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Motivation

This work stems from the problem of isometric immersions of Riemannian
symmetric spaces into Euclidean spaces.

It is known that any Riemann manifold can be isometrically immersed into
the Euclidean spaces of sufficiently large dimension.

Y. Agaoka & E. Kaneda (’83) gave bounds on these dimensions for the case
of Riemannian symmetric spaces.

Moreover, they showed that this amounts to a question on the roots of a Lie
algebra.

We give a (very) quick introduction to the basic geometry, before recasting
their problem in the appropriate combinatorial setting and expanding on their
results.
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Symmetric spaces

Definition
A connected Riemannian manifold M is called a symmetric space if for each p ∈ M
there exists a unique isometry jp : M → M such that jp(p) = p and (djp)p = −Idp.

The map jp is called a (global) symmetry of M at p, the above can also be stated
as j2p = Id and p is an isolated fixed point of jp.

Example

Euclidean space Rn, with jp(x) = 2p − x .

Figure: Point reflection in R2
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Example

The sphere Sn is symmetric. It’s metric is inherited from it’s embedding, and we
know its isometry group acts transitively on Sn. Suffices to give an example about
its north pole, p = (1, 0, · · · , 0), with jp(x

1, x2, · · · , xn) = (x1,−x2, · · · ,−xn).

Theorem
A symmetric Riemannian manifold M is homogeneous.

Is is know that I (M), the group of isometries on M is a Lie group and act
transitively, hence we can identify a symmetric space with the homogeneous space
G/K where K is the isotropy subgroup of a point p ∈ M.

Remark
Many questions can now be formulated in terms of g and k, the Lie algebras of G
and K .
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Theorem (Y. Agaoka & E. Kaneda (’83))

Assume that s := rank G/K − rank G + rank K > 0. Then there exists a subset
of roots Γ = {β1, · · · , βs}, known as strongly orthogonal roots.

Much of their paper is concerned with constructing these sets of roots for various
cases. These sets of roots help prove the main result, Theorem 1.4.
We now give a more combinatorial description of these sets of roots and generalise
their problem to an EKR type problem.
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Root space decomposition

Given a Lie algebra g we can decompose it via the root space decomposition:

g = h⊕
⊕
α∈R

gα, g0 = h

The eigenspaces

gα := {x ∈ g|[h, x ] = α(h)x for all h ∈ h},

for non zero α ∈ h∗, known as the root subspaces. The set {α ∈ h∗} is called the
root system of g.
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sl(n,C)

The Lie algebra of sl(n,C) is an illustrative example to showcase the above
decomposition.

Definition

g = sl(n,C) is comprised of matrices over C having zero trace.

Then h is the subalgebra of diagonal matrices with trace 0. We can define a linear
functional as

ei : h → C,

 h1
h2

.
.
.

hn

 → hi ,

with e1 + · · ·+ en(h) = 0.
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With elementary matrices Eij it is a simple calculation to show that

[h,Eij ] = (hi − hj)Eij = (ei (h)− ej(h)) · Eij .

Hence the root spaces gα = gei−ej . The root system is:

R := {ei − ej |i ̸= j} ⊂ h∗.

At this point we have a set of vectors and if we also include the Killing form we
can give a geometric picture to these roots:
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A2 root system

Figure: A2
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Abstract root systems

While the above serves as motivation, today we will be only concerned with
combinatorial questions on the root system.

Definition
A subset R of Euclidean space E is called a root system in E if the following hold:

1 R spans E and does not contain {0}.
2 α ∈ R, then the only multiples of α in R are ±α.

3 Reflections in a hyperplane orthogonal to α leave R invariant.

4 The term 2 (β,α)
(α,α) is in Z.
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All irreducible root systems can be classified via their Dynkin diagrams.

Theorem
If R is an irreducible root system of rank ℓ, its Dynkin Diagram is one of the
following:

Figure: A,B,C ,D the classical and the exceptional E6,E7,E8,F4,F4
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Strongly Orthogonal roots

Our questions will involve strongly orthogonal roots, which we recall here.

Lemma

Let α, β ∈ R, if (α, β) < 0 then α+ β ∈ R. Similarly if (α, β) > 0 then
α− β ∈ R.

Definition
Given a root system, two roots α and β are said to be strongly orthogonal if
neither α+ β nor α− β is a root.
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Examples

Consider the root system for A5, spanned by α1, · · · , α5.

α1 =(1, 0, · · · , 0), e1 − e2,

.

.

.

α6 =(1, 1, 0, 0, 0), e1 − e3,

.

.

.

α10 =(1, 1, 1, 0, 0), e1 − e4,

.

.

.

α13 =(1, 1, 1, 1, 0), e1 − e5,

α14 =(0, 1, 1, 1, 1), e2 − e6,

α15 =(1, 1, 1, 1, 1), e1 − e6.

Examples of Strongly orthogonal sets of roots are

{α2, α4},{α6, α9}
{α1, α8},{α1, α5}.
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Set systems

Motivation for the EKR Theorem. Consider a base set {1, · · · , 7}.
An intersecting 3-set from the base set:

{1, 2, 3},{1, 2, 4}, {1, 2, 5}, {1, 2, 6}, {1, 2, 7}
{1, 3, 4},{1, 3, 5}, {1, 3, 6}, {1, 3, 7}, {2, 3, 4},
{2, 3, 5},{2, 3, 6}, {2, 3, 7}.

Another intersecting 3-set where every set always has {1}.

{1, 2, 3},{1, 2, 4}, {1, 2, 5}, {1, 2, 6}, {1, 2, 7}
{1, 3, 4},{1, 3, 5}, {1, 3, 6}, {1, 3, 7}, {1, 4, 5}
{1, 4, 6},{1, 4, 7}, {1, 5, 7}, {1, 5, 6}, {1, 6, 7}.
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EKR Problem

Question
What is the largest intersecting set system ?

Figure: Sunflower/Dictatorship/Pencil point.
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Erdős–Ko–Rado theorem

Let n, k ∈ N and write [n] := {1, 2, . . . , n}. Denote by
V(n, k) := {X ⊆ [n] : |X | = k} the set of k-element subsets of [n].

Theorem (EKR)

Let F ⊆ V(n, k) and suppose that X ∩ Y ̸= ∅ for all X ,Y ∈ F . Then

|F| ≤
(
n − 1

k − 1

)
.

Moreover, if n > 2k, equality holds if and only if F consists of all elements of
V(n, k) that contain a given element from [n].
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Graphs

Equivalently, let Γ(n,k) be the graph which has as vertex V (n, k), with an edge
between two k−subsets when they have non-trivial intersection. The EKR result
gives us an upper bound on the size of maximal cliques in Γ(n,k). Moreover it
classifies the maximal cliques.

Figure: The Johnson graph J(4, 2)
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Our Problem

Given a root system R, a subset of pairwise strongly orthogonal roots is called a
strongly orthogonal subset or SOS . Denote the set of SOS ′s of k elements in R
by SOSk(R).

Figure: Strongly Orthogonal roots in A4.
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Definition

Letting Γ ∈ SOSk(R), we write |Γ| =
∑

γ∈Γ γ for the sum of the roots in Γ. A
subset F ⊆ SOSk(R) is a SOS-clique if and only if for every Γi , Γj ∈ F there
exists some Γi,j ∈ F such that

|Γi | − |Γj | = |Γi,j | . (1)

The maximal size of an SOS-clique in SOSk(R) will be denoted µk(R).
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This is a problem of Erdős–Ko–Rado type:

Construct a graph in which vertices are labelled by the vectors |Γ| for
Γ ∈ SOSk(R), with an edge between |Γi | and |Γj | if and only if the difference
of their vectors is again the label of a vertex in the graph.

The SOS-clique of the definition is a clique in this graph. We give both an
upper bound on the size of maximal clique and a characterisation of all
maximal cliques when ℓ is sufficiently large in terms of k .
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Example

In the above example with A5, we have

|Γ1| =|{α6, α9}| = (1, 1, 0, 1, 1),

|Γ2| =|{α2, α4}| = (0, 1, 0, 1, 0),

|Γ1,2| = |Γ1| − |Γ2| =|{α1, α5}| = (1, 0, 0, 0, 1).

While harder for sets of more than three roots, the computations follow a nice
pattern due to the easy nature of An.
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Figure: SOS2(A5)
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A starting point

Recall the Dynkin diagram for A type systems,

Figure: A type

Independent nodes will help us construct examples of SOS ′s.
Define βj =

∑k
i=1 αi+j , then Γ1 = {βj : j = 0, . . . , k − 1} is such a set. The sum

|Γ1| =
∑k−1

j=0 βj is a vector with the first k entries equal to +1 followed by k entries equal
to −1.
Let F be a SOS clique, and we can assume wlog that Γ1 ∈ F . The supports of Γ1 and Γi

intersect in exactly k positions if Γi also belongs to F .
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Definition

Given an SOS clique, F . If for all Γi , Γj ∈ F the sets S(Γi , Γj) are equal, we say F
is a sunflower.

The following lemmas are needed:

Lemma

Suppose that F ⊂ SOSk(Al) is a sunflower. Then |F| ≤ ⌊ l+1
k ⌋ − 1.

Proof.

Consider the set of indices on which |Γi | and |Γj | agree, call this set X , and
we know |X | = k.

|Γi | = Xi ∪ X ,

k|F|+ k ≤ ℓ+ 1.
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Lemma

For an SOS clique F , suppose that S(Γi , Γj) = S(Γx , Γy ), if and only if

{Γi , Γj} = {Γx , Γy}. Then |F| ≤
(
2k
k

)
+ 1.

Proof.
Fix Γ1 ∈ F , the support of some Γi agrees in exactly k positions.

By assumption these are all distinct. A choice of 2k positions.
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Results

Theorem

For any k ∈ N, we have µk(Aℓ) ≤ ℓ+ 1. For ℓ > k4k ,

µk(Aℓ) =

⌊
ℓ+ 1− k

k

⌋
.

If ℓ > k4k and |F| = µk(Aℓ) then F is a sunflower.
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Proof.

Consider a maximal sunflower {Γ1, · · · , Γm} ∈ F , The support of each |Γi | is X ∪ Xi all disjoint.
Assuming the second lemma is not in effect, |F| = m+ 1. Also ℓ+ 1 ≥ k(m+ 1) and we have our
result.
Suppose there exists Γm+1 ∈ F such that S(Γ1, Γm+1) ̸= X . We know it intersects the m, Xi ’s non
trivially, so that k ≥ m − 1.
At most

(
2k
k

)
− 1 possible intersections with support of Γ1, distinct from X . Hence |F| ≤ k

(
2k
k

)
+1.

By a theorem of Ray-Chaudhuri & Wilson, the number of 2k-sets such that all pairwise
intersections have size k is bounded by ℓ+ 1, for any choice of ℓ and k. This gives the general
upper bound.

Theorem

The sequence µ2(Aℓ) is 0, 0, 1, 1, 3 for 1 ≤ ℓ ≤ 5. For 6 ≤ ℓ ≤ 13, it is equal to 6 and for ℓ ≥ 13, its
value is ⌊(ℓ− 1)/2⌋.
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Exceptional cases

For the the remaining finite cases, we can employ computational methods. A
Python script to find all pairs of strongly orthogonal roots was written and with
the aid of the cliquer method in SAGE we have some partial results to present.

Figure: G2, µ2
Figure: E6, µ2
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8th Workshop on Design Theory, Hadamard Matrices and Applications, Sevilla, 2025.
28 / 31



Exceptional cases

Theorem (preliminary)

G2 : µ2 = 2,

E6 : µ2, µ3, µ4 = 3, 5, 5
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Next steps

Motivated by I. Landjev, A. Rousseva, K. Vorobev, to improve the bounds
seen in ’On binary codes with distances d and d + 2’, - Landjev & Vorob’ev.

A better geometric interpretation of the results we have.

Projective planes and designs.
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Thank you,
Questions?
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