#CátedrasCiber

Recent Advances in the Construction of **Hadamard Matrices** Using Legendre Pairs

CÁTEDRA UC-INCIBE

UEVOS RETOS EN CIBERSEGURIDAD

29/V/2025

ECRETARÍA DE ESTADO

bincibe_

Binary Legendre Pairs

Two sequences $\mathbf{a} = [a_1, \dots, a_T]$, $\mathbf{b} = [b_1, \dots, b_T]$ of period T form a Legendre pair if

$$\operatorname{PAF}(\mathbf{a}, j) + \operatorname{PAF}(\mathbf{b}, j) = -2, \quad j = 1, \dots, \left\lceil \frac{T}{2} \right\rceil.$$

where

$$PAF(\mathbf{a}, j) = \sum_{i=1}^{T} a_i \cdot a_{i+j},$$

SECRETARÍA DE ESTADO DE TELECOMUNICACIONES E INFRASTRUKTURAS DIGITALES

INSTITUTO NACIONAL DE CIBERSEGURIDAD

Hadamard Matrices

Let C_a be the circulant matrix obtained from a, where the (i + 1)-th row of C_a is a circulant shift of a by j_i , defined as:

 $\mathbf{C}_{i,j}(\mathbf{a}) = a_{(i-j) \mod T}$

for each $i, j \in \{1, \ldots, T\}$. Then the following matrix

	$\left[-1\right]$	-1	1	1
H =	-1	1	1	-1
	1'	1 '	$\mathbf{C}_{\mathbf{b}}$	$\mathbf{C}_{\mathbf{a}}$
	1'	-1'	$\mathbf{C}_{\mathrm{a}}^{'}$	$-\mathbf{C}_{\mathbf{b}}^{'}$

is a binary Hadamard Matrix (Theorem 3. Fletcher et al. 2001).

SECRETARÍA DE ESTADO DE TELECOMUNICACIONES E INERASTREJO TURAS DIG

Known Constructions

The Legendre symbol is defined as,

$$\left(\frac{a}{p}\right) = \begin{cases} 1 & a \text{ is a quadratic residue modulo p,} \\ -1 & \text{otherwise.} \end{cases}$$

The Legendre sequence ℓ of period p is defined as $\ell_1 = 1$, and $\ell_i = \left(\frac{i-1}{p}\right), \ i = 2, \dots, p$. This sequence gives the Paley construction.

SECRETARÍA DE ESTADO DE TELECOMUNICACIONES E INERASTREJO TURAS DIG

Conjectures

- There exists binary Legendre Pairs for all T odd (Arasu et al. 2020)
- ▶ Values of the Power Spectral Density for $T \equiv 0 \mod 3, 5$ (Kotsireas, Koutschan, etc)
- Sums of the elements of the sequence can be fixed

SECRETARÍA DE ESTADO

M-Compression

For a sequence a of composite length $T = M \cdot N$, its *M*-compression is the sequence A defined as,

$$A_j = \sum_{i=1}^M a_{N \cdot i+j}.$$

A TRANSFORMACIÓNI DIGITA UNCIÓN PÚBLICA

SECRETARÍA DE ESTADO DE TELECOMUNICACIONES E INFRASTRUCTURAS DIGUTA ES

Take

its 9-compression is 1, 3, -3.

PARA LA TRANSFORMACIÓN DIGITA Y DE LA FUNCIÓN PÚBLICA

SECRETARÍA DE ESTADO DE TELECOMUNICACIÓNES E INTRAESTRI ATURAS DIGUTA ES

Plan de Recuperación, Transformación y Resiliencia

M-Compression

Let (a, b) be a binary Legendre Pair and (A, B) the *M*-compressions of the pair. Then the following relation

 $PAF(\mathbf{A}, j) + PAF(\mathbf{B}, j) = -2 \cdot M,$

holds.

SECRETARÍA DE ESTADO DE TELECOMUNICACIONES E INFRAISTRE ATURAS DIGITALE

UTO NACIONAL DE CIREPSECURIDAD

Candidates for compression pairs

Suppose that $T = p \cdot q^2$, the following sequences:

$$\mathbf{A}(p,q) = \left[1, q \cdot \left(\frac{1}{p}\right), \dots, q \cdot \left(\frac{p-1}{p}\right)\right],$$
$$\mathbf{B}(p,q) = \left[1, -q \cdot \left(\frac{1}{p}\right), \dots, -q \cdot \left(\frac{p-1}{p}\right)\right]$$

satisfies, $PAF(\mathbf{A}(p, q), j) + PAF(\mathbf{B}(p, q), j) = -2 \cdot q^2, \quad j = 1, ..., p - 1.$

Financiado por la Unión Europea NextGenerationELL

SECRETARÍA DE ESTADO DE TELECOMUNICACIONES E INTERASTRENTE RAS DIGUTA ES

>incibe_

Conjecture (Kotsireas 2019)

For every odd primes p and q, the pair of sequences $(\mathbf{A}(p, q), \mathbf{B}(p, q))$ can indeed be uncompressed to a Binary Legendre pair of period $a^2 \cdot p$.

SECRETARÍA DE ESTADO DE TELECOMUNICACIONES E INTERASTRE A TURAS DIGITAL

Decimations

Given a pair of sequences (s, r) and a positive integer d, if $r_i = s_{d \cdot i \mod T}$, for all $i \in \{1, \dots, T\}$, then r is called a *d-decimation* sequence of s and it is denoted as $\mathbf{r} = \mathbf{s}^{(d)}$.

SECRETARÍA DE ESTADO DE TELECOMUNICACIONES E INTERASTRE A TURAS DIGITAL

Decimations

Decimations

Supposing that (a, b) is a binary Legendre pair whose q^2 -compression is (A(p, q), B(p, q))and gcd(d, T) = 1,

- \blacktriangleright (a^(d), b^(d)) is also a Legendre pair
- $(\mathbf{A}^{(d)}(p,q), \mathbf{B}^{(d)}(p,q))$ is the M-compression of $(\mathbf{a}^{(d)}, \mathbf{b}^{(d)})$
- $(\mathbf{A}(p,q)^{(d)}, \mathbf{B}(p,q)^{(d)})$ is either $(\mathbf{A}(p,q)^{(d)}, \mathbf{B}(p,q)^{(d)})$ or $(\mathbf{B}(p,q)^{(d)}, \mathbf{A}(p,q)^{(d)})$.
- for some d, the sum of the first q elements of $\mathbf{a}^{(d)}(p, q)$ satisfies

$$\sum_{i=1}^{p} a^{(d)}(p,q)_i \ge -q-1.$$

SECRETARÍA DE ESTADO DE TELECOMUNICACIONES

Generation of binary sequences

A binary sequence $s \in \{0, 1\}$ satisfying

 $s_{i+L} = \sum_{j=0}^{L-1} c_j s_{i+j} \mod 2,$

for all $i \in \mathbb{N}$ is called an (*L*-th order) *linear recurring sequence (LRS)*.

SECRETARÍA DE ESTADO DE TELECOMUNICACIONES E INFRASTRUKTURAS DIGITALES

Discrete Fourier Transform over fields

We define the Discrete Fourier Special Transform DFS(s) as the *T* periodic sequence \hat{S} defined by

$$\hat{S}_k = \sum_{i=1}^T s_i \cdot \alpha^{i \cdot k} \quad k = 1, \dots, T,$$

where α is a primitive element of a finite field of characteristic 2.

ECRETARÍA DE ESTADO

*in**cib**e

Properties of Legendre sequence (Helleseth et al.)

Define \bar{s} as the sequence satisfying: $\ell = (-1)^{\bar{s}}$, then the linear complexity of the sequence is greater than p/2.

SECRETARÍA DE ESTADO DE TELECOMUNICACIONES E INTERESTRUCTURAS DIGITAL

Conjecture

Supposing that (a, b) is a binary Legendre pair whose q^2 -compression is (A(p, q), B(p, q)), then the linear complexity of \overline{a} and \overline{b} is greater than $q \cdot p^2/2$, where where

$$a_i = (-1)^{\overline{a}_i}, \quad b_i = (-1)^{\overline{b}_i}$$

for all $i \in \mathbb{N}$. Also, more than $q^2 \cdot p/2$ elements in $DFS(\overline{\mathbf{a}})$ are non zero.

MINISTERIO PARA LA TRANSFORMACIÓN DIGITA Y DE LA FUNCIÓN PÚBLICA

SECRETARÍA DE ESTADO DE TELECOMUNICACIONES E INFRAISTRUCTURAS DIGITALES

JC Universidad de Cantabrid

Results and Conclusions

- Legendre Pairs are a promising construction for finding binary Hadamard Matrices
- For certain lengths, computer search can be improved due to existence of particular binary Legendre Pairs
- Thanks to the use of a Computer Cluster we found Legendre Pairs up to length 75

MINISTERIO PARA LA TRANSFORMACIÓN DIGITAL Y DE LA FUNCIÓN PÚBLICA

AL SECRETARÍA DE ESTADO DE TELECOMUNICACIONES E INFRAISTRUCTURAS DIGITALES

#CátedrasCiber Recent Advances in the Construction of Hadamard Matrices Using Legendre Pairs

MINISTERIO PARA LA TRANSFORMACIÓN DIGITAL Y DE LA FUNCIÓN PÚBLICA

SECRETARÍA DE ESTADO DE TELECOMUNICACIONES E INFRAISTRUCTURAS DIGITAL

(ロ) (個) (目) (目) (目) (0) (0)

