On 64-modular Hadamard matrices

Shalom Eliahou

Université du Littoral Côte d'Opale, Calais

Hadamard 2025

May 26-30, Sevilla

Modular Hadamard matrices

⊳ Let $m \in \mathbb{N}$. An m-modular Hadamard matrix is a square matrix A of order n, with entries in $\{\pm 1\}$, such that

$$AA^T \equiv nI_n \mod m$$
.

- ⊳ Introduced by Marrero-Butson in 1972.
- \triangleright Case m = 0: true Hadamard matrices.
- ▷ Notation:

 $H_m(n) = \{m - \text{modular Hadamard matrices of order } n\}$

The *m*-modular Hadamard conjecture

Let $m \in \mathbb{N}$. Then $H_m(n) \neq \emptyset$ for all $n \in 4\mathbb{N}$.

Solved cases (chronological)

- m = 5 : Lee-Szöllősi [2014].
- m = 7,11: Kuperberg [2016]. Asymptotic solution. [E.g. for m = 7, solution for $n \ge 4.5 \cdot 10^{36}$]
- \triangleright The case $m \in 4\mathbb{N}$ is closer to the classical one: for n > 3,

$$H_m(n) \neq \emptyset \implies n \in 4\mathbb{N}.$$

[Proof as in the classical case]

 \triangleright Remainder of the talk: some progress towards the case m = 64.

From modular to classical

Of course, $H_0(n) \subseteq H_m(n)$ for all m, n. Conversely:

Lemma

If m > n, then $H_m(n) = H_0(n)$.

Proof.

The dot product of two $\{\pm 1\}$ -rows of size n lies in [-n, n]. If it is 0 mod m where m > n, then it is 0.

Corollary

Hadamard's conjecture holds if and only if its m-modular version holds for infinitely many $m \in \mathbb{N}$.

⊳ Hence a powerful incentive to tackle the *m*-modular version for *m* as large as possible. For instance, for $m \in \{2^k \mid k \ge 1\}$.

Autocorrelation coefficients

Let $A=(a_0,\ldots,a_{\ell-1})$ be a ± 1 sequence. For $0 \le k \le \ell-1$, the kth-aperiodic correlation coefficient is

$$c_k(A) = \sum_{i=0}^{\ell-1-k} a_i a_{i+k}.$$

E.g. $c_0(A) = \sum a_i^2 = \ell$, $c_{\ell-1}(A) = a_0 a_{\ell-1}$. The Hall polynomial of A is

$$A(z) = \sum_{i=0}^{\ell-1} a_i z^i.$$

The $c_k(A)$ show up in this formula in $\mathbb{Z}[z,z^{-1}]$:

$$A(z)A(z^{-1}) = c_0(A) + \sum_{k=1}^{\ell-1} c_k(A)(z^k + z^{-k}).$$

Golay quadruples

 \triangleright A **Golay quadruple** is a quadruple (A,B,C,D) of ± 1 sequences of same length ℓ such that $c_k(A) + c_k(B) + c_k(C) + c_k(D) = 0$ for all $1 \le k \le \ell - 1$. Equivalently,

$$A(z)A(z^{-1}) + B(z)B(z^{-1}) + C(z)C(z^{-1}) + D(z)D(z^{-1}) = 4\ell.$$

 \triangleright An *m*-modular Golay quadruple satisfies the weaker condition $c_k(A) + c_k(B) + c_k(C) + c_k(D) \equiv 0 \mod m$ for all $1 \le k \le \ell - 1$. Equivalently.

$$A(z)A(z^{-1})+B(z)B(z^{-1})+C(z)C(z^{-1})+D(z)D(z^{-1})\equiv 4\ell \mod m.$$

▶ Notation:

 $GQ_m(\ell)$ = set of *m*-modular Golay quadruples of length ℓ .

From Golay to Hadamard

Theorem

There is a map $GQ_m(\ell) \to H_m(4\ell)$.

Proof.

Let $(A, B, C, D) \in GQ_m(\ell)$. Still denote by A, B, C, D their respective circulant matrices. Put them in the Goethals-Seidel array:

$$M = GS(A, B, C, D) = \begin{pmatrix} A & -BR & -CR & -DR \\ BR & A & -D^TR & C^TR \\ CR & D^TR & A & -B^TR \\ DR & -C^TR & B^TR & A \end{pmatrix}$$

where R is the anti-identity. Then $MM^T \in H_m(4\ell)$.

The Golay-Turyn Conjecture [1951, 1974]

There is a Golay quadruple of any length $\ell \geq 1$.

- ⊳ It implies Hadamard's conjecture.
- ▷ It implies Lagrange's four-square theorem:

Every $n \in \mathbb{N}$ is the sum of four squares of integers.

$$[\ln A(z)A(z^{-1}) + B(z)B(z^{-1}) + C(z)C(z^{-1}) + D(z)D(z^{-1}) = 4\ell, \text{ set } z = 1]$$

The *m*-modular version

Let $m \in \mathbb{N}$. There is an m-modular Golay quadruple of any length $\ell \geq 1$.

- \triangleright Highest currently solved modulus: m = 16.
- ⊳ For m = 32: almost complete solution, only open for $\ell \equiv 13 \mod 16$.

Linear families of 64-modular GQ

Proposition

There are 64-modular Golay quadruples of length ℓ for:

- ℓ even mod 16
- $\ell \equiv 1,3,5 \mod 16$
- $\ell \equiv 7 \mod 32$
- The cases $\ell \equiv 1.5 \mod 16$ are from [E-Kervaire, 2005].
- The case $\ell \equiv 3 \mod 16$ is from [E, unpublished, 2022].
- The case $\ell \equiv 7 \mod 32$ is from [E, unpublished, May 2025]. It is especially interesting: for $\ell = 167 = 32 \cdot 5 + 7$,

$$4\ell = 668$$
.

Ingredients

ho Consider the involution $'\colon\{\pm 1\}^\ell \to \{\pm 1\}^\ell$ given by

$$s = (x_1, \ldots, x_\ell) \mapsto s' = (x_1, \ldots, x_h, -x_{h+1}, \ldots, -x_\ell)$$

where $h = \lceil \ell/2 \rceil$. A **special pair** is a pair of the form (s, s').

- ▷ A **special quadruple** is a quadruple of the form (s, s', t, t') with $s, t \in \{\pm 1\}^{\ell}$.
- ▶ We seek special Golay quadruples.
- ho A good comparator is $q \in \{\pm 1\}^{\ell}$ s.t. there exists $s \in \{\pm 1\}^{\ell}$ s.t.

is a Golay quadruple. (Or *m*-good in the *m*-modular case.)

Solutions

Here are 64-modular Golay quadruples (s, s', qs, (qs)') in run-length code. (For instance, ++--+ is coded as 231.)

⊳ Length $\ell = 16k + 3$ [Summer 2022]:

$$q = (8k+1)2(8k-1)1$$

$$s = 4^{k}(211)^{k}212(112)^{k-1}134^{k-1}11$$

⊳ Length $\ell = 32k + 7$ [May 2025]:

$$q = (16k+3)2(16k+1)1$$

$$s = 4^{k}(211)^{k}(15)4^{k-1}(211)^{k+1}4^{k-1}3(121)^{k}34^{k-1}3(121)^{k}$$

 \triangleright They yield 64-modular Hadamard matrices of order 4ℓ for all such ℓ , via the Goethals-Seidel array. In particular, for $668 = 4 \cdot 167$. Result:

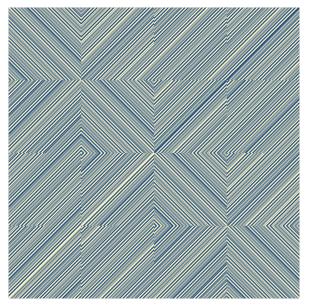


Figure: A 64-modular Hadamard matrix A of order 668

Some features of A

- \triangleright Interesting ones: each row of AA^T , of length 668, counts
 - 641 true zeros,
 - hence 26 nonzero off-diagonal entries, all in the set

$$64 \cdot \{-1, 2, -3, 4, -4, -5, 6, -8\},\$$

with respective multiplicities (4, 6, 4, 4, 2, 2, 2, 2).

▶ Less interesting ones:

- $n^{0.79\,n/2} < |\det(A)| < n^{0.8\,n/2}$. But for a random binary matrix B of order n = 668, one often gets $|\det(B)| \sim n^{0.84\,n/2}$.
- A contains a partial Hadamard submatrix of order 64 × 668. But there is one of order 332 × 668... by concatenating Hadamard matrices of order 332 and 336. Is it the current record?

Upshot

- \triangleright For orders $n = 4\ell$ with ℓ odd, the 64-modular Hadamard conjecture is
 - **settled** for $\ell \equiv 1,3,5 \mod 16$ and $\ell \equiv 7 \mod 32$
 - **open** for $\ell \equiv 9, 11, 13, 15 \mod 16$ and $\ell \equiv 23 \mod 32$
- ⊳ In Hadamard's conjecture, the currently open cases below 1000 are 668,716,892.
- ⊳ In the 64-modular case, only 892 remains open in this range. Indeed,

$$668 = 4 \cdot 167$$
 and $167 \equiv 7 \mod 32$,

$$716 = 4 \cdot 179$$
 and $179 \equiv 3 \mod 16$.

Thank you for your attention!