0
and F is algebraically closed.

In particular, char(F) can be arbitrary.
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All finite-dimensional irreducible H4(f, g)-modules have been
classified up to isomorphism, under that assumptions that g # 0
and F is algebraically closed.

In particular, char(F) can be arbitrary.

This generalizes and unifies the classification for down-up algebras
(including sl), generalized down-up algebras and generalized
Heisenberg algebras.
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All finite-dimensional irreducible H4(f, g)-modules have been
classified up to isomorphism, under that assumptions that g # 0
and F is algebraically closed.

In particular, char(FF) can be arbitrary.

This generalizes and unifies the classification for down-up algebras
(including sl), generalized down-up algebras and generalized
Heisenberg algebras.

Theorem.
Any simple n-dimensional #4(f, g)-module is isomorphic to
exactly one of the following (7 « ' and A\, 1 : Z — F):
(a) Agrg(X p)/FItE(t" — ) [x acts invertibly]
(b) Bg,rg(A, p)/F[tE](t" — v) (duals to the above)
[x does not act invertibly but y acts invertibly]
(c) Cq,rgla)/F[t]t" [neither x not y act invertibly]
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Back to Kleinian singularities of type A
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A natural noncommutative analog of the affine plane A? is the
Weyl algebra Ay (TF).
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A natural noncommutative analog of the affine plane A? is the
Weyl algebra Ay (TF).
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A natural noncommutative analog of the affine plane A? is the
Weyl algebra Ay (TF).

» Let G = Z, act on Ay(F) by t — wt, &+ w10, where w is
a primitive n-th root of unity.
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A natural noncommutative analog of the affine plane A? is the
Weyl algebra Ay (TF).

» Let G = Z, act on Ay(F) by t — wt, &+ w10, where w is
a primitive n-th root of unity.
> The fixed ring is A1 (F)% = F[t", td, d"].
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A natural noncommutative analog of the affine plane A? is the
Weyl algebra Ay (TF).

» Let G = Z, act on Ay(F) by t — wt, &+ w10, where w is
a primitive n-th root of unity.

> The fixed ring is A1 (F)% = F[t", td, d"].

> It can be seen that A;(F)% = F[t", t0,d"] is isomorphic to a
quotient of the Smith algebra S(g) by an ideal generated by a
suitable Casimir element.
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A natural noncommutative analog of the affine plane A? is the
Weyl algebra Ay (TF).

» Let G = Z, act on Ay(F) by t — wt, &+ w10, where w is
a primitive n-th root of unity.

> The fixed ring is A1 (F)% = F[t", td, d"].

> It can be seen that A;(F)% = F[t", t0,d"] is isomorphic to a
quotient of the Smith algebra S(g) by an ideal generated by a
suitable Casimir element.

> For the above choice, there is a filtration by finite-dimensional
subspaces of Aj(IF)%" such that the graded ring has the form

FIX, Y, Z]/{XZ — Y").
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What follows is joint work with V. Futorny & E. Mendonga.

» In Block’s classification of irreducible of simple sl,-modules
one finds, along with the weight modules, also Whittaker
modules and modules which are torsionfree over the Cartan

subalgebra Fh.
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What follows is joint work with V. Futorny & E. Mendonga.

» In Block’s classification of irreducible of simple sl,-modules
one finds, along with the weight modules, also Whittaker
modules and modules which are torsionfree over the Cartan
subalgebra Fh.

» The latter are opposite to weight modules in the sense that
the action is as far from semisimple as possible.
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> [F algebraically closed with char(F) =0
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> [F algebraically closed with char(F) =0
> S(g) = S, denotes the Smith algebra, where g # 0 and
g(h) = u(h—1) — u(h),
for some u € F[h] (for simplicity, assume that v is monic).
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> [F algebraically closed with char(F) =0
> S(g) = S, denotes the Smith algebra, where g # 0 and
g(h) = u(h—1) — u(h),
for some u € F[h] (for simplicity, assume that v is monic).

» z, = xy — u(h) is the Casimir (generates the center)
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> [F algebraically closed with char(F) =0
> S(g) = S, denotes the Smith algebra, where g # 0 and
g(h) = u(h—1) — u(h),
for some u € F[h] (for simplicity, assume that v is monic).
» z, = xy — u(h) is the Casimir (generates the center)
> Use a correspondence between finite multisets in F and monic

polynomials in F[h]:
X = polyx =[Lhex(h =)
Rf ! f

» X is the underlying set obtained from X.
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Find Q, P € M,(F[h]) such that

Q(h—1)P(h) — P(h+1)Q(h) = g(h)/,

where | € Mp(F[h]) is the identity matrix.
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Find Q, P € M,(F[h]) such that

Q(h—1)P(h) — P(h+1)Q(h) = g(h)/,

where | € Mp(F[h]) is the identity matrix.
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> We have a complete classification.
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> We have a complete classification.

» All F[h]-torsionfree have some central charge C € F.
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> We have a complete classification.
» All F[h]-torsionfree have some central charge C € F.
» The skeleton of the category of such modules is given by
FAAc(X) = F[h], where
o C € F is the central charge;
o AelFx;
o X is a submultiset of roots of u(h) + C.

The category of these modules is not semisimple, but...
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> We have a complete classification.
» All F[h]-torsionfree have some central charge C € F.
» The skeleton of the category of such modules is given by
FAAc(X) = F[h], where
o C € F is the central charge;
o AelFx;
o X is a submultiset of roots of u(h) + C.

The category of these modules is not semisimple, but...

The combinatorics of the multiset X control FyAc(X):

DEPARTAMENTO

DE MATEMATICA



> We have a complete classification.
» All F[h]-torsionfree have some central charge C € F.
» The skeleton of the category of such modules is given by
FAAc(X) = F[h], where
o C € F is the central charge;
o AelFx;
o X is a submultiset of roots of u(h) + C.

The category of these modules is not semisimple, but...

The combinatorics of the multiset X control FyAc(X):
o finite length;
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> We have a complete classification.
» All F[h]-torsionfree have some central charge C € F.
» The skeleton of the category of such modules is given by
FAAc(X) = F[h], where
o C € F is the central charge;
o AelFx;
o X is a submultiset of roots of u(h) + C.

The category of these modules is not semisimple, but...

The combinatorics of the multiset X control FyAc(X):
o finite length;
o simple socle FyAc(X*);
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> We have a complete classification.
» All F[h]-torsionfree have some central charge C € F.
» The skeleton of the category of such modules is given by
FAAc(X) = F[h], where
o C € is the central charge;
o AelFx;
o X is a submultiset of roots of u(h) + C.
The category of these modules is not semisimple, but...
The combinatorics of the multiset X control FyAc(X):
o finite length;
o simple socle Fy\Ac(X*);
o composition factors in category O except for FyAc(X*);
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> We have a complete classification.
» All F[h]-torsionfree have some central charge C € F.
» The skeleton of the category of such modules is given by
FAAc(X) = F[h], where
o C € F is the central charge;
o AelFx;
o X is a submultiset of roots of u(h) + C.

The category of these modules is not semisimple, but...

The combinatorics of the multiset X control FyAc(X):
o finite length;
o simple socle Fy\Ac(X*);
o composition factors in category O except for FyAc(X*);

o explicit computation of composition length.
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Let 4l; denote the category of K[h]-free S,-modules.
> Fix CeF
» Ryny+c = XTI Y multiset partition
> q(h) = polyx
> p(h) = polyy; (so p(h+1) = polyy)
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Theorem.
The following is a skeleton of the category i3

{FAAc(X) | CeF, A e F* and X C Ryyc (submultiset)} .

(F» twists the action by x — Ax, y = A71y.)
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Theorem.
The following is a skeleton of the category i3

{FAAc(X) | CeF, A e F* and X C Ryyc (submultiset)} .

(F» twists the action by x — Ax, y = A71y.)

Theorem.
Ac(X) is simple if and only if (X — Y)NZ>1 = 0.
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For o, 8 € TF, set

axp < f—-—acNCF.
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For o, 8 € TF, set

axp < f—-—acNCF.

> If (X — Y)NZ>1 =0 then Ac(X) is simple so Ac(X) 2 (0)
is a composition series.
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For o, 8 € TF, set

axp < f—-—acNCF.

> If (X — Y)NZ>1 =0 then Ac(X) is simple so Ac(X) 2 (0)
is a composition series.
> Otherwise, given § € X such that Y_; # 0, set

Xxf5={Byux\ {5}

where 3 € Y is such that kg = — A >1is minimum.

'O DEPARTAMENTO

DE MATEMATICA



For o, 8 € TF, set

axpf << f—aecNCF.

> If (X — Y)NZ>1 =0 then Ac(X) is simple so Ac(X) 2 (0)
is a composition series.
> Otherwise, given § € X such that Y_; # 0, set

XxB={BuX\ {5}

where 3 € Y is such that kg = — B> 1 is minimum.
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Theorem.
The composition series for Ac(X) are of the form

Ac(Xo) 2 Ac(X1) 2 Ac(X2) 2 -+ 2 Ac(Xm) 2 (0)

where, for 0 < k< m—1,
» Xo =X and Xit1 = Xic * Bry1;
» Bri1 € Xk is regular with respect to Xg;
» Rurc = X1 [ Yt
> (Xm— Ym)NZ>1 =0.
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Theorem.
(a) Ac(X) has finite length m + 1, with

m<UX) = |Yg4l >0
BeX

(b) mand X* = X x 31 x- -+ x B, do not depend on the
choices of the Sy and Ac(X*) = soc (Ac(X)) is simple
(in fact the unique simple submodule of Ac(X)).

(c) Ac(X)/Ac(X xB), for € X regular is simple and
finite-dimensional, with

dim Ac(X)/A(_‘(X*,@) = Kg.

(d) All simple finite-dim'l S,-modules occur as composition
factors of Ac(X), for suitable C € F and X C R, c.
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Theorem.
In the Grothendieck group Ko(S,) = {[M] | M € S,—mod},
we have:

[AcX)] =[Ac(X)+ Y ex(BILB),

ﬂe Ru+C

where ox(8) = min { | Y4, X5l }.
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Theorem.
In the Grothendieck group Ko(S,) = {[M] | M € S,—mod},
we have:

[AcX)] =[Ac(X)+ Y ex(BILB),

ﬂe Ru+C

where ox(8) = min { | Y4, X5l }.

Corollary.

The module Ac(X) has length 1+ )~ ¢x(B).
,BE Ru+C
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