New Constructions of Quantum MDS codes

Oisin Campion

University College Dublin

26 May 2025

Joint work with Gary McGuire (UCD) and Fernando Hernando (UJI) https://arxiv.org/abs/2501.17010

Quantum Information

The State Vector

• The object at the centre of attention is the state vector:

$$|\psi\rangle\in(\mathbb{C}^q)^{\otimes n}, \;\; \||\psi\rangle\|=1$$

- It gives a full description of the system.
- e.g. the state of a quantum computer as it processes some computation.
- e.g the contents of Alice's "quantum message" to Bob.

The State Vector

• The object at the centre of attention is the state vector:

$$|\psi\rangle\in(\mathbb{C}^q)^{\otimes n}, \;\; \||\psi\rangle\|=1$$

- It gives a full description of the system.
- e.g. the state of a quantum computer as it processes some computation.
- e.g the contents of Alice's "quantum message" to Bob.
- Aim: protect the state vector from "noise".
- Noise is complicated, but we can get away with a simple model.
- I will follow the notations of Ketkar et. al.

Pauli Operators

• Let
$$q = p^m$$
 be a prime power.

Definition 1

The **Pauli operators**, denoted $X(\alpha)$ and $Z(\beta)$ for $\alpha, \beta \in \mathbb{F}_q$, are defined on an orthonormal basis $\mathcal{B} = \{ |x\rangle : x \in \mathbb{F}_q \}$ for \mathbb{C}^q by

•
$$X(\alpha) |x\rangle = |x + \alpha\rangle.$$

•
$$Z(\beta) |x\rangle = \omega^{\mathsf{Tr}(\beta x)} |x\rangle$$

where Tr() is the absolute trace, and $\omega = e^{2\pi i/p}$ is a primitive *p*-th root of unity.

• e.g the Binary Pauli Matrices

$$I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

Pauli Strings and Errors

Definition 2

Given $a = (a_1, \ldots, a_n), b = (b_1, \ldots, b_n) \in \mathbb{F}_q^n$, a **Pauli String** is an operator of the form

$$\omega^{c}X(a)Z(b) = \omega^{c}\bigotimes_{i=1}^{n}X(a_{i})Z(b_{i}).$$

where $\omega = e^{2\pi i/p}$ and $c \in \mathbb{F}_p$. The set of all Pauli-strings forms a group under multiplication, which we denote by \mathcal{P} .

• Our model for the noise channel is as follows:

$$|\psi\rangle \longrightarrow E |\psi\rangle, \ E \in \mathcal{P}.$$

Goal of error-correction: determine E.

Stabilizer Codes and Finite Fields

Mapping to Finite Fields

Lemma 3

The multiplication in \mathcal{P} satisfies:

- $X(a)X(a') = X(a+a'), \quad Z(b)Z(b') = Z(b+b').$
- $Z(b)X(a) = \omega^{\operatorname{Tr}(a \cdot b)}X(a)Z(b).$

Lemma 4

$$\omega^{c}X(a)Z(b)$$
 and $\omega^{c'}X(a')Z(b')$ commute \iff $\operatorname{Tr}(b \cdot a' - b' \cdot a) = 0.$

Proposition 5

The map

$$r: \mathcal{P} \to \mathbb{F}_q^{2n}$$

$$\omega^{c}X(a)Z(b)\mapsto (a|b)$$

is a surjective group homomorphism with kernel $\langle \omega^c I \rangle$.

Oisin Campion (UCD)

Stabilizer Codes

Definition 6

A stabilizer group is an abelian subgroup $\langle g_1, \ldots, g_t \rangle = S \leq \mathcal{P}$ such that $-I \notin S$. We denote by $V_S \subseteq (\mathbb{C}^q)^{\otimes n}$ the common +1-eigenspace of S, and dim $V_S = n - t$.

Stabilizer Codes

Definition 6

A stabilizer group is an abelian subgroup $\langle g_1, \ldots, g_t \rangle = S \leq \mathcal{P}$ such that $-I \notin S$. We denote by $V_S \subseteq (\mathbb{C}^q)^{\otimes n}$ the common +1-eigenspace of S, and dim $V_S = n - t$.

Proposition 7

Let $E \in \mathcal{P}$. If $|\psi\rangle$

Stabilizer Codes

Definition 6

A stabilizer group is an abelian subgroup $\langle g_1, \ldots, g_t \rangle = S \leq \mathcal{P}$ such that $-I \notin S$. We denote by $V_S \subseteq (\mathbb{C}^q)^{\otimes n}$ the common +1-eigenspace of S, and dim $V_S = n - t$.

Proposition 7

Let $E \in \mathcal{P}$. If $|\psi\rangle \in V_S$, then each g_i defines a measurement of the state $E |\psi\rangle$ which records whether E and g_i commute. Moreover, these measurements leave the state $E |\psi\rangle$ unchanged.

Definition 8

An $[[n, k, d]]_q$ quantum stabilizer code is a code $V_S \subseteq \mathbb{C}_q^{\otimes n}$, where $q^k = dim_{\mathbb{C}}(V_S)$,

Stabilizer Codes

Definition 6

A stabilizer group is an abelian subgroup $\langle g_1, \ldots, g_t \rangle = S \leq \mathcal{P}$ such that $-I \notin S$. We denote by $V_S \subseteq (\mathbb{C}^q)^{\otimes n}$ the common +1-eigenspace of S, and dim $V_S = n - t$.

Proposition 7

Let $E \in \mathcal{P}$. If $|\psi\rangle \in V_S$, then each g_i defines a measurement of the state $E |\psi\rangle$ which records whether E and g_i commute. Moreover, these measurements leave the state $E |\psi\rangle$ unchanged.

Definition 8

An $[[n, k, d]]_q$ quantum stabilizer code is a code $V_S \subseteq \mathbb{C}_q^{\otimes n}$, where $q^k = \dim_{\mathbb{C}}(V_S)$, and $d := \min\{w(E) : E \in \overline{N(S)} \setminus \overline{S}\}$. We refer to *n* as the **length**, *k* as the **dimension**, and *d* as the **(minimum) distance**.

Symplectic Spaces

• Define a form on \mathbb{F}_q^{2n} : $\langle (a|b), (a'|b') \rangle_s = Tr(b \cdot a' - b' \cdot a)$.

Ketkar et. al)

An $[[n, k, d]]_q$ quantum code exists if and only if there exists an additive code $C \subseteq \mathbb{F}_q^{2n}$, with $C \subseteq C^{\perp_s}, |C| = q^{n-k}$, $d = \min\{w_s(x) : x \in C^{\perp_s} \setminus C\}$.

Stabilizer Codes and Finite Fields

New Quantum MDS codes

Symplectic Spaces

• Define a form on \mathbb{F}_q^{2n} : $\langle (a|b), (a'|b') \rangle_s = Tr(b \cdot a' - b' \cdot a)$.

Ketkar et. al)

An $[[n, k, d]]_q$ quantum code exists if and only if there exists an additive code $C \subseteq \mathbb{F}_q^{2n}$, with $C \subseteq C^{\perp_s}, |C| = q^{n-k}$, $d = \min\{w_s(x) : x \in C^{\perp_s} \setminus C\}$.

- Consider the map: $\phi: \mathbb{F}_q^{2n} \longrightarrow \mathbb{F}_q^n$, $(a|b) \mapsto a + \gamma \cdot b$, $\gamma \in \mathbb{F}_{q^2} \setminus \mathbb{F}_q$.
- The Hermitian inner product on $\mathbb{F}_{a^2}^n$ is defined as

$$x \cdot_h y = \sum_{i=0}^{n-1} x_i y_i^q.$$

Lemma 10 (Ketkar et. al)

For $x, y \in \mathbb{F}_{q^2}^n$, $x \cdot_h y = 0 \implies \langle \phi^{-1}(x), \phi^{-1}(y) \rangle_s = 0$.

The Black Box

Theorem 11 (Hermitian Construction)(Ketkar et. al)

Let C be a linear [n, k, d] error-correcting code over the field \mathbb{F}_{q^2} such that $C \subseteq C^{\perp_h}$. Then, there exists an $[[n, n - 2k, \ge d^{\perp_h}]]_q$ stabilizer quantum code, where d^{\perp_h} stands for the minimum distance of C^{\perp_h} .

New Quantum MDS codes

Quantum MDS Codes

Proposition 12 (Quantum Singleton Bound)

If a $[[n, k, d]]_q$ stabilizer quantum code exists, then the parameters satisfy $k + 2d \le n + 2$.

- A code that attains the above bound is called **quantum MDS**.
- All MDS codes with $n \le q + 1$ are known (Grassl, Beth, Rotteler), and it is conjectured that the length of an MDS code must be $n \le q^2 + 2$ (Ketkar & Klappenecker).
- If $d \le q/2$, then many codes are constructed in (Jin et. al.).
- For $d \ge q/2$, most lengths are multiples of (q-1) or (q+1).
- There are extensive (but incomplete) tables in (Wan, Zheng, Zhu).

GRS Codes

- To create a Generalized Reed-Solomon Code, you need three things:
 - A set of functions: $\mathbb{F}_{q^2}[X]_{\leq k}$.
 - Evaluation Set: $\mathbf{A} = (a_0, \dots, a_{n-1}) \in \mathbb{F}_{q^2}^n$.
 - Twist vector: $\mathbf{v} = (v_0, \dots v_{n-1}) \in (\mathbb{F}_{q^2})^n$.
- Our code C is obtained as the image of the linear evaluation map:

$$ev_{\mathbf{v},\mathbf{A}}: \mathbb{F}_{q^2}[X]_{\leq k} \longrightarrow \mathbb{F}_{q^2}^n, f \mapsto (v_0 f(a_0), \dots, v_{n-1} f(a_{n-1}))$$

GRS Codes

- To create a Generalized Reed-Solomon Code, you need three things:
 - A set of functions: $\mathbb{F}_{q^2}[X]_{\leq k}$.
 - Evaluation Set: $\mathbf{A} = (a_0, \dots, a_{n-1}) \in \mathbb{F}_{q^2}^n$.
 - Twist vector: $\mathbf{v} = (v_0, \dots v_{n-1}) \in (\mathbb{F}_{q^2}^*)^n$.
- Our code C is obtained as the image of the linear evaluation map:

$$ev_{\mathbf{v},\mathbf{A}}: \mathbb{F}_{q^2}[X]_{\leq k} \longrightarrow \mathbb{F}_{q^2}^n, f \mapsto (v_0 f(a_0), \dots, v_{n-1} f(a_{n-1}))$$

It is important that x ⋅_h y = 0 for every x, y ∈ C.
 For two monomials:

$$ev_{\mathbf{v},\mathbf{A}}(X^{e_1})\cdot_h ev_{\mathbf{v},\mathbf{A}}(X^{e_2}) = \sum_i \mathbf{v}(i)^{q+1}\mathbf{A}(i)^{e_1+qe_2}$$

• We choose \boldsymbol{A} and \boldsymbol{v} carefully to ensure orthogonality.

13/19

Our Construction

- Let $\lambda, \tau, \rho, \sigma, L$ be positive integers.
- Let ζ_{λ} denote a primitive λ root of unity.
- The evaluation set for our code is:

$$oldsymbol{A} := \{\zeta^i_\lambda \zeta^j_\tau \zeta^k_
ho: 0 \leq i, j, k < \lambda, au, \sigma\}$$

Our Construction

- Let $\lambda, \tau, \rho, \sigma, L$ be positive integers.
- Let ζ_{λ} denote a primitive λ root of unity.
- The evaluation set for our code is:

$$\mathbf{A} := \{\zeta_{\lambda}^{i} \zeta_{\tau}^{j} \zeta_{\rho}^{k} : 0 \le i, j, k < \lambda, \tau, \sigma\}$$

• Choose
$$s_0 \dots s_{\sigma-1} \in \mathbb{F}_q^*$$
 such that

$$\sum_{k=0}^{\sigma-1} s_k = 0$$

• We select the twist vector \mathbf{v} so that the (q + 1)-power of \mathbf{v} has $\zeta_{\lambda}^{-iL} \cdot s_k$ in the coordinate labelled (i, j, k).

Orthogonality Conditions

Theorem 13 (C.-Hernando-McGuire)

Let X^{e_1}, X^{e_2} be two monomials. Then the evaluation vectors for these two monomials are orthogonal under the Hermitian inner product if any one of the following conditions holds:

$$\bullet e_1 + e_2 \not\equiv L \pmod{\lambda}$$

$$e_1 \not\equiv e_2 \pmod{\tau}.$$

$$\mathbf{8} \ \mathbf{e}_1 \equiv \mathbf{e}_2 \ (\mathsf{mod} \ \rho).$$

• Proof: With our choice of evaluation set and twist vector, the Hermitian inner product can be factorized:

$$\left(\sum_{i=0}^{\lambda-1}\zeta_{\lambda}^{i(e_1+qe_2-L)}\right)\left(\sum_{j=0}^{\tau-1}\zeta_{\tau}^{j(e_1+qe_2)}\right)\left(\sum_{k=0}^{\sigma-1}s_k\zeta_{\rho}^{k(e_1+qe_2)}\right)$$

Main Theorem

Theorem 14 (C.-Hernando-McGuire)

Let $q \ge 3$ be a prime power. Let $\lambda > 1$ be a divisor of q - 1, and let $\tau > 1$ and $\rho > 1$ be divisors of q + 1. Assume that $gcd(\lambda, \tau) = 1$. Let $\kappa = gcd(\lambda, \rho) \cdot gcd(\tau, \rho)$ and assume that $\frac{\rho}{\kappa} \ge 2$. Let σ be any integer with $\frac{\rho}{\kappa} \ge \sigma \ge 2$. Let $n = \lambda \tau \sigma$. Let T be chosen according to this table:

Conditions	Т
λ even	$\frac{\lambda+4\tau}{2}$
λ odd, and either $\lambda < au$,	$\lambda + \tau$
au even or $ ho=2$	
$\lambda \text{ odd, } \lambda > au, au \text{ odd, } ho eq 2$	$\frac{\lambda+3\tau}{2}$

Then for any d with $2 \le d \le T$ there exists a $[[n, n-2d+2, d]]_q$ quantum MDS code.

Oisin Campion (UCD)

New Families of MDS Codes

Corollary 15 (C.-Hernando-McGuire)

Let $q \equiv 3 \pmod{8}$, q > 3. Then for any $2 \le d \le \frac{5q+1}{8}$, there exists a $[[\frac{3(q^2-1)}{8}, k, d]]_q$ quantum MDS code.

Proof.

Choose $\lambda = \frac{q-1}{2}$, $\tau = \frac{q+1}{4}$, $\rho = 4$. Then $\kappa = 1$, so we choose $\sigma = 3$. Then we are in case 3, and so $T = (\lambda + 3\tau)/2$.

• For example, when q = 11 we get a $[[45, 33, 7]]_{11}$ MDS code.

New Families of MDS Codes

Corollary 16 (C.-Hernando-McGuire)

Let q be odd. Let m be a divisor of $\frac{q+1}{2}$ such that $1 \le m < \frac{q+1}{2}$ and $\frac{q+1}{2m}$ is even. Let $2 \le \sigma \le 2m$. Then for any $2 \le d \le \frac{q-1}{2} + \frac{q+1}{2m}$, there exists a $[[\sigma \frac{(q^2-1)}{4m}, k, d]]_q$ quantum MDS code.

• For example, consider q = 83, m = 7. This results in a $[[492, 400, 47]]_{83}$ MDS code.

New Families of MDS Codes

Corollary 16 (C.-Hernando-McGuire)

Let q be odd. Let m be a divisor of $\frac{q+1}{2}$ such that $1 \le m < \frac{q+1}{2}$ and $\frac{q+1}{2m}$ is even. Let $2 \le \sigma \le 2m$. Then for any $2 \le d \le \frac{q-1}{2} + \frac{q+1}{2m}$, there exists a $[[\sigma \frac{(q^2-1)}{4m}, k, d]]_q$ quantum MDS code.

• For example, consider *q* = 83, *m* = 7. This results in a [[492, 400, 47]]₈₃ MDS code.

Corollary 17 (C.-Hernando-McGuire)

Let $q \equiv 5 \pmod{8}$. Let $m \mid \frac{q+1}{2}, 1 < m < \frac{q+1}{2}$. Let $2 \le \sigma \le m$. Then for any $2 \le d \le \frac{q-1}{2} + \frac{q+1}{m}$, there exists a $[[\sigma \frac{(q^2-1)}{2m}, k, d]]_q$ quantum MDS code.

• For example, we can get a [[280, 234, 24]]₂₉ MDS code.

Codes for q even

- We can apply our construction to q = 8 and get a $[[42, 42 2d + 2, d]]_8$ MDS code for $2 \le d \le 8$.
- We can use Theorem 21 from (Ball, Moreno, Simoens) and a trace-orthogonal basis to turn these into binary codes; we get a[[3(42), 3(42 2d + 2), d]]₂ code for 2 ≤ d ≤ 8.
- Explicitly, we have a
 - $[[126, 114, 3]]_2, [[126, 108, 4]]_2$, not best known.
 - [[126, 102, 5]]₂, [[126, 96, 6]]₂, [[126, 90, 7]]₂, [[126, 84, 8]]₂ all match best known, according to codetables.de
- Our paper: "New Quantum MDS Codes with Flexible Parameters from Hermitian Self-Orthogonal GRS Codes" https://arxiv.org/abs/2501.17010