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Purpose of this talk: give a survey
of some links between notions in
non-commutative probability, algebra
and combinatorics.

e
“From the Earth to the Moon: A Direct
Route in 97 Hours, 20 Minutes”,
by Jules Verne (1865)



Content
m Non-commutative probability

m Hopf algebras and the
Ebrahimi-Fard-Patras
construction

m Applications

m Future work

Part of the talk is based on joint
work with Adrian Celestino:
“Schroder trees, antipode formulas
and non-commutative probability’

(arXiv:2311.07824).

Adrian Celestino



Non-commutative probability



Let G be a finite, simple, rooted graph, with set of vertices {vi, Vg, ..., V¢}.

For every n > 0, consider
mu (G) := # closed walks of length n starting at the root.
Let vi be the root. If Adj(G) denotes the adjacency matrix of G, then
(Adj(G)1,)™ = mn(G).

In the space of adjacency matrices, this defines a random variable
A := Adj(G) for which
E[A™] := mu(G).
Related to the study of “growing graphs”, there are binary operations
G1 * G2 on rooted graphs for which we can look at

E[(Adj(G1 * G2))"].



Cartesian product «— (classical) independence

Q ” @A )
The adjacency matrix of the Cartesian product G; x Gy is
Adj(G1 x G2) = Adj(G1) ® Iz + 1 ® Adj(Gz).

The random variables Adj(G;) ® Iy and I} ® Adj(Gg) are independent, so
E|[Adi(Gr x Go)"| = E|(Adj(G1) @ Tz + I @ Adj(Gz))"|

n

Z( ) [Adj G1) ®Ip) ]E[(h@Adj(Gz))“*k]



Star product = "Boolean” independence

(I:I*A=!Z

The adjacency matrix of the Cartesian product G; x Gg is

Adj(Gy * Gg) = Adj(G1) ® P2 + P1 ® Adj(Gg).

The random variables Adj(G;) ® Py and P; ® Adj(Gg) are not independent.
Still, there is a combinatorial way to calculate the expectation of
non-commutative monomials:

E[GESSEL] = E[G] E[E] E[S?] E[E] E[L] = E[G] E[E]? E[S?] E[L].



Comb product > “monotone” independence

EEPA

The adjacency matrix of the Cartesian product Gy x Gg is

Adj(Gy * Gg) = Adj(G1) ® Po + 1 ® Adj(G2).

The random variables Adj(G;) ® Py and I} ® Adj(Gsy) are not independent.
Still, there is a combinatorial way to calculate the expectation of
non-commutative monomials:

E[GESIRASEL] = E[S]E[R] E[S] E[I] E[GEAEL].



m The field of Free Probability was
introduced by Dan-Virgil
Voiculescu in the 1980s.

m Investigate the notion of
“freeness" in analogy to the
concept of “independence” from
(classical) probability theory.

m A combinatorial theory of
freeness was developed by Nica
and Speicher in the 1990s.

m Voiculescu discovered freeness
also asymptotically for many
kinds of random matrices (1991).

Dan Voiculescu , 2015



Commutative vs non-commutative

Voiculescu: “'Free probability is a probability theory adapted to dealing with
variables which have the highest degree of noncommutativity. Failure of
commutativity may occur in many ways."

m Quantum mechanics' commutation relation: XY —YX = 1.
m Free product of groups.

m Independent random matrices tend to be asymptotically freely
independent, under certain conditions.



Classical probability space

A probability space (Kolmogorov,
1930's) is given by the following
data:

m a set ) (sample space),

m a collection F (event space),

m P: F — [0,1] (probability
function),

Andrey Kolmogorov satisfying several axioms.

Expectation: for every bounded random variable X € L*(Q, F,P), let
E[X] := J X(w) dP(w).
Q

Intuition: replace (L*°(Q, F,P),[E) by a more general pair (A, @).



Non-commutative probability space

A non-commutative probability space is a pair (A, ¢) such that
m A is a unital associative algebra over C;
m @ : A — Cis a linear functional such that @(14) = 1.



Non-commutative probability space

A non-commutative probability space is a pair (A, ¢) such that
m A is a unital associative algebra over C;
m @ : A — Cis a linear functional such that @(14) = 1.

Examples: (L*(Q, F,P),E), (Matn(C),%Tr), (Mat, (Q), @),

@(a) = L) tr(a(w)) dP(w)



Non-commutative probability space

Random variable: a € A
Moments: (@(a), p(a*), p(a®),...) «— p: Clx] = C,u(t") == ¢(a')

Join distribution of (ag,...,ax): if 1 <iy...,i, <Kk,

w:Cty,.ooyti) = C ) pulty, -+ ti,) = @lay, -+~ ai,)



Non-commutative probability space

A non-commutative probability space is a pair (A, @) such that
m A is a unital associative algebra over C;
m @ : A — Cis a linear functional such that @(14) = 1.

In a (classical) probability space (Q,F,P), the notion of independence
between two random variables X, Y : Q — C implies

E(X™Y") = E(X™)E(Y™).



Free independence

Let (A, @) be a non-commutative probability space.
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The family {A;}ic1 of algebras is freely independent if for every n € N
and for every choice of (ij,...,1n) of “different neighbouring indices” (i.e.,

1 # 1 # 1j41), we have
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whenever a; € A;; and @(a;) =0, for every 1 <j <n.
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Free independence

Let (A, @) be a non-commutative probability space.
Consider {A;}icr unital subalgebras of A.

The family {A;}ic1 of algebras is freely independent if for every n € N
and for every choice of (ij,...,1n) of “different neighbouring indices” (i.e.,

1 # 1 # 1j41), we have
¢(ar---an) =0,
whenever a; € A;; and @(a;) =0, for every 1 <j <n.

A family (ai)ie1 of non-commutative random variables is called free if the
family of subalgebras ({14, ai))ier is freely independent.

Sets of variables in (A, @) are free if the algebras they generate are free.

It looks artificial...
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Free independence

Free independence provides a rule to compute mixed moments.

Let (A, @) be a n.c.p.s. and let a,b € A free n.c.r.v.

What is @ (ab)? @((a— ¢(a)ls)(b— @(b)l4)) =0, so
0= ww @(a)-14)(b—@(b)-14))

p(ab) —@(a-14)@(b) —@(a)e(ls-b) +@(a)e(b)e(l4)
@(ab) —@(a)e(b) —e(a)e(b) + @(a)e(b)



Free independence

Free independence provides a rule to compute mixed moments.

Let (A, @) be a n.c.p.s. and let a,b € A free n.c.r.v.

What is @ (ab)? @((a— ¢(a)ls)(b— @(b)l4)) =0, so
0= ww @(a)-14)(b—@(b)-14))

p(ab) —@(a-14)@(b) —@(a)e(ls-b) +@(a)e(b)e(l4)
@(ab) —@(a)e(b) —e(a)e(b) + @(a)e(b)

Therefore, @(ab) = @(a)e(b).



Free independence

Free independence provides a rule to compute mixed moments.
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Free independence

Free independence provides a rule to compute mixed moments.
Let (A, @) be a n.c.p.s. and let {ay, as}, {b} C A free n.c.r.v.
What is @ (ai;bas)? From

¢ ((a1—¢(a) - 14)(b— @(b) - La) (az — @) - 1)) =0,

we obtains
p(arbaz) = @(ajaz)e(b).



Free independence

Free independence provides a rule to compute mixed moments.

If {a1, as},{b1, ba} C A free n.c.r.v, what is @ (abab)?

@(aibiagby) =@(ajaz)@(by)e(b2) + @(a)@(az)e(bibs)
— @(ar)e(az)e(br)e(bs).

= @(abab) = p(a®)@(b)* + o(a)*e(b?) — @(a)*e(b)*.



Freeness from the free product

Voiculescu gave the definition of freeness in the context of von Neumann
algebras of free products of groups.

F(G)={ax:G—C: I{geGloc( )7é0}|<oo},
(axB)( Zocgh

heG

g :F(G)—=C , x— ofe).
F(G) is linearly generated by {64 : g € G}, where

, h=
59(h):{0 h%g



Freeness from the free product

If {Gi}ie1 subgroups of G are algebraically free, then {F(Gi)}ic1 C F(G)
are freely independent in (F(G), @g).

Sketch of the proof:
Consider (i1y...,1n) € I™ such that i; #1ig # - -+ # i, and
oy € F(Gi, ) such that ax(e) =0, for 1 <k < n.

@(oxp - xon) = (o * -+ % an ) ()

= > g anlgn).

g1,--,9n€G
gi-"gn=¢€

Since Gy, ..., Gi, are algebraically free. there exists k such that gy = e,
leading to @ (o * -+ * 0y ).



Non-commutative independences

Let (A, @) be a non-commutative probability space. Consider {A; }ic1
unital subalgebras of A. Let a; € Aj,,...,an € Aj, such that ij # i1

The family {A;}ier is
m freely independent if

(p(al"'an) :O>

when @(a;) =0, forall 1 <j <mn;
m boolean independent if

elar---an) = @lar) - o(an);
m monotone independent if
elar---an) = (P(aj)(P(al Q1 Qg an ),

Other notions: conditional monotone, cyclic monotone, ...



Back to the examples (free case)

¢(ab) =¢(a)e(b)
¢(atbaz) = @(aaz)e(b)
@(arbiazbs) = @(ajaz)@(br)@(bs) + @(a;)@(az)@(bibs)
— @(a)e(az)e(br)e(b2)
@(aibicbrazdas) = @(ajazaz)@(bibz)@(c)e(d).

“Non-crossing moments” factorize; “crossing moments’ don't factorize.



Back to (A, ¢)

Let n € N and aj, ag,...,a, € A.
Consider {f;; : A™ — C|n > 0} a family of multilinear functionals.
Let Tt = {By,..., By} € NC(n). We define

frlag...,an) = H fig (b1, b2,...,br).

Bem
BZ{b1<bz<"'<br}



Back to (A, ¢)

If T = {{1}> {2) 3) 4) 5}> {6}) {7) 8) 9}}1 then

frlai,...,a9) = fi(ai) fa(ag, as, as, as) fi(ag) f3(az, as, ag).



Moment to cumulant relations in (A, ¢)

Consider the multilinear functionals

{T‘n AT — C}nZl {bn AT — (C}n21 {hn AT — C}nzl

( Free cumulants ) ’ ( Boolean cumulants ) > ( Monotone cumulants )

defined by
(P((ll an) = Z rﬂ(ab---)an))
teNC(n)
(p(al an) = Z bn(al) »an)>
WENCInt(n)
1
(P(al an) - Z Whn(ala-'wan)-



Hopt algebras



Saj-nicole A. Joni and
Gian-Carlo Rota (1932-1999)

m Classical Hopf algebras: Borel,
Cartier, Hopf (1940-1950).

m Motivation: algebraic topology,
homological algebra, study of
loop spaces, algebras of
operations (Steenrod), homology
of Eilenberg—Maclane spaces.

m Joni-Rota: “A great many
problems in combinatorics are
concerned in assembling, or
disassembling, large objects out
of pieces of prescribed shape, as
in the familiar board puzzles. "



Hopf algebras

A Hopf algebra (H,m, 1, A, ¢, S) consists of
m an associative algebra (H, m, ();
m a coassociative coalgebra (H, A, ¢);
m compatibility between the product and the coproduct;

m the identity map id : H — H is invertible in the convolution algebra
(End(H), %), where

fxg:=Ao(f®g)om.

The inverse of id, denoted by S, is called the antipode of H.
Finding an optimal formula for the antipode is not easy. It provides a rich
information about hidden combinatorial structures on H.



Double tensor Hopf algebra

Double tensor Hopf algebra T(T, (V)): non-commutative and
non-cocommutative Hopf algebra, with graduation

TT: M= P VM@ @V

ny+---+ne=n

Elements in T(T.(V))n are written as (linear combinations of) words with
bars

wil - wy,
where w; € VO™ for some ng + - - - + nyx = n. We call this elements
words on (non-empty) words.



Double tensor Hopf algebra

Let V be a K-vector space.

If k > 0, we write elementary tensors from V®* as words, ujug - - - uy,
with u; € V. We called the K-vector spaces

TV = V™ , T (V)=Vve*
k>0 k>1

the tensor module and reduced tensor module, respectively, generated

by V.



m Product rule: if uw € T(T,(V))n and v €, then

uly = 1wl ugvi - v € T(TH (V) ngme

m Coproduct rule: given a word w = u;---u, € V" and
A ={ay...,ax} C N, we write ua = 1Ugq, - - Uq,.
Consider the map A: T (V) = T(V) @ T(T,(V)) given by

A(LL)Z: Z uA@uK(A,[n})
A C [n]

= Z UA @ ug,l - - Juk,.
A C [n]

Finally, we extend the map A multiplicatively to all of T(T, (V)), by
setting
Alwi| - - fwy) = Alwy) - - - A(wie).



For example, we have

A(abc) = l®abc+a®be+b ® alc+c®ab+ab®c+ac®b+bec®a+1®abc;

A(iralgessel) = --- + 1|sl ® ia|gese + - - -



For example, we have

A(abc) = l®abc+a®be+b ® alc+c®ab+ab®c+ac®b+bec®a+1®abc;

A(iralgessel) = --- +1|sl ® ialge|se + - - -



Algebraic approach to cumulants (Ebrahimi-Fard, Patras)

m (A, @) non-commutative probability space.

m H=T(T,(A)) words on non-empty words on A.

m The coproduct A in H is codendriform: A = A_ + A~.

m The space (Homj;,(H, K), <, >) is a dendriform algebra, with
* =<+ >.

m The linear form ¢ is extended to T (A) by defining to all words
u=aj---a, € A"

@lajag---an):=@(aj-4az-4-- -4 an).

This is the multivariate moment of u.



Algebraic approach to cumulants (Ebrahimi-Fard, Patras)

m (A, @) non-commutative probability space.

m H=T(T,(A)) words on non-empty words on A.

m The coproduct A in H is codendriform: A = A_ + A~.

m The space (Homj;,(H, K), <, >) is a dendriform algebra, with
* =<+ >.

m The linear form ¢ is extended to T (A) by defining to all words
u=aj---a, € A"

@lajag---an):=@(aj-4az-4-- -4 an).

This is the multivariate moment of u.
The map @ is then extended multiplicatively to a map
O:T(T,(A)) - Kwith ®(1) :=1 and

O(w - Jux) == @(uw) - @(w).



Cumulants as infinitesimal characters

Proposition (Ebrahimi-Fard, Patras -2015)
Let p,k, B € g(A) the infinitesimal characters solving

O = exp,(p),

OD=€e+k=<0
and

O=e+ 0> f3.

Then, p, K, [3 correspond to the monotone cumulants, free cumulants
and boolean cumulants, respectively.

v

For any word u = a;y - - - a, € A®™, we have

hn(a1)°°°)an) = p(u),rn(al,...,an) = K(u))bn(ab---)an) = B(u)



Characters

The set of group-like elements G(V) C Ly forms a group with respect to
the convolution *. The inverse of an element ® € G(V) is

O l=doS.

The set g(V) C Ly of infinitesimal characters forms a Lie algebra with
Lie bracket defined by the commutator in Ly,.



Inversion formulas

Proposition (Ebrahimi-Fard, Patras (2018))

The free cumulant k and boolean cumulant (3 satisfy the relations

K=(D—¢€) <D land =0 '~ (D —¢).

"We can look at k and (3 through the inversion formula ® 1= ® 0 S.”




Antipode formula for the double tensor algebra

The Takeuchi's formula for the antipode

S(w) = Z (—1)* %D o (id — 1e)®% o A (W),
k>0

where |71 :=( and ACD = ¢ may contains several cancellations
(S(albcd) contains 75 terms, which reduces to 11 after cancellation).

The following result helps to efficiently determines the antipode of
T(T4+ (V).



Theorem (Celestino - V.)

Let w = uqug - - - Uy, € VO™, The action of the antipode over u is given
by the following cancellation-free and grouping-free formula:

Swy= ) (1),

teSch(n)

where Sch(n) is the set of Schroder trees with n + 1 leaves.

wy = 156(23/4(7/8910




Proposition (Josuat-Vergés, Menous, Novelli, Thibon /Arizmendi, Celestino

/Celestino - V.)
Let (A, @) be a non-commutative probability space and {knn>1 be its

free cumulants. Then, for any ay,...,a, € (A we have:
kn(al,--->an) = Z (_l)i(t)_l@n(t)(ala---)an)-
tePSch(n)

If {bynn>1 are the Boolean cumulants, then

bn(al)-")an) — Z (_l)i(t)_l(pﬂ(t)(ab-")an)-
teBSch(n)




Species



André Joyal, Alain Connes, Olivia Caramello
and Laurent Lafforgue, IHES (2015)

The theory of combinatorial species
was introduced by André Joyal in
1980. Species can be seen as a
categorification of generating
functions. It provides a categorical
foundation for enumerative
combinatorics.



Species
A set-species is a functor

p:set — set.
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Species
A set-species is a functor

p:set — set.

A species is a functor
p:set™ — Vec.

The Cauchy product of two species p and q is given by
(p-q)ll = &5 »lSI®qlT.
1=SuT

The category of species is symmetric monoidal.

We can speak of monoids, comonoids, ..., in species.
h(S] @ h[TI XS5 h(I) h{I] 255 h(S] @ h[T].



Examples of species
m Species E of sets:
E[I] := K{x1}.
m Species E,, of n-sets:

Enll] := {K{*I}» ?f I =mn,
0), if |I] # n.

m Species X := E; of sets of one element.
m Species IT of partitions.
m Species L of linear orders.

m Species G of graphs:

G[I] := K{ finite graphs with vertices in I }.



Operations on species

m Sum of species
(p+q)ll] := p[l] & q[I].
m Product of species (Cauchy product)
(p-q)ll:= P plSI@qlTl.

I=SuT



Operations on species

m Composition of species

(poa)lll:= P plnd® X) alBl.

7tell[I] Ben



Generating function of a species

To every species p it is associated its exponential generating function:

p(x) = ) dimg p[n]%l.

n>0
We have:
(p+a)(x) = p(x) +alx),
(p-a)(x) =p(x) - q(x),
(poa)(x) = p(x) oq(x).

For the last identity, q[()] := (0).



Cumulants from Hopf monoids (Aguiar-Mahajan)

Let h be a species.
The n-th cumulant of h is

= > u({1},m) dimy h(m),

i1
where h(7t ®B€Tc



Species Moments | Cumulants Distribution

L linear orders n! (n—1)! | Exponential of par. 1

E sets 1 dn 1 Dirac measure 0 =1

IT partitions Bell,, 1 Poisson of par. 1

Y ordered partitions | OrdBell,, Z k" /2% |  Geometric of par. 1
k>1
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Species Moments | Cumulants Distribution

L linear orders n! (n—1)! | Exponential of par. 1

E sets 1 dn 1 Dirac measure 0 =1

IT partitions Bell,, 1 Poisson of par. 1

Y ordered partitions | OrdBell,, Z k™ /2% | Geometric of par. 1
k>1

From the formula

= > ({1}, 7) dimy h(m).

-1
it is not evident that the integers k., (h) are non-negative.

Proposition (Aguiar-Mahajan)

For any finite-dimensional cocommutative connected bimonoid h, the
dimension of its primitive part is




Free and boolean cumulants of h

The free cumulants of h are the integers ¢, (h) defined by

= Y uln,m) dimgh(n).

eNC(n)



Free and boolean cumulants of h

The free cumulants of h are the integers ¢, (h) defined by

= Y uln,m) dimgh(n).

eNC(n)

The boolean cumulants of h are the integers by, (h) defined by

bu(h) = Z u({1},70) dimy h(7).



Free and boolean cumulants of h

The free cumulants of h are the integers ¢, (h) defined by

= Y uln,m) dimgh(n).

eNC(n)

The boolean cumulants of h are the integers by, (h) defined by

bath) = Y u({I),7) dimyh(n).

7TENCInt( )

Question: are these integers non-negative? What conditions on h?



The cumulant-to-moment formulas come from different notions of
“connected structures” of combinatorial objects.

Theorem (V. - 2024)

Let p be a positive species.
m ifh =Eop, then, k1 |(h) = dimy p[I];
m ifh = Eonc p, then, ¢(h) = dimy p[I];
m ifh =Eop, then, by (h) = dimy p[I].




Work in progress

m An algebraic model for several notions of non-commutative
independences was presented by Ebrahimi-Fard and Patras. It involves
infinitesimal characters on a certain Hopf algebra.

m Understanding this approach in terms of species and algebraic
structures in the monoidal category of species (monoids, comonoids, lie
monoids, bimonoids) might give a better insight of the combinatorics
behind moment-to-cumulant formulae.

m Universality of E onc p (analogue to the free and cofree monoid in
species).

m Operadic notion using non-crossing composition (rigid and classic
species).

m What's next?



Geometrical notion of independence(s)?

Polytope Hopf monoid | Independence
Permutahedron | TT Classical
Associahedron | F Monotone
Cyclohedron C Conditional monotone

Joint work with Cesar Ceballos, Adrian Celestino and Franz Lehner
(ANR-FWF International Cooperation Project PAGCAP - Beyond
Permutahedra and Associahedra: Geometry, Combinatorics, Algebra, and
Probability).



iGraciasl!



Save the date!

“Recent Perspectives on Non-crossing Partitions through Algebra,
Combinatorics, and Probability”, Feb. 17, 2025 — Feb. 21, 2025.



