On 64-modular Hadamard matrices

Shalom Eliahou

Université du Littoral Côte d'Opale, Calais

Hadamard 2025

May 26-30, Sevilla

Modular Hadamard matrices

▷ Let $m \in \mathbb{N}$. An *m*-modular Hadamard matrix is a square matrix *A* of order *n*, with entries in {±1}, such that

 $AA^T \equiv nI_n \mod m$.

▷ Introduced by Marrero-Butson in 1972.

 \triangleright Case m = 0: true Hadamard matrices.

▷ Notation:

 $H_m(n) = \{m \text{-modular Hadamard matrices of order } n\}$

The *m*-modular Hadamard conjecture Let $m \in \mathbb{N}$. Then $H_m(n) \neq \emptyset$ for all $n \in 4\mathbb{N}$.

Solved cases (chronological)

- Method matrix m = 12: Marrero-Butson [1972]. (They only mention m = 6)
- m = 32 : E-Kervaire [2001, 2005]. (The current record)
- m = 5 : Lee-Szöllősi [2014].
- *m* = 7,11 : Kuperberg [2016]. Asymptotic solution.
 [E.g. for *m* = 7, solution for *n* ≥ 4.5 · 10³⁶]
- ▷ The case $m \in 4\mathbb{N}$ is closer to the classical one: for $n \ge 3$,

$$H_m(n) \neq \emptyset \implies n \in 4\mathbb{N}.$$

[Proof as in the classical case]

 \triangleright Remainder of the talk: some progress towards the case m = 64.

From modular to classical

Of course, $H_0(n) \subseteq H_m(n)$ for all m, n. Conversely:

Lemma

If m > n, then $H_m(n) = H_0(n)$.

Proof.

The dot product of two $\{\pm 1\}$ -rows of size *n* lies in [-n, n]. If it is 0 mod *m* where m > n, then it is 0.

Corollary

Hadamard's conjecture holds if and only if its m-modular version holds for infinitely many $m \in \mathbb{N}$.

▷ Hence a powerful incentive to tackle the *m*-modular version for *m* as large as possible. For instance, for $m \in \{2^k \mid k \ge 1\}$.

Autocorrelation coefficients

Let $A = (a_0, ..., a_{\ell-1})$ be a ± 1 sequence. For $0 \le k \le \ell - 1$, the *k*th-aperiodic correlation coefficient is

$$c_k(A) = \sum_{i=0}^{\ell-1-k} a_i a_{i+k}.$$

E.g. $c_0(A) = \sum a_i^2 = \ell$, $c_{\ell-1}(A) = a_0 a_{\ell-1}$. The Hall polynomial of A is

$$A(z)=\sum_{i=0}^{\ell-1}a_iz^i.$$

The $c_k(A)$ show up in this formula in $\mathbb{Z}[z, z^{-1}]$:

$$A(z)A(z^{-1}) = c_0(A) + \sum_{k=1}^{\ell-1} c_k(A)(z^k + z^{-k}).$$

Golay quadruples

▷ A **Golay quadruple** is a quadruple (A, B, C, D) of ±1 sequences of same length ℓ such that $c_k(A) + c_k(B) + c_k(C) + c_k(D) = 0$ for all $1 \le k \le \ell - 1$. Equivalently,

$$A(z)A(z^{-1}) + B(z)B(z^{-1}) + C(z)C(z^{-1}) + D(z)D(z^{-1}) = 4\ell.$$

▷ An *m*-modular Golay quadruple satisfies the weaker condition $c_k(A) + c_k(B) + c_k(C) + c_k(D) \equiv 0 \mod m$ for all $1 \le k \le \ell - 1$. Equivalently,

$$A(z)A(z^{-1}) + B(z)B(z^{-1}) + C(z)C(z^{-1}) + D(z)D(z^{-1}) \equiv 4\ell \mod m.$$

▷ Notation:

 $GQ_m(\ell)$ = set of *m*-modular Golay quadruples of length ℓ .

From Golay to Hadamard

Theorem

There is a map $GQ_m(\ell) \rightarrow H_m(4\ell)$.

Proof.

Let $(A, B, C, D) \in GQ_m(\ell)$. Still denote by A, B, C, D their respective circulant matrices. Put them in the Goethals-Seidel array:

$$M = GS(A, B, C, D) = \begin{pmatrix} A & -BR & -CR & -DR \\ BR & A & -D^{T}R & C^{T}R \\ CR & D^{T}R & A & -B^{T}R \\ DR & -C^{T}R & B^{T}R & A \end{pmatrix}$$

where *R* is the *anti-identity*. Then $MM^T \in H_m(4\ell)$.

The Golay-Turyn Conjecture [1951, 1974]

There is a Golay quadruple of any length $\ell \geq 1$.

▷ It implies Hadamard's conjecture.

▷ It implies Lagrange's four-square theorem:

Every $n \in \mathbb{N}$ is the sum of four squares of integers.

 $[\ln A(z)A(z^{-1}) + B(z)B(z^{-1}) + C(z)C(z^{-1}) + D(z)D(z^{-1}) = 4\ell, \text{ set } z = 1]$

The *m*-modular version

Let $m \in \mathbb{N}$. There is an *m*-modular Golay quadruple of any length $\ell \geq 1$.

 \triangleright Highest currently solved modulus: m = 16.

 \triangleright For m = 32: almost complete solution, only open for $\ell \equiv 13 \mod 16$.

Linear families of 64-modular GQ

Proposition

There are 64-modular Golay quadruples of length ℓ for:

- *ℓ even* mod 16
- $\ell \equiv 1,3,5 \mod 16$
- $\ell \equiv 7 \mod 32$
- The cases $\ell \equiv 1,5 \mod 16$ are from [E-Kervaire, 2005].
- The case $\ell \equiv 3 \mod 16$ is from [E, unpublished, 2022].
- The case ℓ ≡ 7 mod 32 is from [E, unpublished, May 2025]. It is especially interesting: for ℓ = 167 = 32 · 5 + 7,

 $4\ell = 668.$

Ingredients

 \triangleright Consider the involution ': $\{\pm 1\}^\ell \to \{\pm 1\}^\ell$ given by

$$s = (x_1, \ldots, x_\ell) \mapsto s' = (x_1, \ldots, x_{h-1}, -x_h, \ldots, -x_\ell)$$

where $h = \lceil \ell/2 \rceil$. A **special pair** is a pair of the form (s, s').

▷ A **special quadruple** is a quadruple of the form (s, s', t, t') with $s, t \in \{\pm 1\}^{\ell}$.

▷ We seek special Golay quadruples.

▷ A good comparator is $q \in \{\pm 1\}^{\ell}$ s.t. there exists $s \in \{\pm 1\}^{\ell}$ s.t.

(s,s',qs,(qs)')

is a Golay quadruple. (Or *m*-good in the *m*-modular case.)

Solutions

Here are 64-modular Golay quadruples (s, s', qs, (qs)') in run-length code. (For instance, ++--+ is coded as 231.)

▷ Length $\ell = 16k + 3$ [Summer 2022]:

$$q = (8k+1)2(8k-1)1$$

s = 4^k(211)^k212(112)^{k-1}134^{k-1}11

▷ Length $\ell = 32k + 7$ [May 2025]: q = (16k + 3)2(16k + 1)1 $s = 4^{k}(211)^{k}(15)4^{k-1}(211)^{k+1}4^{k-1}3(121)^{k}34^{k-1}3(121)^{k}$

▷ They yield 64-modular Hadamard matrices of order 4ℓ for all such ℓ , via the Goethals-Seidel array. In particular, for $668 = 4 \cdot 167$. Result:



Figure: A 64-modular Hadamard matrix A of order 668

Shalom Eliahou (ULCO)

Some features of A

 \triangleright Interesting ones: each row of AA^{T} , of length 668, counts

- 641 true zeros,
- hence 26 nonzero off-diagonal entries, all in the set

$$64 \cdot \{-1, 2, -3, 4, -4, -5, 6, -8\},\$$

with respective multiplicities (4, 6, 4, 4, 2, 2, 2, 2).

Less interesting ones:

- n^{0.79 n/2} < |det(A)| < n^{0.8 n/2}. But for a random binary matrix B of order n = 668, one often gets |det(B)| ~ n^{0.84 n/2}.
- A contains a partial Hadamard submatrix of order 64 × 668. But there is one of order 332 × 668... by concatenating Hadamard matrices of order 332 and 336. Is it the current record?

Upshot

 \triangleright For orders $n = 4\ell$ with ℓ odd, the 64-modular Hadamard conjecture is

- settled for $\ell \equiv 1, 3, 5 \mod{16}$ and $\ell \equiv 7 \mod{32}$
- open for $\ell \equiv 9, 11, 13, 15 \mod{16}$ and $\ell \equiv 23 \mod{32}$

▷ In Hadamard's conjecture, the currently open cases below 1000 are 668,716,892.

▷ In the 64-modular case, only 892 remains open in this range. Indeed,

 $668 = 4 \cdot 167$ and $167 \equiv 7 \mod 32$, $716 = 4 \cdot 179$ and $179 \equiv 3 \mod 16$.

Thank you for your attention!