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What are the designs of interest in algebraic design theory (ADT)?

A pairwise combinatorial design (PCD) is a (square) matrix with entries in

some ambient ring, whose row pairs all satisfy a fixed constraint specified

by an orthogonality set Λ: each pair of (distinct) rows of the PCD lies in Λ.

Many familiar designs are PCDs. ADT reduces many questions about

these designs to study of possible Λ and ambient rings. For convenience,

restrict—as usual!—to Hadamard matrices (not a stretch then to, e.g.,

weighing matrices, Butson Hadamard matrices).

E.g., an n× n Hadamard matrix is a PCD for Λ the set of all 2× n

{±1}-arrays X such that XX⊤ = n12; can take ambient ring to be Z.
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Combinatorial design theory is a source of 
simply stated, concrete, yet difficult discrete 
problems, with the Hadamard conjecture 
being a prime example. It has become clear 
that many of these problems are essentially 
algebraic in nature. This book provides a 
unified vision of the algebraic themes which 
have developed so far in design theory. 
These include the applications in design 
theory of matrix algebra, the automorphism 
group and its regular subgroups, the composition of smaller designs to make larger 
designs, and the connection between designs with regular group actions and solutions 
to group ring equations. Everything is explained at an elementary level in terms of 
orthogonality sets and pairwise combinatorial designs—new and simple combinatorial 
notions which cover many of the commonly studied designs. Particular attention is 
paid to how the main themes apply in the important new context of cocyclic devel-
opment. Indeed, this book contains a comprehensive account of cocyclic Hadamard 
matrices. The book was written to inspire researchers, ranging from the expert to the 
beginning student, in algebra or design theory, to investigate the fundamental algebraic 
problems posed by combinatorial design theory.
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What is the algebra in ADT?

A major part of the theory is concerned with symmetry of PCDs: structure

of their automorphism groups.

In practice: matrix algebra, finite group theory, ring theory, character

theory, group cohomology.
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An automorphism of an n× n {±1}-matrix D is a pair (P,Q) of n× n

{±1}-monomial matrices P,Q such that PDQ⊤ = D.

The set of all automorphisms Aut(D) is a group; the stabilizer of D under

action of Mon(n, ⟨−1⟩)2 on the set of all n× n {±1}-matrices (the orbit

of D is its equivalence class; if D is a PCD—i.e., Hadamard—then

everything in its equivalence class is too).

The subgroup of Aut(D) comprising all pairs of permutation matrices is

its permutation automorphism group PAut(D).
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Subgroups of Aut(D) that are of interest arise as follows (here in

particular D can be any square matrix).

D is group-developed over a group G of order n if D up to permutation

equivalence is an image of G’s multiplication table: D ≈ [ϕ(xy)]x,y∈G,

some map ϕ on G.

Lemma

D is group-developed over G ⇔ G acts regularly on D.

This is just the regular action of G on itself, with G indexing rows and

columns of D:

Pg[ϕ(xy)]P
⊤
g = [ϕ(xg−1.y)]P⊤

g = [ϕ(xg−1.gy)] = D

giving a regular embedding G ↪→ PAut(D).
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Group development—a purely algebraic notion—gives effective tools from

(computational) algebra to study PCDs.

However, group-development restricts orthogonality; e.g., group-developed

Hadamard matrices must have square order.

de Launey and Horadam discovered a generalization of group development

that is less restrictive when combined with orthogonality.

Set U = ⟨−1⟩ (but often below U can be any finite abelian group). The

expanded matrix of an n× n U -matrix D is

ED =
[
D −D

−D D

]
.

D is said to be cocyclic if ED is group-developed over a subgroup of

PAut(ED) containing ( [ 0n 1n
1n 0n

]
,
[
0n 1n
1n 0n

] )
.

as a central involution.
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Theorem

D is cocyclic ⇔ there exists a group G of order n and a 2-cocycle

ψ : G×G→ U s.t. D = [ψ(g, h)]g,h∈G up to (full) equivalence.

Some definitions:

Z2(G,U) = group (abelian, under pointwise composition) of all cocycles

ψ : G×G→ U , i.e., such maps satisfying

ψ(x, y)ψ(xy, z) = ψ(x, yz)ψ(y, z) ∀x, y, z ∈ G. (⋆)

Coboundaries ∂ϕ, where ∂ϕ(x, y) = ϕ(x)ϕ(y)ϕ(xy)−1 for all maps ϕ :

G→ U , form a subgroup B2(G,U) ∼= UG/Hom(G,U) of Z2(G,U).

H2(G,U) = Z2(G,U)/B2(G,U) is the second cohomology group of

cocycle classes [ψ] := ψB2(G,U), ψ ∈ Z2(G,U).

From now on, drop the superscript 2.
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Each cocycle ψ determines a central extension Eψ with element set G×U

and multiplication defined by (g, u)(h, v) = (gh, uvψ(g, h)); associativity

of this multiplication is exactly (⋆).

Note that U ∼= {(1, u) | u ∈ U} ≤ Z(Eψ).

Re. the theorem: Eψ acts centrally regularly on ED for D = [ψ(g, h)]g,h∈G.

If D is a cocyclic Hadamard matrix then the central extension groups Eψ

(Hadamard groups) were studied at length by Noboru Ito.

Note: Aut(D) ∼= PAut(ED); thus an Hadamard group embeds in the

automorphism group of the original Hadamard matrix.
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Group-development is the base case of cocyclic development:

[∂ϕ(g, h)]g,h∈G is equivalent to [ϕ(gh)]g,h∈G.

To emphasize: the cocycle appears only because of a centrally regular

action by a central extension of U by G on the expanded matrix.

And we have more freedom in cocyclic development vs. group

development: e.g., cocyclic Hadamard matrices exist at non-square orders.

Indeed, many PCD constructions and (infinite) families of PCDs are

cocyclic: inordinately many D have PAut(ED) that contain centrally

regular subgroups.

Why this ubiquity of centrally regular actions?
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While, e.g., codifying many known constructions, cocyclic development

has perhaps been less successful in proving new existence results.

Theorem (de Launey and Kharaghani)

If q is odd and

k ≥ 10 + 8

⌊
log2(q − 1)

10

⌋
,

then ∃ a cocyclic Hadamard matrix of order 2kq.

The proof is quintessential ADT; circulant (so group-developed) Hermitian

and skew-Hermitian matrices are combined with cocyclic monomial

matrices derived from a system of orthogonal designs, to produce cocyclic

Butson Hadamard matrices over ⟨i⟩, which yield the required cocyclic

Hadamard matrices.
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The bound in the theorem is about twice that for Hadamard matrices in

general provided by Craigen, Holzmann, and Kharaghani.

From existence, to classification...the most noteworthy result on classifying

cocyclic Hadamard matrices is that of Padraig Ó Catháin and Mark Röder.

They completely classified cHm at each order ≤ 36, relying on previous

classifications of all Hadamard matrices, recognition of cocyclic

development via PAut(ED), and an equivalence with relative difference

sets.

Other work by Padraig with R. M. Stafford established non-existence of

cocyclic matrices in a construction of Hadamard matrices: infinitely many

“twin-prime-power” Hadamard matrices are not cocyclic.
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Significant success by Assaf Goldberger and Giora Dula applying more

powerful cohomological machinery; in particular to obtain new existence

results for, e.g., weighing matrices.

Cohomology development subsumes cocyclic development.

Here the cohomology is in dimensions 0, 1 as well as 2.

Also, trivial action on the underlying module is not assumed.

Cohomology-developed matrices are solutions of an “automorphism lifting

problem”; cocyclic matrices are solutions of this problem that lift a

group-developed matrix.
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Unfinished work seeks to broaden Ito’s non-existence results for cocyclic

Hadamard matrices using the cohomology development approach.

Theorem (Ito)

(i) A cocyclic Hadamard matrix over a group G with cyclic Sylow

2-subgroup must be group-developed over G.

(ii) An Hadamard group of a cocyclic Hadamard matrix cannot have a

dihedral Sylow 2-subgroup.

Re. (ii): this is about the extension group; ∃ many cocyclic Hadamard

matrices indexed by dihedral groups.

Dane Flannery Perspectives on algebraic design theory 15 / 24



Now we focus on the cocycles that appear in ADT.

Call ψ ∈ Z(G,U) orthogonal if [ψ(g, h)]g,h∈G is Hadamard.

Call ψ normalized if ψ(1, 1) = 1.

Lemma

Normalized ψ is orthogonal ⇔ each non-initial row of [ψ(g, h)] sums to 0.

Proof. Sleight of hand using (⋆).

N.B. orthogonality not respected by cohomological equivalence, i.e., ψ

orthogonal ̸⇒ ψ∂ϕ orthogonal.

Cf. work by J. A. Armario, et al.: quasi-orthogonal cocycles defined over

groups of just even order. These are characterized by optimal row excess,

just like orthogonal cocycles.
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Obvious, dumb idea: construct all cocycles, then search for orthogonal

ones.

For fixed G, where in Z(G,U) to search for orthogonal cocycles?

Horadam discovered a certain action by G on Z(G,U) that respects

orthogonality. But of no help in the search problem by the Orbit-Stabilizer

theorem.

If |G| is not a square, then no coboundary is orthogonal, i.e., orthogonal

cocycles are in non-trivial cohomology classes.
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Universal coefficients theorem

H(G,U) = I × T where

I is the image of Ext(G/G′, U) under inflation;

T is the image of a transgression map τ : Hom(H2(G), U) → H(G,U).

Inflation and τ are injective homomorphisms.

Here G′ = [G,G] is the derived group of G, generated by all commutators

[g, h] := g−1h−1gh for g, h ∈ G;

H2(G) is the Schur multiplier H2(G,C×).
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A drawback of the UCT approach to computing cocycles for ADT is its

non-canonical nature; whereas I may be canonically defined (& is easily

calculated—reduces to 2-cohomology of cyclic groups and then Kronecker

multiplication), τ and thus T depends on choice of presentation F/R for

G (F free, R normal closure of relator words in F ).

Can we characterize the canonical Ext component I?

Call ψ ∈ Z(G,U) symmetric if ψ(a, b) = ψ(b, a) for all a, b ∈ G; call ψ

almost symmetric if ψ(a, b) = ψ(b, a) for all a, b ∈ G such that ab = ba.

The symmetric (resp., almost symmetric) cocycles form a subgroup

S(G,U) (resp., A(G,U)) of Z(G,U).

Also S(G,U), B(G,U) are subgroups of A(G,U).
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Each cohomology class in I is represented by a symmetric cocycle; hence

I ⊆ A(G,U)/B(G,U).

Is the converse true? Certainly sometimes: e.g., if G has a presentation

F/R s.t.

(F ′ ∩R)/[R,F ] is generated by a subset of {[x, y][R,F ] | x, y ∈ F}, (⋄)

then yes, I = A(G,U)/B(G,U).

(Note that {[x, y][R,F ] | x, y ∈ F} is a generating set for F ′/[R,F ].)

The proof of this claim uses Hopf’s formula in calculating τ :

H2(G) ∼= (F ′ ∩R)/[R,F ].

Dane Flannery Perspectives on algebraic design theory 20 / 24



Examples of G with presentations F/R that satisfy (⋄) are:
abelian G (for which almost symmetric = symmetric),

metacyclic G.

What other classes, examples of G?
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If I = A(G,U)/B(G,U), then each almost symmetric cocycle is

cohomologous to a symmetric cocycle.

But this is true always.

Theorem (Leutbecher)

[ψ] ∩ S(G,U) ̸= ∅ ⇔ [ψ] ∩A(G,U) ̸= ∅, i.e., ψ ∈ A(G,U).

Thus A(G,U) = S(G,U).B(G,U).

One direction is clear: as observed, S(G,U), B(G,U) ⊆ A(G,U).

Here is a sketch of proof of the converse (see K. Wohlfahrt, Glasgow

Math. J. 13, 1972).
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Switching to additive notation, define ψ ∈ Z(G,U) inductively on Gn for

n ≥ 3 by

ψ(g1, . . . , gn) = ψ(g1, . . . , gn−1) + ψ(g1 · · · gn−1, gn).

Assume ψ normalized wlog. Using (⋆) it is then not hard to verify that:

ψ(g1, . . . , gi−1, 1, gi+1, . . . , gn) = ψ(g1, . . . , gi−1, gi+1, . . . , gn);

ψ(g1, . . . , gi, gi+1, . . . , gn) = ψ(g1, . . . , gigi+1, . . . , gn) + ψ(gi, gi+1);

and consequently

ψ(g1, . . . , gi−1, h, h
−1, gi+2 . . . , gn) =

ψ(g1, . . . , gi−1, gi+2, . . . , gn) + ψ(h, h−1).
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Now suppose that ψ is almost symmetric.

Fix a set of representatives {c1, c2, . . . } for the conjugacy classes of G.

Using almost symmetry of ψ and the above properties of the extended ψ,

it can be shown that ϕ : G→ U given by

ϕ : chi 7→ ψ(h−1, ci, h)− ψ(h−1, h)

is well-defined, and satisfies

ϕ(gh)− ϕ(hg) = ψ(g, h)− ψ(h, g) ∀ g, h ∈ G. (∗)

Finally, it is immediate from (∗) that ψ + ∂ϕ ∈ S(G,U).

Alas, for the problem at hand, this result seems to be of little help; is

ruling out existence of symmetric cocycles in elements of T (for some

choice of F/R) significantly easier?
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