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Most of the talk is based on the results presented in the paper

1 D. Crnković, K. Ishizuka, H. Kharaghani, S. Suda, A. Švob,
Constructions of self-orthogonal and LCD subspace codes,
preprint, arXiv:2407.05695.

2 D. Crnković, A. Švob, LCD subspace codes, Des. Codes
Cryptogr. 91 (2023), 3215–3226,
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Let Fq be the finite field of order q. A linear code of length n is
a subspace of the vector space Fn

q. A k-dimensional subspace of Fn
q

is called a linear [n, k] code over Fq.

For x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Fn
q the number

d(x , y) = |{i |1 ≤ i ≤ n, xi ̸= yi}| is called a Hamming distance.
The minimum distance of a code C is
d = min{d(x , y) |x , y ∈ C , x ̸= y}.

A linear [n, k , d ]q code is a linear [n, k] code over Fq with the
minimum distance d .

An [n, k , d ] linear code can correct up to
⌊
d−1
2

⌋
errors.
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The dual code C⊥ is the orthogonal complement under the
standard inner product (, ).

A linear code C is called self-orthogonal if C ⊆ C⊥ and self-dual
if C = C⊥.

A linear code C over Fq is called a Euclidean or classical linear
complementary dual code (shortly LCD code) if C ∩ C⊥ = {0}.
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Let G be a generator matrix for a q-ary linear code C . The code C
is self-orthogonal if and only if GG⊤ = O over the finite field Fq,
where O denotes the zero matrix.

An [n, k] code C is self-dual if and only if it is self-orthogonal and
k = n

2 .

There is many research dealing with self-orthogonal codes.
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LCD codes were introduced by Massey in 1992.

J. L. Massey, Linear codes with complementary duals,
Discrete Math. 106/107 (1992), 337–342.

Massey showed that that the nearest-codeword (or
maximum-likelihood) decoding problem for an LCD code C
reduces to a simpler problem: given a word in C⊥, find the nearest
codeword in C .
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Massey also showed that asymptotically good LCD codes exist and
that LCD codes provide an optimum linear coding solution for the
two-user binary adder channel.

The following characterization of LCD codes is also given by
Massey.

Let G be a generator matrix of a linear code C over a finite field.
Then C is an LCD code if and only if det(GG⊤) ̸= 0.
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LCD codes can be used to protect systems against side channel
attacks (SCA) and fault injection attacks (FIA).

It was shown by Sendrier in 2004 that LCD codes meet the
asymptotic Gilbert-Varshamov bound.

A multisecret-Sharing scheme based on LCD codes was introduced
in 2020 by A. Alahmadi et al.

In 2018 Carlet et al. showed that for q > 3, the existence of an
[n, k, d ]q linear code implies the existence of an [n, k , d ]q LCD
code.
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In 2000, Ahlswede, Cai, Li and Yeung introduced network coding.
A network is a directed graph which consists of source vertices,
inner vertices and sink vertices. The source vertices transmit
messages to the sink vertices through a channel of inner vertices.
A receiver sees the data packets and deduces from them the
messages that were originally intended for the sinks.

Mixing of data is allowed at the network vertices. A special case
arises when the packets are interpreted as vectors of symbols from
a finite field, and the mixing functions are linear transformations.
This is the case of linear network coding.
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In 2006, Ho, Médard, Kötter, Karger, Effros, Shi and Leong
demonstrated that the so-called multicast capacity of a network is
achieved, with high probability in a sufficiently large field, by a
random choice of local mixing functions. In that way, random
network coding was introduced.

Since the linear transformation by the channel of the transmitted
vectors is not known in advance by the transmitter or any of the
receivers, such a model is sometimes referred to as a
non-coherent transmission model.
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In 2008, in their seminal, paper Kötter and Kschischang considered
information transmission not via the transmitted vectors, but
rather by the vector space that they span. These types of codes
are called subspace codes.

Kötter and Kschischang proved that subspace codes are efficient
for transmission in networks and because of their applications in
error correction for random network coding they attract a wide
attention in recent research.
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A subspace code CS is a nonempty set of subspaces of Fn
q.

A subspace distance is given by

ds(U,W ) = dim(U +W )− dim(U ∩W ),

where U,W ≤ Fn
q. The minimum distance of CS is given by

d = min{dS(U,W )| U,W ∈ CS ,U ̸= W }.
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A subspace code CS in Fn
q is called an (n,#CS , d ;K )q subspace

code if the dimensions of the codewords of CS are contained in a
set K ⊆ {0, 1, 2, ..., n}.

In the case K = {k}, a subspace code CS is called a constant
dimension code with the parameters (n,#CS , d ; k)q.

Otherwise, i.e. if all codewords do not have the same dimension,
CS is called a mixed dimension code. Such subspace code is
denoted by (n,#CS , d)q.
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The injection distance, introduced in 2008 by Kötter,
Kschischang and Silva, is given as follows

dI (U,W ) = max{dim(U), dim(W )} − dim(U ∩W ).

If dim(U) = dim(W ), then dS(U,W ) = dI (U,W ). So, for
constant dimension codes dS = dI .

14 / 42
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An useful overview of subspace codes is given in

M. Greferath, M. O. Pavčević, N. Silberstein,
M. Vázquez-Castro (eds.), Network coding and subspace
designs, Signals and Communication Technology, Springer,
Cham, 2018.
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As an analog of the definition of an LCD linear code we introduce
the definition of an LCD subspace code.

Definition 1

Let Pq(n) be the set of all subspaces of Fn
q, and let CS ⊆ Pq(n) be

a subspace code. If Ci ∩ C⊥
j = {0}, for all Ci ,Cj ∈ CS , then CS is

called an LCD subspace code.

Each codeword of an LCD subspace code CS is an LCD code, since
for every Ci ∈ CS it holds that Ci ∩ C⊥

i = {0}.
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The following theorem generalizes the Massey’s characterization of
LCD codes.

Theorem 1 [DC, A. Švob, 2023]

Let C1 and C2 be [n, k] codes over the field Fq, and let G1 and G2

be their generator matrices, respectively. If the matrix G2G
⊤
1 is

nonsingular, then C2 ∩ C⊥
1 = C1 ∩ C⊥

2 = {0}.

We use this property for a construction of LCD subspace codes.
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In his paper from 1992 Massey gave a decoding method for LCD
codes. We propose a decoding algorithm for LCD subspace codes
based on the following property.

If X ≤ V such that X ∩ X⊥ = {0} and Y ≤ V , then

dim(X + Y ) = dim(X ) + dim(πX⊥(Y )).

Further, if Y = ⟨y1, . . . , yk⟩ then

πX⊥(Y ) = ⟨πX⊥(y1), . . . , πX⊥(yk)⟩ .
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Let C ≤ Fn
q. Using the formula given in the following theorem we

can calculate distances between C and the elements of an LCD
subspace code {C1, . . .Cm}.

Theorem 2 [DC, A. Švob, 2023]

Let {C1, . . .Cm} be an LCD subspace code and let C ≤ Fn
q. Then,

ds(Ci ,C ) = dim(Ci ) + 2 dim(πC⊥
i
(C ))− dim(C ). (1)
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Proof.

Since

dim(Ci + C ) = dim(Ci ) + dim(C )− dim(Ci ∩ C )

and
dim(Ci + C ) = dim(Ci ) + dim(πC⊥

i
(C )),

the following holds

dim(Ci ∩ C ) = dim(C )− dim(πC⊥
i
(C )).

Since
ds(Ci ,C ) = dim(Ci + C )− dim(Ci ∩ C ),

the formula (1) holds.
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Remark 1

Let CS = {C1, . . .Cm} be an LCD subspace code. Suppose that a
codeword (subspace) Ci = ⟨x i1, x i2, . . . , x ik⟩ is sent through a noisy
channel, and the subspace C = ⟨x1, x2, . . . , xk⟩ is received.
Calculate the distance between C and Ci ∈ CS as follows

ds(Ci ,C ) = dim(Ci ) + 2 dim(πC⊥
i
(C ))− dim(C ),

where

dim(πC⊥
i
(C )) = dim(⟨πC⊥

i
(x1), πC⊥

i
(x2), . . . , πC⊥

i
(xk)⟩).

Note that a minimum distance decoder for subspace codes chooses
the closest codeword to the received word with respect to the
subspace distance. If there is more than one closest codeword, the
decoder returns ”failure”.
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Let X be a finite set. An association scheme with d classes is a
pair (X ,R) such that

1 R = {R0,R1, . . . ,Rd} is a partition of X × X ,

2 R0 = △ = {(x , x)|x ∈ X},
3 Ri = R⊤

i (i.e. (x , y) ∈ Ri ⇒ (y , x) ∈ Ri ) for all
i ∈ {0, 1, . . . , d},

4 there are numbers pkij (the intersection numbers of the
scheme) such that for any pair (x , y) ∈ Rk the number of
z ∈ X such that (x , z) ∈ Ri and (z , y) ∈ Rj equals p

k
ij .

22 / 42
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The relations Ri , i ∈ {0, 1, . . . , d}, of an association scheme can
be described by the set of symmetric (0, 1)-adjacency matrices
A = {A0,A1, . . . ,Ad}, Ai = [aix ,y ] for i = 0, 1, . . . , d , where

aixy = 1 if (x , y) ∈ Ri . The matrices {A0,A1, . . . ,Ad} satisfy

AiAj =
d∑

k=0

pki ,jAk = AjAi . (2)

Each of the matrices Ai , i ∈ {1, 2, . . . , d}, represents a simple
graph Γi on the set of vertices X (vertices x and y are adjacent in
Γi if and only if (x , y) ∈ Ri ).
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Theorem 3 [DC, A. Švob, 2023]

Let A = {A0,A1, . . . ,Ad} be the set of n × n adjacency matrices
of a d-class association scheme (X ,R). Further, let
I = {i1, i2, . . . , is} ⊆ {0, 1, . . . , d} and p|pki ,j , for all
k ∈ {0, 1, . . . , d} and all i , j ∈ I , where p is a prime number. Then
the set of row spaces of the matrices Nx =

[
X αx In

]
,

αx ∈ Fq \ {0}, where X is a nonzero element of the linear space
spanned by the matrices Ai , i ∈ I , forms an LCD subspace code
CS ⊆ F2n

q , for some positive integer r after q = pr .

Proof.

For two matrices Nx and Ny , the matrix NxN
⊤
y = αxαy In is

nonsingular. Theorem 1 leads us to the conclusion that CS is an
LCD subspace code.
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D. Crnković: Hadamard 2025

Introduction Subspace codes LCD subspace codes Self-orthogonal subspace codes

Let us consider a square n × n real matrix A whose rows and
columns are indexed by elements of X = {1, 2, . . . , n}. Let
Π = {X1,X2, . . . ,Xt} be a partition of X . We partition the matrix
A according to Π as A = [Aij ], 1 ≤ i , j ≤ t.

If qij denotes the average row sum of Aij then the matrix Q = [qij ]
is called a quotient matrix of A.

25 / 42
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If the row sum of each block Aij is a constant then the partition Π
is called row equitable. Similarly, if the column sum of each block
Aij is a constant then the partition Π is called column equitable.

If Π is both row and column equitable, then Π is said to be
equitable.

If A is an adjacency matrix of a graph Γ and Π is an equitable
partition of A, then we say that Π is an equitable partition of the
graph Γ. An equitable (or regular) partition of an association
scheme (X ,R) with d classes is a partition of X which is equitable
with respect to each adjacency matrix of the graphs Γi ,
i ∈ {1, 2, . . . , d}, corresponding to the association scheme (X ,R).
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We use the following result by C. D. Godsil, W. J. Martin in order
to prove Theorem 5.

Theorem 4

Let Π be an equitable partition of a d-class association scheme
(X ,R) with t cells, and let Mi , i = 0, 1, . . . , d , denote the
quotient matrix of the graph Γi with respect to Π. Then

MiMj =
d∑

k=0

pki ,jMk = MjMi ,

where integers pkij are the intersection numbers of the scheme.
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Theorem 5 [DC, A. Švob, 2023]

Let Π be an equitable partition of a d-class association scheme
(X ,R) with t cells of the same length |X |

t , A = {A0,A1, . . . ,Ad}
be the set of adjacency matrices of (X ,R), and let Mi denote the
corresponding quotient matrix of Ai with respect to Π. Further, let
I = {i1, i2, . . . , is} ⊆ {0, 1, . . . , d} and p|pki ,j , for all
k ∈ {0, 1, . . . , d} and all i , j ∈ I , where p is a prime number. Then
the set of row spaces of the matrices Nx =

[
X αx It

]
,

αx ∈ Fq \ {0}, where X is a nonzero element of the linear space
spanned by the matrices Mi , i ∈ I , forms an LCD subspace code
CS ⊆ F2t

q , for some positive integer r after q = pr .

Theorem 5 is a generalization of Theorem 3.
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Example

A graph Γ with diameter d is called distance-regular if the
distance relations of Γ give the relations of a d-class association
scheme.

Theorem 5 can be applied to the association scheme corresponding
to a distance-regular graph. The action of an automorphism group
of a distance-regular graph on the set of vertices induces an
equitable partition of the association scheme.

For example, from a distance-regular graph having 200 vertices,
diameter d = 5, and the intersection array
{22, 21, 16, 6, 1; 1, 6, 16, 21, 22} known as Doubled Higman-Sims
graph, we constructed LCD subspace codes with parameters
(20, 16, 2; 10)2 and (40, 5, 2; 20)2.
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Two Hadamard matrices H and K of order n are called unbiased
if HK⊤ =

√
nL, where L is a Hadamard matrix of order n.

Unbiased Hadamard matrices exist only in square orders.

If {H1,H2, . . . ,Hm} is a set of mutually unbiased Hadamard
matrices of order 2n, then m ≤ n. That was shown in 2010 by W.
H. Holzmann, H. Kharaghani, W. Orrick.

By a result of P. J. Cameron and J. J. Seidel from 1973, this upper
bound is attained for Hadamard matrices of order 4k .
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Theorem 6 [DC, A. Švob, 2023]

Let {H1,H2, . . . ,Hm} be a set of mutually unbiased Hadamard
matrices of order n. Further, let p be a prime number dividing√
n and Fq be the finite field of order q, where q = pr . Then the

set of row spaces of the matrices Nx =
[
X αx In

]
,

αx ∈ Fq \ {0}, where X is a nonzero element of the linear space
spanned by the matrices Hi , i = 1, 2, . . . ,m, forms an LCD
subspace code CS ⊆ F2n

q .

Proof.

For matrices Hi and Hj , 1 ≤ i , j ≤ m, i ̸= j , iz holds that
HiH

⊤
i = HjH

⊤
j = nIn and HiH

⊤
j =

√
nL, where L is a Hadamard

matrix. Hence, for two matrices Nx and Ny , the matrix
NxN

⊤
y = αxαy In is a nonsingular matrix. CS is an LCD subspace

code.
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Weighing matrices are a generalization of Hadamard matrices. A
matrix W = [wij ] of order n and wij ∈ {−1, 0, 1} is called a
weighing matrix with weight k , if WW⊤ = kIn. If k = n, then
WW⊤ = nIn and the weighing matrix W is a Hadamard matrix.

Two weighing matrices W1 and W2 of order n and weight k are
called unbiased, if W1W

⊤
2 =

√
kW , where W is a weighing

matrix of order n and weight k.
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Theorem 7 [DC, A. Švob, 2023]

Let {W1,W2, . . . ,Wm} be a set of mutually unbiased weighing
matrices of order n and weight k . Further, let p be a prime
number dividing

√
k and Fq be the finite field of order q, for some

positive integer r after q = pr . Then the set of row spaces of the
matrices Nx =

[
X αx In

]
, αx ∈ Fq \ {0}, where X is a nonzero

element of the linear space spanned by the matrices Wi ,
i = 1, 2, . . . ,m, forms an LCD subspace code CS ⊆ F2n

q .
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Example

From mutually unbiased weighing matrices of order 16 and weight
nine {W1,W2,W3,K} constructed in

W. H. Holzmann, H. Kharaghani, W. Orrick, On the real
unbiased Hadamard matrices, in: R. A. Brualdi, S. Hedayat,
H. Kharaghani, G. B. Khosrovshahi, S. Shahriari (eds),
Combinatorics and graphs, Contemp. Math. 531, Amer.
Math. Soc., Providence, RI, 2010, 243–250,

by applying Theorem 7 we obtained LCD subspace code with
parameters (32, 81, 6; 16)3 and its subcode with parameters
(32, 27, 8; 16)3.
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An equitable partition of the set {W1,W2, . . . ,Wm} of mutually
unbiased weighing matrices is a partition Π = {C1,C2, . . . ,Ct} of
X which is equitable with respect to each of the matrices Wi ,
i = 1, 2, . . . ,m.

Let W1 and W2 be unbiased weighing matrices of order n and
weight k . Further, let Π be an equitable partition of the set
{W1,W2} with t cells of the same length n

t , and let C be the
characteristic matrix of Π. It holds that

M1M
⊤
2 = (C⊤C )−1C⊤CC⊤√kLC (C⊤C )−1.

35 / 42
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Hence, the following theorem holds.

Theorem 8 [DC, A. Švob, 2023]

Let S = {W1,W2, . . . ,Wm} be a set of mutually unbiased weighing
matrices of order n and weight k . Further, let Π be an equitable
partition of the set S , with t cells of the same length n

t , and let Mi

denote the corresponding quotient matrix of Wi with respect to Π,
i = 1, 2, . . . ,m. Let p be a prime number dividing

√
k . Then the

set of row spaces of the matrices Nx =
[
X αx It

]
,

αx ∈ Fq \ {0}, where X is a nonzero element of the linear space
spanned by the matrices M1,M2, . . . ,Mm, forms an LCD subspace
code CS ⊆ F2t

q , for some positive integer r after q = pr .

Clearly, Theorem 8 applies to Hadamard matrices.
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The following theorem generalizes the above given constructions.

Theorem 9 [DC, K. Ishizuka, H. Kharaghani, S. Suda, A.
Švob, 202?]

Let S = {M1,M2, . . . ,Mm} be a set of integer square matrices of
order n, and let p be a prime number dividing the entries of MiM

⊤
j

for any i , j ∈ {1, 2, . . . ,m}. Further, let Π be an equitable partition
of the set S , with t cells of the same length n

t , and let M ′
i denote

the corresponding quotient matrix of Mi with respect to Π,
i = 1, 2, . . . ,m.
Let Fq be the finite field of order q with characteristic p. Then the
set of row spaces of the matrices Nx =

[
X αx It

]
,

αx ∈ Fq \ {0}, where X is a nonzero element of the linear space
spanned by the matrices M ′

1,M
′
2, . . . ,M

′
m, forms an LCD subspace

code C ⊆ F2t
q .
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Using Theorem 9, we also constructed LCD subspace codes from

mutually quasi-unbiased weighing matrices,

orthogonal designs,

linked system of symmetric designs,

linked system of symmetric group divisible designs,

linked system of symmetric group divisible designs of type II,

Deza digraphs of type II,

and their quotient (orbit) matrices.
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Definition 2

Let Pq(n) be the set of all subspaces of Fn
q. The dual code of a

subspace code CS ⊆ Pq(n) is the set C⊥
S of all vector spaces in

Pq(n) that are orthogonal to each vector space in CS . If CS ⊆ C⊥
S ,

then CS is called a self-orthogonal subspace code.
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The following theorem is a counterpart to Theorem x.

Theorem 10 [DC, K. Ishizuka, H. Kharaghani, S. Suda, A.
Švob, 202?]

Let S = {M1,M2, . . . ,Mm} be a set of integer square matrices of
order n, and let p be a prime number dividing the entries of MiM

⊤
j

for any i , j ∈ {1, 2, . . . ,m}. Further, let Π be an equitable partition
of the set S , with t cells of the same length n

t , and let M ′
i denote

the corresponding quotient matrix of Mi with respect to Π,
i = 1, 2, . . . ,m.
Let Fq be the finite field of order q with characteristic p. Then the
set of row spaces of the nonzero elements of the linear space
spanned by the matrices M ′

1,M
′
2, . . . ,M

′
m forms a self-orthogonal

subspace code C ⊆ Ft
q.
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By applying Theorem 10, we constructed self-orthogonal subspace
codes from

association schemes,

mutually (quasi-)unbiased weighing matrices,

orthogonal designs,

linked system of symmetric designs,

linked system of symmetric group divisible designs,

linked system of symmetric group divisible designs of type II,

Deza digraphs of type II,

and their quotient (orbit) matrices.
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D. Crnković: Hadamard 2025

Introduction Subspace codes LCD subspace codes Self-orthogonal subspace codes

Happy birthday Rob!

Happy birthday Dane!
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