Cyclic Relative Difference Sets

Daniel M. Gordon

IDA/CCR-La Jolla

May 26, 2025

1 Difference Sets, Relative Difference Sets and Related Objects

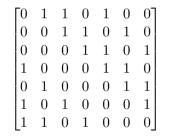
2 Difference sets \longrightarrow Relative Difference Sets

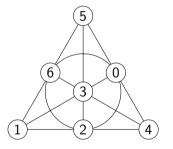
 \bigcirc Relative Difference sets \longrightarrow Circulant Weighing Matrices

4 Aside: Online Combinatorial Databases

A (v, k, λ) -difference set in a group G of order v is a subset

$$D = \{d_1, d_2, \dots, d_k\}$$


of G such that every nonzero element of G has exactly λ representations as $d_i - d_j$.


The complement of a (v, k, λ) -DS is a $(v, v - k, v - 2k + \lambda)$ -DS.

Example: (7,3,1)-DS = Projective plane of order 2

Singer Difference Sets

More Examples

A Singer difference set has parameters

$$\left(\frac{q^{d+1}-1}{q-1}, \frac{q^d-1}{q-1}, \frac{q^{d-1}-1}{q-1}\right)$$

for d > 1 and q a prime power. Singer constructed them in 1938 using PG(d,q), the projective geometry of dimension d over GF(q).

Foreshadowing

The complement of a Singer difference set has parameters

$$\left(\frac{q^{d+1}-1}{q-1}, q^d, q^{d-1}(q-1)\right)$$

The La Jolla Difference Set Repository

Difference Sets

A $(v_i k_j \lambda)$ -difference set in a group G is a subset $D = \{d_{i_1}, d_{j_2}, ..., d_k\}$ of G such that each nonzero element of G can each be represented as a difference $(d_i - d_i)$ in exactly λ different ways.

This page gives information about possible parameters for difference sets in abelian groups G. All parameters with v:100000 passing basic tests (counting, schutzenberger, BRC) are listed here, and an attempt has been made to include all known difference sets. Most known for large v are Paley, which are easily constructed, so those are omitted for v:1000.

Some constructions have not been included yet. If you have any difference sets or nonexistence results not in this database, or find any errors, please let me know. The Multiplier Conjecture link below has information about recent computations for v<0^h.

Search for Difference Sets

6 / 40

Gordon (IDA/CCR-La Jolla)

LJDSR Query Results

Search Display

Disp Disp <thdisp< th=""> Disp Disp <thd< th=""><th>¥</th><th>k</th><th>λ</th><th>n</th><th>G</th><th>status</th><th><u>comment</u></th></thd<></thdisp<>	¥	k	λ	n	G	status	<u>comment</u>
127 63 32 32 121 34 63 93 13 65 33 131 34 94 94 14 7 32 33 131 34 94 94 14 7 32 35 141 34 94 94 15 3 35 16 143 34 94 94 16 7 3 3 16 143 94 94 16 9 43 44 163 144 94 94 16 9 44 45 161 34 94 94 16 9 44 161 144 144 144 144 144 144 16 9 44 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144	103	51	25	26	[103]	Yes	Paley
11 63 12 13 131 132 134 143 135 136	107	53	26	27	[107]	All	Paley
139 69 34 35 16 139 130 <th130< th=""> <th130< th=""> <th130< th=""></th130<></th130<></th130<>	127	63	31	32	[127]	All	(6,2) Singer
143 7 15 7 8 16.10 Y 9 16.10 Y 16.10 Y <td>131</td> <td>65</td> <td>32</td> <td>33</td> <td>[131]</td> <td>Yes</td> <td>Paley</td>	131	65	32	33	[131]	Yes	Paley
151 75 76 161 171 76 96 161 81 41 161 11 Paly 161 81 41 170 Ya Paly 161 81 41 170 Ya Paly 170 91 44 161 Ya Paly 171 91 44 161 Ya Paly 171 91 41 150 Ya Aly 171 91 161 150 Ya Aly 171 91 17 160 Ya Aly 171 17 161 Ya Aly Aly 171 17 17 17 160 17 160 <t< td=""><td>139</td><td>69</td><td>34</td><td>35</td><td>[139]</td><td>Yes</td><td>Paley</td></t<>	139	69	34	35	[139]	Yes	Paley
168 2 4 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 1 2 1 2 2 1 2 1 2 1 2 1 2 2 1 2 1 2 1 2 1 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 1 2 2 1 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 <th2< th=""> 1 <th2< th=""> <th2< th=""></th2<></th2<></th2<>	143	71	35	36	[143]	All	TPP(11)
167 30 41 42 1700 1600 1640 100 95 47 45 1700 1600 1640 1640 100 95 47 46 1700 1640 1640 100 95 47 46 1700 1640 1640 100 95 47 47 1700 1640 1640 1640 100 95 47 47 1700 1640	151	75	37	38	[151]	Yes	Paley
179 89 44 45 (179) Yat Patr 19 95 45 (179) Yat Patr	163	81	40	41	[163]	All	Paley
191 55 47 48 191 Yas Pally 190 9 10 100 Yas Pally 191 8 2 10 100 C4 Pally 100 8 2 10 100 C4 C4 Signer 100 7 8 4 C00	167	83	41	42	[167]	Yes	Paley
199 94 94 100 100 100 400 44 100 44 100 44 100 44 100 44 100 44 100 44 100 44 100 44 100 44 100	179	89	44	45	[179]	Yes	Paley
341 65 21 64 341 All 64.3 (sping) 400 57 9 6 0 All 0.3 (sping) 401 57 9 6 All 0.3 (sping) All 0.3 (sping) 402 51 0 1 0.3 (sping) All 0.3 (sping) 403 51 0 1 0.3 (sping) Sping) All 0.3 (sping) 404 51 1 0 1.4 (sping) All 1.4 (sping) All 1.4 (sping) 416 6 1 6 1.4 (sping) All 1.4	191	95	47	48	[191]	Yes	Paley
460 50 40 400 All (A) (A) Signal 580 73 9 40 160 All (A) Signal 580 73 9 64 160 All (A) Signal 581 9 1 10 14 10 Signal (A) Signal 581 1 49 140 150 Ya (A) Signal 584 1 1 50 141 15 (A) Signal (A) Signal 584 6 1 64 1401 Ya (A) Signal 584 6 1 6 1 64 1401 Ya (A) Signal 584 7 1 6 1 10 Ya (A) Signal (A) Signal (A) Signal (A) Signal (A) Signal (A) Signal (A) Signa	199	99	49	50	[199]	Yes	Paley
585 73 9 64 563 All (A) Singer 200 10 10 10 (A) (A) Singer 201 5 1 4 (A) Singer (A) Singer 2015 1 1 5 (A) (A) Singer 2016 1 1 5 (A) (A) Singer 2016 1 1 5 (A) Singer (A) Singer 2016 1 1 10 (A) Singer (A) Singer 2016 1 1 1 (A) Singer (A) Singer 2017 1 1 1 (A) Singer (A) Singer 2018 1 7 1 Singer (A) Singer 2014 1 7 1 Singer (A) Singer 2014 1 7 1 Singer<	341	85	21	64	[341]	All	(4,4) Singer
G20 91 0 81 (20) Yat (2,4) Singer 245 50 1 40 (2,4) (2,4) Singer 245 50 1 40 (2,4) Singer (2,4) Singer 245 50 1 1 50 (2,6) Yat (2,5) Singer 346 6 1 50 (2,6) Yat (2,6) Singer 347 6 1 67 1 67 Singer (2,6) Singer 4161 65 1 67 1 (2,7) Yat (2,6) Singer 500 7 1 7 1 67 Singer (2,7) Singer 501 7 1 7 1 70 1 (2,7) Singer 502 7 1 7 1 Singer (2,7) Singer 503 7 7 7 <td< td=""><td>400</td><td>57</td><td>8</td><td>49</td><td>[400]</td><td>All</td><td>(3,7) Singer</td></td<>	400	57	8	49	[400]	All	(3,7) Singer
2451 50 1 49 2451 Ym 62.49 Singer 203 54 53 26.03 Ym 6.3.53 Singer 203 54 5 50.63 Ym 6.3.53 Singer 203 54 6 1.703 Ym 6.3.53 Singer 2041 6 1.703 Ym 6.3.54 Ym 6.3.54 Singer 2041 6 1.703 Ym 6.3.54 Ym 6.3.54 Singer 2041 6 1.703 Ym 6.4.54 Singer 6.3.73 Singer 51.3 2 1 7 1.503 Ym 6.7.53 Singer 51.3 2 1 7 1.503 Ym 6.7.53 Singer 64.3 2 1 7 1.503 Ym 6.7.53 Singer 64.3 2 1 1 6.643 Ym 6.3.53 Singer	585	73	9	64	[585]	All	(3,8) Singer
286 54 1 53 2003 Yan 62.53 Singer 341 60 30 64.14 Xu 6.253 Singer 341 60 1 90 154.1 Xu 6.253 Singer 341 60 1 64 1401 Yu 6.263 Singer 341 61 6 6401 Yu 6.635 Singer 6.273 Singer 6.213 Singer 6.213	820	91	10	81	[820]	Yes	(3,9) Singer
31541 60 1 59 13541 Yan (2.5) Singer 7370 62 6 1703 Yan (2.6) Singer 7370 62 6 1703 Yan (2.6) Singer 4557 63 1 6 1641 Yan (2.6) Singer 4557 64 1 7 (5.113) Yan (2.7) Singer 5103 7 7 7 7 (2.6) Singer (2.7) Singer 643 2 7 7 (2.6) Singer (2.7) Singer (2.7) Singer 643 2 7 7 (3.1) Yan (2.7) Singer 6443 2 7 (3.6) Yan (2.7) Singer 643 2 7 (3.6) Yan (2.7) Singer 6443 2 7 (3.6) Yan (2.7) Singer 6443 2 7 (3.6) Yan (2.8) Singer 6443 3 1	2451	50	1	49	[2451]	Yes	(2,49) Singer
2733 62 1 61 2733 Yan (2.6) Singer 4161 65 64 [4.6] Yan (2.6) Singer 5137 62 (2.5) Yan (2.5) Singer (2.7) Singer 5137 2 (2.7) Yan (2.7) Singer (2.7) Singer 6437 2 7 7 [503] Yan (2.7) Singer 6437 2 1 7 [6643] Yan (2.8) Singer 6447 4 1 82 [6643] Yan (2.8) Singer 6449 6 1 82 6 [6643] Yan (2.8) Singer	2863	54	1	53	[2863]	Yes	(2,53) Singer
4461 65 1 64 4461 Yer C4/64 Singer 4557 61 67 4577 16 C4/55 Singer 4557 12 1 67 4577 Yer C4/57 Singer 513 7 1 71 5133 Yer C4/53 Singer 622 40 7 7 5403 Yer C4/53 Singer 643 2 1 79 6221 Yer C4/53 Singer 643 2 1 79 6221 Yer C4/53 Singer 643 2 1 79 6231 Yer C4/53 Singer 643 2 1 81 635 Yer C4/53 Singer 643 2 1 16643 Yer C4/53 Singer 691 4 1 89 1 2073 Singer 692	3541	60	1	59	[3541]	Yes	(2,59) Singer
4557 6 1 6 7 4557 Y.ss (2,71) Singer 5113 7 1 7 1 3 (2,71) Singer 5403 7 4 1 7 [343] Yes (2,73) Singer 5403 7 4 1 7 [5403] Yes (2,73) Singer 6643 2 1 8 [6643] Yes (2,83) Singer 8011 9 8 1 8 [6643] Yes (2,83) Singer 8011 9 9 9011 Yes (2,83) Singer (2,83) Singer	3783	62	1	61	[3783]	Yes	(2,61) Singer
5113 72 1 71 15113 Yes (2,71) Singer 5403 74 1 73 5403 Yes (2,73) Singer 6211 0 1 79 6321 92 (2,73) Singer 6431 2 1 81 6433 Yes (2,73) Singer 6431 2 1 81 6433 Yes (2,83) Singer 6373 4 1 8073 Yes (2,83) Singer 8011 90 8011 Yes (2,83) Singer	4161	65	1	64	[4161]	Yes	(2,64) Singer
5403 74 1 73 [5403] Yes (2,73) Singer 6321 80 1 79 [6321] Yes (2,73) Singer 6643 82 1 81 [6643] Yes (2,81) Singer 6973 84 1 83 [6973] Yes (2,83) Singer 8011 90 1 89 [8011] Yes (2,89) Singer	4557	68	1	67	[4557]	Yes	(2,67) Singer
6321 00 1 79 [6321] Yes (2,79) Singer 6643 82 1 81 [6643] Yes (2,81) Singer 6973 84 1 83 [6973] Yes (2,83) Singer 8011 90 1 89 [8011] Yes (2,89) Singer	5113	72	1	71	[5113]	Yes	(2,71) Singer
6643 82 1 81 [6643] Yes (2,81) Singer 6973 84 1 83 [6973] Yes (2,83) Singer 8011 90 1 89 [8011] Yes (2,89) Singer	5403	74	1	73	[5403]	Yes	(2,73) Singer
6973 84 1 83 [6973] Yes (2,83) Singer 8011 90 1 89 [8011] Yes (2,89) Singer	6321	80	1	79	[6321]	Yes	(2,79) Singer
8011 90 1 89 [8011] Yes (2,89) Singer	6643	82	1	81	[6643]	Yes	(2,81) Singer
	6973	84	1	83	[6973]	Yes	(2,83) Singer
9507 98 1 97 [9507] Yes (2.97) Singer	8011	90	1	89	[8011]	Yes	(2,89) Singer
	9507	98	1	97	195071	Yes	(2.97) Singer

Gordon (IDA/CCR-La Jolla)

LJDSR Query Results, cont'd

Cyclic (127,63,31) difference sets

(6,2) Singer

There are exactly 6 such difference sets

PG(6,2)

Legendre Sequence

Hall Sextic Residue Sequence

Group Rings

For a group G, the group ring $\mathbb{Z}[G]$ is the free $\mathbb{Z}\text{-module}$ with basis G:

$$\mathbb{Z}[G] = \left\{ \sum_{g \in G} a_g g \mid a_g \in \mathbb{Z} \right\}.$$

Group Ring Operations

$$A + B = \left(\sum_{g \in G} a_g g\right) + \left(\sum_{g \in G} b_g g\right) = \sum_{g \in G} (a_g + b_g)g$$
$$AB = \left(\sum_{g \in G} a_g g\right) \left(\sum_{h \in G} b_h h\right) = \sum_{g,h \in G} a_g b_h(gh)$$
$$A^{-1} = \sum_{g \in G} a_g g^{-1}$$

Definition II

Let
$$D = \sum_{d_i \in D} d_i$$
. D is a difference set if:

$$DD^{-1} = k + \lambda(G - 1_G),$$

Example

$$G=\mathbb{Z}_7,\ D=g^1+g^2+g^4$$

$$DD^{-1} = (g^1 + g^2 + g^4)(g^6 + g^5 + g^3)$$

= 3g⁰ + g¹ + g² + g³ + g⁴ + g⁵ + g⁶

Related object: Circulant Weighing Matrices

Definition

A circulant weighing matrix CW(n,k) is an $n\times n$ cyclically symmetric $(0,\pm 1)\text{-matrix}\;M$ such that

$$MM^T = kI_n.$$

Example: CW(7,4)

$$\begin{bmatrix} -& +& +& 0& +& 0& 0\\ 0& -& +& +& 0& +& 0\\ 0& 0& -& +& +& 0& +\\ +& 0& 0& -& +& +& 0\\ 0& +& 0& 0& -& +& +\\ +& 0& +& 0& 0& -& +\\ +& +& 0& +& 0& 0& -\end{bmatrix}$$

CWM Group Ring Equation

 $C=\sum c_g g$ with $c_g\in\{0,\pm1\}$, and

$$CC^{-1} = k.$$

Facts about CWM's

- $k = s^2$ for some positive integer s,
- Let P be the set of +1's, and N the -1's. WLOG $|P| = (s^2 + s)/2$, and $|N| = (s^2 s)/2$
- A CW(n,k) is called *proper* if no translate has all of P and N in a subgroup of \mathbb{Z}_n .

Related object: Signed Difference set

Signed Difference Set Equation

 $D=\sum a_gg$ with $a_g\in\{0,\pm1\}$, and

$$DD^{-1} = k + \lambda(G - 1_G),$$

Example: (7, 6, -1)-SDS in \mathbb{Z}_7

$$\begin{bmatrix} 0 & + & + & - & + & - & - \\ - & 0 & + & + & - & + & - \\ - & - & 0 & + & + & - & + \\ + & - & - & 0 & + & + & + \\ - & + & - & - & 0 & + & + \\ + & - & + & - & - & 0 & + \\ + & + & - & + & - & - & 0 \end{bmatrix}$$

Let |G| = mn, N a normal subgroup of order n. A (m, n, k, λ) -relative difference set R of G relative to N is a k-element subset such that the differences of distinct elements of R contain every element of $G \setminus N$ exactly λ times, and none of N.

Group Ring Equation

$$RR^{-1} = k + \lambda(G - N),$$

Example

$$\{0, 3, 5, 13\}$$
 is a $(7, 2, 4, 1)$ -RDS in \mathbb{Z}_{14} relative to $N = \{0, 7\}$.

Lifting Difference sets

If R is an (m, n, k, λ) -RDS in G relative to N, then G/N contains an $(m, k, \lambda n)$ -difference set.

Example

The (7, 2, 4, 1)-RDS $\{0, 3, 5, 13\}$ is a lift of the (7, 4, 2)-DS $\{0, 3, 5, 6\}$ in \mathbb{Z}_7 .

Main Question

When does a difference set have a lifting?

Lifts of (m, m, m)-DS

- These are called *semiregular*
- For p prime, a (p^a, p^b, p^a, p^{a-b}) -RDS exists.
- Semiregular RDS are related to Hadamard matrices.

Lifts of (m, m-1, m-2)-DS

- For q a prime power, and any divisor d of q-1, a (q+1, (q-1)/d, q, d)-RDS exists.
- Are there lifts for m-1 not a prime power?

For $t \in \mathbb{Z}$, if $x \mapsto tx$ takes D to D+g for some $g \in G$, then t is called a *(numerical) multiplier*.

Example

For the (7,3,1) DS $\{1,2,4\}$, $2D = \{2,4,1\} = D$.

For $t \in \mathbb{Z}$, if $x \mapsto tx$ takes D to D+g for some $g \in G$, then t is called a *(numerical) multiplier*.

Example

For the
$$(7,3,1)$$
 DS $\{1,2,4\}$, $2D = \{2,4,1\} = D$.

Theorem

If G is abelian, some translate of D is fixed by *all* its multipliers.

First Multiplier Theorem

If D is a difference set, $p > \lambda$ is a prime dividing $k - \lambda$, $p \not\mid v$, then p is a multiplier of D.

For $t \in \mathbb{Z}$, if $x \mapsto tx$ takes D to D+g for some $g \in G$, then t is called a *(numerical) multiplier*.

Example

For the
$$(7,3,1)$$
 DS $\{1,2,4\}$, $2D = \{2,4,1\} = D$.

Theorem

If G is abelian, some translate of D is fixed by *all* its multipliers.

First Multiplier Theorem

If D is a difference set, $p > \lambda$ is a prime dividing $k - \lambda$, $p \not\mid v$, then p is a multiplier of D.

Theorem (G., 2020)

Let $G = \mathbb{Z}_p \times H$, where gcd(p, |H|) = 1. If a (v, k, λ) -DS exists in G with multiplier $m, s = ord_H(m)$, then orbits of $\langle m^s \rangle$ are (0, h) and $(\langle i \rangle_o, h)$, for $o = ord_p m^s$.

If D has a o-orbits and b 1-orbits,

$$\begin{aligned} k &= ao + b, \\ b(b-1) &\leq \lambda(|H|-1), \\ a \cdot o(o-1) &\leq \lambda(p-1). \end{aligned}$$

Planar Abelian Difference Sets

All (v, k, 1) difference sets with $k \le 2 \cdot 10^{10}$ have k - 1 a prime power. Peluse showed # non-prime-powers $\le x$ is $o(x/\log x)$.

Biplanes

The only (v, k, 2) difference sets with $k \le 10^{10}$ have k = 3, 4, 5, 6, or 9, with at most six exceptions.

Triplanes

The only (v, k, 3) difference sets with $k \le 10^{10}$ have k = 6 or 7, with at most six exceptions.

Recall:

Some translate of a DS is fixed by all its numerical multipliers.

For SDS, CWM and RDS, this isn't always true:

Theorem

Some translate of a $(v,k,\lambda)\text{-}\mathsf{SDS}\text{, }CW(v,k)$ or $(m,n,k,\lambda)\text{-}\mathsf{RDS}$ is fixed by any one of its multipliers.

If gcd(v, k) = 1, then some translate is fixed by *all* its multipliers.

Multipliers

Multiplier Facts

- All of the objects in this talk have some kind of multiplier theorem.
- Weaker than difference set theorems.

Multipliers

Multiplier Facts

- All of the objects in this talk have some kind of multiplier theorem.
- Weaker than difference set theorems.

RDS Multiplier Theorem

Let $\exp(G) = v^*$, and R be an (m, n, k, λ) -RDS. Let t be a multiplier of the $(m, k, n\lambda)$ -DS rel prime to v = mn. Let $k_1|k$, $k_1 = p_1^{e_1} \cdots p_r^{e_r}$, and $k_2 = k_1/\gcd(v, k_1)$. For each p_i , define

$$q_i = \begin{cases} p_i & \text{if } p_i \text{ does not divide } v \\ l_i & \text{if } v^* = p_i^r u_i, \ \gcd(p_i, u_i) = 1, \ \text{where } l_i \text{ is an integer such that} \\ \gcd(l_i, p_i) = 1 \ \text{and} \quad l_i \equiv p_i^f \pmod{u_i}. \end{cases}$$

If for each i there exists an integer f_i such that $q_i^{f_i} \equiv t \pmod{v^*}$, then t is a multiplier of R.

Cyclic lifts of nontrivial difference sets

Lam, 1977

- Gave conditions for a multiplier of D to be a multiplier of R,
- Many nonexistence results,
- Found all cyclic RDS with $k \leq 50$,
- All are lifts of complements of Singer PG(d,q) difference sets.

d	q	m	n	k	λ	# inequivalent
2	2	7	2	4	1	1
2	3	13	2	9	3	2
2	4	21	6	16	2	1
4	2	31	2	16	4	2
2	5	31	4	25	5	2
3	3	40	2	27	9	3
2	7	57	6	49	7	2

Arasu, Jungnickel, Ma and Pott, 1995

- $\bullet~{\rm Looked}$ at $(m,2,k,\lambda){\rm -RDS}$
- No such liftings of Singer, Paley, Twin Prime Power and their complements,...

Conjecture

Only complements of Singer DS have lifts with n=2

Arasu, Dillon, Leung and Ma, 2001

Theorem: A cyclic

$$\left(rac{q^{d+1}-1}{q-1}, n, q^d, rac{q^{d-1}(q-1)}{n}
ight) - RDS$$

exists iff

$$\begin{array}{ll} n \mid (q-1) & q \text{ odd or } d \text{ odd} \\ n \mid 2(q-1) & q \text{ and } d \text{ even} \end{array}$$

This settles the case of lifts of complements of Singer DS.

Pott, 1995

- Extended Lam's table to extensions of Singer DS, $k \leq 64$ for n odd.
- Asked whether any other difference sets have liftings for any n.

Given a $(m, k, \lambda n)$ -DS:

- Check nonexistence theorems.
- **2** Find its set of multipliers M_1 .
- Solution Find multipliers $M_2 = \{t_1, t_2, \ldots, t_s\} \subset M$ of R.

•
$$M = \begin{cases} \langle M_2 \rangle, & \gcd(mn,k) = 1, \\ \langle t \rangle, & \text{else} \end{cases}$$

\bigcirc Search for a collection of orbits of M which form an RDS.

Let b_i be the number of elements of an RDS equal to $i \mod n$.

Lemma

For a (m, n, k, λ) -RDS with $d = \operatorname{gcd}(n, m)$:

$$\sum_{i=0}^{n-1} b_i = k,$$
$$\sum_{i=0}^{n-1} b_i^2 = k + \lambda \cdot (m-d)$$

where $|b_i| \leq m$.

Example: Complement of the (73, 9, 1)-Singer difference set D

Does the (73, 64, 56)-DS lift to a (73, 7, 64, 8)-RDS?

- 2 is a multiplier of D, so $M_1 = \langle 2 \rangle_9$
- $M = \langle 2 \rangle_9$ in \mathbb{Z}_{511}
- gcd(73,7) = 1, so $\mathbb{Z}_{511} = \mathbb{Z}_{73} \times \mathbb{Z}_{7}$.
- Orbits of M are $\langle 0 \rangle_1$ and $\langle o_1 \rangle_9, \ldots \langle o_8 \rangle_9$.
- $D = \langle 1 \rangle_9$ (or any of the 9-orbits)

Orbits in the (73, 7, 64, 8)-RDS

			[7]		
_	[73]	$\langle 0 \rangle_1$	$\langle 1 \rangle_3$	$\langle 3 \rangle_3$	
-	$\langle 0 \rangle_1$	$\langle 0 \rangle_1$	$\langle 219 \rangle_3$	$\langle 73 \rangle_3$	1
	$\langle 1 \rangle_9$	$\langle 77 \rangle_9$	$\langle 1 angle_9 \ \langle 37 angle_9 \ \langle 183 angle_9$	$\langle 55 \rangle_9 \ \langle 75 \rangle_9 \ \langle 223 \rangle_9$	0
	$\langle 3 \rangle_9$	$\langle 119 \rangle_9$	$\langle 23 angle_9 \ \langle 79 angle_9 \ \langle 85 angle_9$	$\langle 3 angle_9 \ \langle 19 angle_9 \ \langle 111 angle_9$	9
	$\langle 5 \rangle_9$	$\langle 7 \rangle_9$	$\langle 39 angle_9 \ \langle 93 angle_9 \ \langle 239 angle_9$	$\langle 5 angle_9 \ \langle 83 angle_9 \ \langle 87 angle_9$	9
	$\langle 9 \rangle_9$	$\langle 91 \rangle_9$	$\langle 9 angle_9 \ \langle 57 angle_9 \ \langle 109 angle_9$	$\langle 41 \rangle_9 \langle 187 \rangle_9 \langle 255 \rangle_9$	9
	$\langle 11 \rangle_9$	$\langle 21 \rangle_9$	$\langle 11 \rangle_9 \ \langle 15 \rangle_9 \ \langle 95 \rangle_9$	$\langle 47 \rangle_9 \ \langle 103 \rangle_9 \ \langle 117 \rangle_9$	9
-	$\langle 13 \rangle_9$	$\langle 175 \rangle_9$	$\langle 43 \rangle_9 \ \langle 29 \rangle_9 \ \langle 51 \rangle_9$	$\langle 13 \rangle_9 \ \langle 31 \rangle_9 \ \langle 125 \rangle_9$	9
	$\langle 17 \rangle_9$	$\langle 63 \rangle_9$	$\langle 53 angle_9 \ \langle 191 angle_9 \ \langle 107 angle_9$	$\langle 17 \rangle_9 \ \langle 45 \rangle_9 \ \langle 59 \rangle_9$	9
-	$\langle 25 \rangle_9$	$\langle 35 \rangle_9$	$\langle 25 \rangle_9 \ \langle 123 \rangle_9 \ \langle 127 \rangle_9$	$\langle 27 \rangle_9 \ \langle 61 \rangle_9 \ \langle 171 \rangle_9$	9
-		10	18	36	

Orbits in the (73, 7, 64, 8)-RDS

			[7]		
	[73]	$\langle 0 \rangle_1$	$\langle 1 \rangle_3$	$\langle 3 \rangle_3$	
-	$\langle 0 \rangle_1$	$\langle 0 \rangle_1$			1
	$\langle 1 \rangle_9$				0
	$\langle 3 \rangle_9$	$\langle 119 \rangle_9$			9
	$\langle 5 \rangle_9$			$\langle 83 \rangle_9$	9
	$\langle 9 \rangle_9$			$\langle 187 \rangle_9$	9
-	$\langle 11 \rangle_9$			$\langle 103 \rangle_9$	9
-	$\langle 13 \rangle_9$		$\langle 29 \rangle_9$		9
-	$\langle 17 \rangle_9$		$\langle 191 \rangle_9$		9
	$\langle 25 \rangle_9$			$\langle 61 \rangle_9$	9
-		10	18	36	

Gordon (IDA/CCR-La Jolla)

Results

Known difference sets with $50 < k \le 256$

- 93 non-Singer-DS-complements, all eliminated except:
 - PG(5,3): (364, 121, 40), n = 5
 - PG(7,2): (255, 127, 63), n = 3, 7
- 8 Singer complements, found all lifts except
 - PG(2,11): (133, 121, 110), n = 5, 10
 - PG(2,13): (183, 169, 156), n = 2, 3, 4, 6, 12
- Some DS parameters are open ((2185, 105, 5), (1561, 105, 7), (1111, 111, 11), ...)
- Some parameters may have other difference sets

Conjecture

The only nontrivial difference sets with lifts are Singer complements.

Recall

A CW(n,k) is an $n \times n$ $(0,\pm 1)$ -matrix M such that $MM^T = kI_n$.

Theorem (Ang, 2003)

If a cyclic (m, n, k, λ) -RDS exists with m odd and $n \equiv 2 \pmod{4}$, then there is a proper CW(mn/2, k).

Product construction (Arasu and Seberry, 1998)

If proper $CW(n_1, k_1)$ and $CW(n_2, k_2)$ exist with $gcd(n_1, n_2) = 1$, then there is a proper $CW(n_1n_2, k_1k_2)$.

Theorem (Leung and Schmidt, 2011)

For k an odd prime power, there are a finite number of proper CW(n, k).

Settled Cases

All proper CW(n, k) are known for k = 2, 3, 4 (and maybe 5).

k	Known Proper $CW(n,k)$
2^{2}	<u>2m, 7</u>
3^{2}	<u>13</u> , 24, 26
4^{2}	14 <i>m</i> , <u>21</u> , <u>31</u> , <u>62</u> , <u>63</u>
5^{2}	<u>31</u> , 33, 62, 71, 124, 142
6^{2}	26m, 48m, 91, 168, 182
7^{2}	<u>57, 87, 114, 171</u>
8^{2}	42 <i>m</i> , 62 <i>m</i> , <u>73</u> , <u>127</u> , 217, 254, <u>511</u>
9^{2}	<u>91, 121, 182, 312, 364</u>
10^{2}	62m, 66m, 142m, 217, 231, 434, 497, 868, 994
11^{2}	$\underline{133}, \underline{665}$
12^{2}	182m, 336m, 273, 403, 744, 806, 819
13^{2}	183, 549
14^{2}	114m, 174m, 342m, 399, 609, 798
15^{2}	403, 429, 744, 806, 858, 923
16^{2}	146m, 254m, <u>273</u> , <u>341</u> , 434m, 511, 651, 682, <u>819</u> , 889
17^{2}	307
18^{2}	$\overline{182}m$, 242m, 624m, 847
19^{2}	<u>381</u>

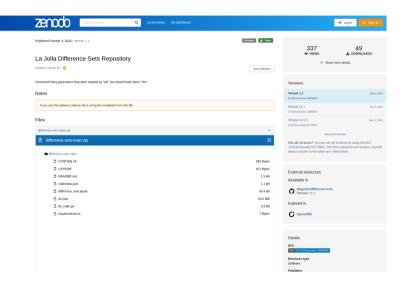
Types

- <u>RDS</u>
- product construction
- other constructions
- computer search
- RDS & product

October 2021 email from Robert Craigen

- Arranged a Zoom meeting to discuss archiving "Hadamardish" material,
- Ideally comprehensive, permanent, up-to-date,...
- Email followups, but no consensus about the "right" way.

The discussion had a big impact on my thinking

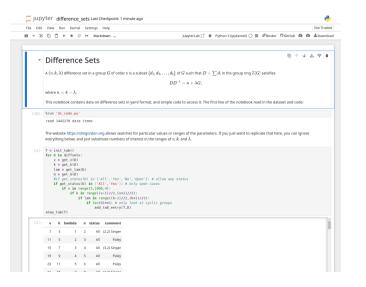

- I worry about my site's permanence,
- Went down many rabbit holes about FAIR data,...
- Mathematics is way behind other disciplines
- Progress is happening, slowly.

LJDSR 2.0

- Save data as a json file
- Write basic python or sage code to read, manipulate it in a jupyter notebook,
- Save as a github repo,
- Mirror on zenodo, getting permanence and a DOI.

Zenodo Mirror

37 / 40


Gordon (IDA/CCR-La Jolla)

Github Repo

Product ~ Solutions ~ Resources	 ✓ Open Source < Enterprise < Priking Artions			Q Search or jump to
	P main + P 1 Branch 🗞 3 Tags	Q, Go to file	↔ Code +	About
	🚱 dmgordo minor fixes	546a0cc - 15 minutes ag	 ③ 3 Commits 	Dataset of abelian difference sets and existence results
	CITATION.cff	First commit of difference sets data for github repository	last year	D Readme
		First commit of difference sets data for github repository	last year	View license C ⁴ Cite this repository +
	C README.md	First commit of difference sets data for github repository	last year	Artivity
	🗅 codemeta.json	First commit of difference sets data for github repository	last year	☆ 0 stars ⊙ 1 watching
	difference_sets.jpynb	First commit of difference sets data for github repository	last year	Y 0 forks
	🗅 ds.json	Updated Paley difference sets marked 'AIP which should	8 months ago	Report repository
	🗅 ds_code.py	minor fixes	15 minutes ago	Releases 3
	requirements.txt	First commit of difference sets data for github repository	last year	Cont 2024 update (Litest) on Oct 3, 2024
	README Idense			+ 2 releases
	The La Jolla Differer	Packages No packages published		
	The La Jolla Combinatorics Repository is sets, and circulant weighing matrices. Th presented here as a Juppter notebook. This is an experiment in making a FAIR (i (see <u>The FAIR Guiding Principles for scien</u> different approaches used by researcher Notebook seemed like the best current c	Languages Japper Notabeek 91.1% Pythan 8.9%		
	This repository contains a juon file with all the data from the paper, and python code to read it and doplay the results. It can be run interactively with <u>biology</u> or downloaded and run locally. Anyone withing to further develop the code to be research on difference sets is welcome to under the <u>CC_BY4.0</u> license (giving attribution to the original work).			
	To run the notebook with binder, click he	re: Elsundh Binder		
	1			

IDA

Jupyter Notebook

<u>IDA</u>

Gordon (IDA/CCR-La Jolla)

Questions?

