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Hadamard matrices

Some objects of interest

(in arrays “−” represents “−1”)

A =

(
1 −
1 1

)
; B =


1 − − −
1 1 − 1
1 1 1 −
1 − 1 1

 =


1 − − −
1 1 − 1
1 1 1 −
1 − 1 1

 ;

C =


1 − − 1
1 1 − −
1 − 1 −
1 1 1 1

 ; D =


− 1 1 1
1 − 1 1
1 1 − 1
1 1 1 −

 ;


A −B −C −D
B A −D C
C D A −B
D −C B A

 ;


1 λ −1 λ
λ 1 λ −1
−1 λ 1 λ
λ −1 λ 1


Each in whole or in part arises via a development function.
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Structure: circulant, group development, and ...?

Circulant matrices are “developed over” the cyclic group Cn.

We also find analogous development over other groups such as

EA(4):


A B C D
B A D C
C D A B
D C B A

. There is also mysterious “other”

group structure like the quaternion (Williamson) array shown,
not strictly“group developed”, yet there is a group—the group
of quaternions Q of order 8—whose structure it reflects.

In the original Williamson Construction we insert symmetric
circulant matrices A,B,C ,D, yielding matrices “developed”
over groups Cn × Q—but of half the size of the group (8n).
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Group development won’t solve the general case

While circulants appear in many constructions for Hadamard
matrices

the only known examples of circulant H(n) are for
n = 1, 4. Ryser (circa 1960) conjectured there are no others.

Circulant and group-developed matrices suffer one fundamental
weakness: They have constant row/column sum.

Suppose HH⊤ = nI where H ∈ Rn×n has constant row/column
sum r . That is, He = H⊤e = re where e is a column of ones.

So HH⊤e = H(re) = rHe = r2e = (nI )e = ne.

Thus, n = r2. Hadamard matrices may be group developed only
if the order is a perfect square.

But ... what is this “other way” of developing over groups?
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Signed groups and cocycles
About the same time, somewhat prior to 1990

Warwick de Launey: “useful” assumptions about indexing
functions for symbolic arrays used for orthogonal matrices.

Finds algebraic conditions he later learns [via K. Horadam]
correspond to the cocycle equation known in cohomology

R. Craigen: “backwards compiles” existing types of arrays to
infer generalizations of group development.

Finds a simple group variant with an additional assumption
about “sign” that appears to capture what is needed.

Both concepts have “mathematical legs”, not exhausted today.

Same essential mathematical structure—though initially
developed independently and subsequent work not harmonized

Very different results perhaps because two completely different
formulations lead to different insights.
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Some comments/opinions on Hadamardish notation

▶ Retain historical “H(n)” ↔ “Hadamard matrix of order n”

(H ∈ {±1}n s.t. HH⊤ = nI ).

▶ Krakow group is not wrong use “Hadamard matrix” ↔H ∈ Un×n

s.t. HH∗ = nI , where U = {µ ∈ C : |µ| = 1}—exactly
Hadamard’s subject in 1893—writing H(n) for the set of these.

▶ Personal (minority) preference “UH(n)” ↔ “complex Hadamard
matrix of order n”—that is, a member of H(n).

▶ Once upon a time CH(n), “complex Hadamard matrix of order
n” referred to H ∈ {±1,±i}n×n satisfying HH∗ = nI but this is
conflicting/anachronistic and should be consigned to history.

▶ For finite group G , GH(n,G ) ↔ “H ∈ G n×n satisfying HH∗ = nI
with scalar arithmetic over the group ring Z[G ], reduced
(mod ΣG )( ΣG is the sum of the elements of G )”.

▶ If all entries of a UH(n) are kth roots of unity, we say that it is a
Butson Hadamard matrix over the kth roots of unity, denoted
BH(n, k) (de Launey argued for GH(n, k)). k is the phase. So
retired “CH(n)” is now four-phase UH(n), GH(n, 4) or BH(n, 4).
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▶ Signed group matrices
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Defining signed groups

A signed group S is a multiplicative group G having a
distinguished central involution, denoted “−1”= −1S .

For a ∈ S write −a = (−1)a. Therefore (−a)(−b) = ab (& etc)

EG: The quaternion group Q of order 8 is often written this way

SQ = ⟨x , y | x2 = −1, y2 = −1, yx = −xy⟩ = {±1,±x ,±y ,±xy}

or, more popularly, {±1,±i ,±j ,±k}

We say that G is the underlying group of signed group S .

Why it is useful to distinguish between S and G?

Consider what it means for two signed groups to be “the same”
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When are two signed groups essentially the same?

Let S ,T be signed groups

.

Map φ : S → T is a (signed group) homomorphism if

1. φ is a group homomorphism; and

2. φ(−1) = −1. (i.e., ϕ(−1S) = −1T )

Homomorphism φ is an isomorphism if it is a bijection, and
S ,T are isomorphic signed groups.

It is possible for two non-isomorphic signed groups to have the
same (isomorphic) underlying group(s)!

EG: Let G = ⟨a, b | a2 = b4 = 1⟩ = ⟨a⟩ × ⟨b⟩ (= C2 × C4)

Taking a = −1 gives signed group
S1 = ⟨b | b4 = 1⟩ = {±1,±b,±b2,±b3}

Taking b2 = −1 gives
S2 = ⟨a, b | a2 = 1, b2 = −1, ab = ba⟩ = {±1,±a,±b,±ab}
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Order and the projection group

The projection group of signed group S with underlying group
G is P = G/⟨−1⟩.

If |G | = 2n then |P| = n.

The order of a signed group S is the order of its projection
group P (and therefore half its own cardinality)

EG: Underlying group G = ⟨a, b | a2 = b4 = 1⟩ = C2 × C4 of
order 8 supports signed groups
S1 = ⟨b | b4 = 1⟩ and S2 = ⟨a, b | a2 = 1, b2 = −1, ab = ba⟩
of order 4 with respective projection groups
P1 = C4 and P2 = C2 × C2
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The group structure of G

G is a central extension of C2 = ⟨−1⟩ by P.

S “embodies” the (central) short exact sequence

1 → C2
ı→ G

π→ P → 1

Two apparently different perspectives on the above structure:

Cocycles The object of interest is the projection group P and its
relation (via a cocycle) to C2 (or another group in its
place); G is an artifact of their interaction.

SGs The fundemental object of interest is S , which is
isomorphic to G as a group; C2 isolates −1, the injection
map distinguishes a central involution; P is an artifact.
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The relationship to cocycles

If f : P × P → ⟨C ⟩ is a (normalized) cocycle (where C = ⟨−1⟩)

then we can form a group on the set G = P × C with operation

(x , a)(y , b) := (xy , f (x , y)ab)

It may be verified that G is indeed a group and (1P ,−1) is a
central involution. Casting G as a signed group S , P is the
projection group and the resulting sequence

1 → C → G → P → 1
is short, exact and central.

Signed group S embodies this machinery in a simple algebraic
vehicle which may be driven without “looking under the hood”.
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A question from Dane Flannery

(How) can signed groups be generalized to take care of
distinguished central subgroups bigger than ⟨−1⟩?
▶ It is evident from the start that a higher order central

element may be used in place of −1

, generalizing C from
⟨−1⟩ to an arbitrary cyclic group.

▶ This yields development functions for matrices whose
entries are roots of unity, such as BH(n, k)s.

▶ Similarly one may do the same when a central abelian
group N takes the place of C . Development functions
produce (0,N)-matrices.

▶ A nonabelian normal subgroup could stand in for C but I
think at this point the relation to cocycles might need to
be abandoned. Perhaps this will be useful for addressing
GH matrices over nonabelian groups?
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Menagerie of signed groups of order n < 4

n = 1 unique
Trivial signed group

S0 = ⟨−1⟩ = {1,−1}.

Underlying and projection groups: G ∼= C2; P ∼= {1}

n = 2 two cases
Cyclic signed group:

CS2 = ⟨x | x2 = 1⟩ = {±1,±x};G ∼= C2 × C2;P ∼= C2

Negacyclic signed group:

NS2 = ⟨x | x2 = −1⟩ = {±1,±x};G ∼= C4;P ∼= C2

n = 3 unique
Cyclic signed group:

CS3 = ⟨x | x3 = 1⟩ = {±1,±x ,±x2};G ≡ C2 × C3;P ∼= C3

(∼= negacyclic signed group of order 3, NC3 = ⟨−x⟩)
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Elementary abelian signed group of order 4:
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SQ = ⟨x , y | x2 = −1, y2 = −1, yx = −xy⟩ = {±1,±x ,±y ,±xy}
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The signed group ring R[S ]

P = {x1, . . . , xn}: a transversal for ⟨−1⟩ in S

.

R: any ring with unity and characteristic ̸= 2.

The signed group ring of S relative to R:

R[S ] := {a1x1 + · · ·+ anxn : a1, . . . , an ∈ R}

▶ addition formally extends addition in R to these expressions

▶ multiplication formally extends products of both R and S

▶ −1R is identified with −1S (so, also, are 1R and 1S) and
written −1 = −1R = −1S = (−1S) · 1R = 1S · (−1R)

▶ If n is the order of S then R[S ] has dimension n (with basis
P) whereas the group ring R[G ] has dimension 2n (and
basis {±x1, . . . ,±xn}

EGs: Z[NS2] = {a+ bx | a, b ∈ Z; x2 = −1} = Gaussian integers

R[SQ ] = {a+ bx + cy + dxy | x2 = y2 = −1} = Quaternions
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Monomial {0,±1} representations of signed groups

A degree m representation of signed group S is a
homomorphism π : S → Cm×m such that ϕ(−1S) = −Im.

We especially desire real monomial representations (remreps)
π : S → signed permutation matrices,

to generalize (ordinary) group development of matrices.

EGs: For (SC =)NS2 = ⟨x | x2 = −1⟩, take π(x) =

(
0 −
1 0

)
For SQ = ⟨x , y | x2 = −1, y2 = −1, yx = −xy⟩ take

π(x) =


0 − 0 0
1 0 0 0
0 0 0 −
0 0 1 0

 , π(y) =


0 0 − 0
0 0 0 1
1 0 0 0
0 − 0 0


(Both representations should be familiar!)
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The (right-)regular representation

Analogous to the regular representation of groups

. For signed
group S with P = {x1, . . . , xn} (with x1 = 1) proceed as follows:

Let D be the P × P division table
÷ x1 · · · xn
x1 x1x

−1
1 · · · x1x

−1
n

...
...

. . .
...

xn xnx
−1
1 · · · xnx

−1
n

 . i.e., D =

 x1x
−1
1 · · · x1x

−1
n

...
. . .

...

xnx
−1
1 · · · xnx

−1
n


In each row/column ±xi appears (once!) for each i .
So there exist permutation matrices P1, . . . ,Pn such that

D = x1P1 + · · ·+ xnPn

(With matrix arithmetic over the ring of scalars Z[S ]).
Claim: π : S → {0,±1}n×n where π(xi ) = Pi is a (signed group)
homomorphism (injection).
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Proof of claim

We have D = x1P1 + · · ·+ xnPn

, π(xi ) = Pi and D = VV ∗

where V =


x1
x2
...
xn

and V ∗ =
(
x1

−1 x2
−1 · · · xn

−1
)
. Now,

D2 = (x1P1 + · · ·+ xnPn)
2 =

n∑
i ,j=1

xixjPiPj =
∑
k

xk
∑

xixj=eijxk

eijPiPj

= (VV ∗)2 = V (V ∗V )V ∗ = V (x−1
1 x1 + · · ·+ x−1

n xn)V
∗ = nVV ∗

= n
∑
k

xkPk =
∑
k

(nxk)Pk

By direct counting, xixj = eijxk ⇒ PiPj = eijPk .

That is, π(xi )π(xj) = π(xixj), and the result follows
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The standard involution
and signed group matrix conjugates

On Z[S ] define the (standard) involution (
∑

aixi )
∗ :=

∑
aix

−1
i

EG: the involution on Z[SC] corresponds to complex conjugation
of Gaussian integers.

EG: the involution on R[SQ ] corresponds to the usual
conjugation of quaternions

For matrices M = [mij ] ∈ Z[S ]h×k define the conjugate

M∗ := [m∗
ji ] ∈ Z[S ]k×h

EG: For SC-or-SQ-matrices conjugation corresponds to,
respectively, the Hermitian adjoint and the corresponding
matrix operation for quaternion matrices.
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Signed group development of matrices

Linearly extending the regular representation
π(R[S ]) ⊂ Rn×n—a matrix ring isomorphic to π(R[S ]).

Matrices in π(R[S ]) are developed over signed group S .

For real monomial matrix P, P⊤ = P−1 (easy).

It follows that, for α ∈ R[S ], π(α∗) = π(α)⊤.

If A = π(α) then AA⊤ = nI ⇔ αα∗ = n. (Gram products)

(±1)-matrices developed over a signed group are not subject to
the order constraints of the group-developed case.

EG: Williamson’s 50-year old construction gives Hadamard
matrices of all orders 4q, q ≤ 33, which are seen to be
developed over SQ × Cq.



Signed group development of matrices

Linearly extending the regular representation
π(R[S ]) ⊂ Rn×n—a matrix ring isomorphic to π(R[S ]).

Matrices in π(R[S ]) are developed over signed group S .

For real monomial matrix P, P⊤ = P−1 (easy).

It follows that, for α ∈ R[S ], π(α∗) = π(α)⊤.

If A = π(α) then AA⊤ = nI ⇔ αα∗ = n. (Gram products)

(±1)-matrices developed over a signed group are not subject to
the order constraints of the group-developed case.

EG: Williamson’s 50-year old construction gives Hadamard
matrices of all orders 4q, q ≤ 33, which are seen to be
developed over SQ × Cq.



Signed group development of matrices

Linearly extending the regular representation
π(R[S ]) ⊂ Rn×n—a matrix ring isomorphic to π(R[S ]).

Matrices in π(R[S ]) are developed over signed group S .

For real monomial matrix P, P⊤ = P−1 (easy).

It follows that, for α ∈ R[S ], π(α∗) = π(α)⊤

.

If A = π(α) then AA⊤ = nI ⇔ αα∗ = n. (Gram products)

(±1)-matrices developed over a signed group are not subject to
the order constraints of the group-developed case.

EG: Williamson’s 50-year old construction gives Hadamard
matrices of all orders 4q, q ≤ 33, which are seen to be
developed over SQ × Cq.



Signed group development of matrices

Linearly extending the regular representation
π(R[S ]) ⊂ Rn×n—a matrix ring isomorphic to π(R[S ]).

Matrices in π(R[S ]) are developed over signed group S .

For real monomial matrix P, P⊤ = P−1 (easy).

It follows that, for α ∈ R[S ], π(α∗) = π(α)⊤.

If A = π(α) then

AA⊤ = nI ⇔ αα∗ = n. (Gram products)

(±1)-matrices developed over a signed group are not subject to
the order constraints of the group-developed case.

EG: Williamson’s 50-year old construction gives Hadamard
matrices of all orders 4q, q ≤ 33, which are seen to be
developed over SQ × Cq.



Signed group development of matrices

Linearly extending the regular representation
π(R[S ]) ⊂ Rn×n—a matrix ring isomorphic to π(R[S ]).

Matrices in π(R[S ]) are developed over signed group S .

For real monomial matrix P, P⊤ = P−1 (easy).

It follows that, for α ∈ R[S ], π(α∗) = π(α)⊤.

If A = π(α) then AA⊤ = nI ⇔ αα∗ = n.

(Gram products)

(±1)-matrices developed over a signed group are not subject to
the order constraints of the group-developed case.

EG: Williamson’s 50-year old construction gives Hadamard
matrices of all orders 4q, q ≤ 33, which are seen to be
developed over SQ × Cq.



Signed group development of matrices

Linearly extending the regular representation
π(R[S ]) ⊂ Rn×n—a matrix ring isomorphic to π(R[S ]).

Matrices in π(R[S ]) are developed over signed group S .

For real monomial matrix P, P⊤ = P−1 (easy).

It follows that, for α ∈ R[S ], π(α∗) = π(α)⊤.

If A = π(α) then AA⊤ = nI ⇔ αα∗ = n. (Gram products)

(±1)-matrices developed over a signed group are not subject to
the order constraints of the group-developed case.

EG: Williamson’s 50-year old construction gives Hadamard
matrices of all orders 4q, q ≤ 33, which are seen to be
developed over SQ × Cq.



Signed group development of matrices

Linearly extending the regular representation
π(R[S ]) ⊂ Rn×n—a matrix ring isomorphic to π(R[S ]).

Matrices in π(R[S ]) are developed over signed group S .

For real monomial matrix P, P⊤ = P−1 (easy).

It follows that, for α ∈ R[S ], π(α∗) = π(α)⊤.

If A = π(α) then AA⊤ = nI ⇔ αα∗ = n. (Gram products)

(±1)-matrices developed over a signed group are not subject to
the order constraints of the group-developed case.

EG: Williamson’s 50-year old construction gives Hadamard
matrices of all orders 4q, q ≤ 33, which are seen to be
developed over SQ × Cq.



Signed group development of matrices

Linearly extending the regular representation
π(R[S ]) ⊂ Rn×n—a matrix ring isomorphic to π(R[S ]).

Matrices in π(R[S ]) are developed over signed group S .

For real monomial matrix P, P⊤ = P−1 (easy).

It follows that, for α ∈ R[S ], π(α∗) = π(α)⊤.

If A = π(α) then AA⊤ = nI ⇔ αα∗ = n. (Gram products)

(±1)-matrices developed over a signed group are not subject to
the order constraints of the group-developed case.

EG: Williamson’s 50-year old construction gives Hadamard
matrices of all orders 4q, q ≤ 33, which are seen to be
developed over SQ × Cq.



Forms of 4× 4 matrices developed over signed groups

In general, the set of matrices M ∈ Rn×n developed over a
signed group of order n is

an n-dimensional subspace. Using
A,B,C ,D for the coefficients of x1, . . . , x4 in our construction:

S=CS4:
A B C D
D A B C
C D A B
B C D A


S=NS4:

A −B −C −D
D A −B −C
C D A −B
B C D A


S=EAS4:

A B C D
B A D C
C D A B
D C B A


S=SAS4:

A −B −C D
B A −D C
C D A −B
D −C B A


S=SD4

A B C −D
B A D −C
C −D A B
D −C B A


S=SQ

A −B −C −D
B A −D C
C D A B
D −C B A


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Cocyclic development of matrices

A map f : G × G → C is a cocycle

(to C ) if for all x , y , z ∈ G ,

f (x , y)f (xy , z) = f (y , z)f (x , yz)

(The cocycle equation)

de Launey/Flannery/Horadam (etc):

Index the rows of M = [mx ,y ]x ,y∈G ∈ R |G |×|G | by the elements of
G . We say that M is cocyclic if there exists a function
g : G → R and a cocycle f such that, for all x , y ∈ G ,

mx ,y = f (x , y)g(xy)

(The value of mx ,y is g(xy) (depends only on xy) times the
value of a cocycle.) For the trivial cocycle f : G × G → 1 this
reduces to group development over group G .
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Cocycles and signed group development

Suppose S is a signed group with projection group
P = {x1, . . . , xn}.

Write the elements of S as ±x1, . . . ,±xn in
the obvious way.

If, in P, xixj = xk then, in S , xixj = eijxk where eij ∈ {±1}.

Define f : P × P → C2 = ⟨−1⟩ by f (xi , xj) = eij .

The cocycle equation gives the condition necessary for the
above construction to give associative operation on S .
Therefore, f is a cocycle. Conversely, any cocycle in the above
construction makes S a signed group!

If M ∈ Rn×n is developed over S , M = [mxi ,xj ] =
∑

akPk .

Thus, mxi ,xj = f (xi , x
−1
j )g(xix

−1
j ) where g(xix

−1
j ) = g(xk) = ak .

So signed group = cocyclic development (+ permuting columns)
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Signed group matrices

Besides developing matrices over signed groups

, we consider
matrices whose entries come from a signed group S—and
perform algebra over Z[S ].

Suppose H ∈ Sn×n and that HH∗ = nI . We say that H is a
signed group Hadamard matrix over S , and write SH(n,S).

EG: Let S = NS2 =< x | x2 = −1 >. Take H =

(
1 x
x 1

)
. Then

HH∗ =

(
1 x
x 1

)(
1 −x
−x 1

)
=

(
2 0
0 2

)
= 2I

So H = SH(2,NS2).
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SH(n, S) can give larger Hadamard matrices

To obtain a Hadamard matrix from H:

(a) Apply a remrep of
some order m to every entry; (b) multiply every resulting block
by a Hadamard matrix of order m.
Continuing the previous example:

H =

(
1 x
x 1

)
→


1 0 0 −
0 1 1 0

0 − 1 0
1 0 0 1

 ·


1 − 0 0
1 1 0 0

0 0 1 −
0 0 1 1



=


1 − − −
1 1 1 −
− − 1 −
1 − 1 1

—a H(4).
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Circulant signed group Hadamard matrices always exist!

Theorem (Craigen, 1994): For any odd positive integer q,
there exists a circulant SH(2q,S) (for some signed group
S = S(q)).
In EVERY even order?? CIRCULANT? But ...Ryser ... ??

Devil in details: S depends on q; so, then, does the order of a
resulting Hadamard matrix. And the final structure will
definitely not be circulant.

S arises from a witch’s brew of ingredients needed to form the
matrix, “assembled” by picking a signed group to multiply the
parts by so they “behave right”.

S can be chose to have a remrep of degree a power of 2.
Consequently we obtain an asymptotic result...
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Asymptotic existence of Hadamard matrices

Theorem (Craigen, 1994): For any odd q ∈ Z+, there exists a
Hadamard matrix of order 2tq

, where t ≤ 2
5 log2 q.

... improving the first result of this type by Jennie Seberry, ≈
1995 where t ≈ 2 log2 q.

The bound has been further improved (Livinskyi, 2011) using
the signed group approach.

At least 3 subsequent authors have produced extensions of the
method giving even better asymptotics or other asymptotic
results (EG for orthogonal designs).
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Further applications of signed group matrices

▶ Making Hadamard matrices from large weight Weighing
matrices

▶ Maps between classes of generalized Hadamard matrices

▶ Making possible sequence constructions for Hadamard
matrices that involve complex sequences.

▶ Expanding the possibilities for various tensor constructions
for orthogonal matrices.

▶ 2× 2 block conjecture for Hadamard matrices:

Every H(2n) can be partitioned
into rank two 2× 2 submatrices.
Such a partition produces a SH(n,DS4) (Dihedral
Hadamard matrix). It’s not true that every H(2n) can be
obtained by “inflating” a BH(n, 4). But it may be true that
every H(2n) can be obtained by “inflating” a SH(n,DS4).

▶ Etc.
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