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Mutually unbiased bases

Two orthonormal bases {𝜙𝑗} and 𝜓𝑗′ defined in ℂ𝑑 are unbiased if

𝜙𝑗|𝜓𝑗′
2
=

1

𝑑
,

for every 𝑗, 𝑗′ = 1,…𝑑.

We say that 𝑚 orthonormal bases 𝜙𝑗
𝑘 , 𝑘 = 1,… ,𝑚, are mutually

unbiased (MU) if they are pairwise unbiased.



{{1,0}; {0,1}}

{{1,1};{1,-1}}



Maximal number of MU bases

#𝑀𝑈 𝑏𝑎𝑠𝑒𝑠 𝑖𝑛 ℂ𝑑 ≤ 𝑑 + 1

In prime power dimensions 𝑑 = 𝑝1
𝑟1, there are 𝑑 + 1 MU bases

When 𝑑 ≠ 𝑝1
𝑟1, nobody knows the maximal number of MU bases (e.g. 𝑑 = 6)

𝑑 = 𝑝1
𝑟1𝑝2

𝑟2𝑝3
𝑟3 … (𝑝1

𝑟1 < 𝑝2
𝑟2< 𝑝3

𝑟3 …)

#𝑀𝑈 𝑏𝑎𝑠𝑒𝑠 𝑖𝑛 ℂ𝑑 ≥ 𝑝1
𝑟1 + 1



The lower bound is not tight!

#𝑀𝑈 𝑏𝑎𝑠𝑒𝑠 𝑖𝑛 ℂ𝑑 ≥ 𝑝1
𝑟1 + 1

When 𝑑 = 262 = 22 132,   𝑝1
𝑟1 + 1 = 4 + 1 = 5

but 6 MU bases are known

Wocjan, P., & Beth, T. (2005). New construction of mutually 

unbiased bases in square dimensions. Quantum Information & 
Computation, 5(2), 93-101.

𝑤 + 2 MU bases can be constructed in any
square dimension 𝑑 = 𝑠2 provided that there
are 𝑤 mutually orthogonal Latin squares of
order 𝑠.

There are 4 MOLS of order 26

Ch. J. Colbourn and J. H. Dinitz, editors. 
The CRC Handbook of Combinatorial 
Designs. CRC Press, Boca Raton FL, 1996.



𝑑 = 𝑝1
𝑟1𝑝2

𝑟2𝑝3
𝑟3 … (𝑝1

𝑟1 < 𝑝2
𝑟2< 𝑝3

𝑟3 …)

𝑝1
𝑟1 + 1 ≤ #𝑀𝑈 𝑏𝑎𝑠𝑒𝑠 𝑖𝑛 ℂ𝑑 ≤ 𝑑 + 1

Key question for our work

Is the lower bound tight in 
relatively low dimensions?

𝑑 ≤ 30

Key question

Is the upper bound tight in 
non-prime power dimensions?



Flatness imposition operator

𝜑 = σ𝑗=1
𝑑 𝜙𝑗|𝜑 𝜙𝑗

Non-linear operator that takes a vector 𝜑 ∈ ℂ𝑑, and an orthonormal basis 𝐴 = 𝜙𝑗 ⊂ ℂ𝑑

and produces a normalized vector 𝑇𝐴𝜙 that is MU to the basis 𝐴.

𝑇𝐴𝜑 = σ𝑗=1
𝑑 1

𝑑

𝜙𝑗|𝜑

𝜙𝑗|𝜑
𝜙𝑗 , ∀𝜑 ∈ ℂ𝑑

Removes the absolute 
value of projections

Imposes flatness

Goyeneche, D. M., & de La Torre, A. C. (2008). State determination: An iterative algorithm. Physical Review A 77(4), 042116.

Important fact:
Phases do not change

𝜑 is flat with respect to the basis 𝐴 if and only if 𝑇𝐴𝜑 = 𝜑



Algorithm for finding MU vectors

Define two orthonormal bases 𝐴 = 𝜑𝑗 and 𝐵 = 𝜓𝑗 in ℂ𝑑

𝑇𝐴𝜑 = σ𝑗=1
𝑑 1

𝑑

𝜙𝑗|𝜑

𝜙𝑗|𝜑
𝜙𝑗

𝑇𝐵𝜑 = σ𝑗=1
𝑑 1

𝑑

𝜓𝑗|𝜑

𝜓𝑗|𝜑
𝜓𝑗

∀𝜑 ∈ ℂ𝑑

Study convergence of the sequence

𝜑𝑛 = 𝑇𝐵𝑇𝐴
𝑛𝜑0

Goyeneche, D., & de la Torre, A. C. (2014).

Quantum tomography meets dynamical 
systems and bifurcations theory. J. Math. Phys. 55(6).

Define the flatness operators



Convergence on the Bloch (Poincaré) sphere

Convergence of the sequence 𝜑𝑛 = 𝑇𝐵𝑇𝐴
𝑛𝜑0

when {𝐴, 𝐵} are not MU
Convergence of the sequence 𝜑𝑛 = 𝑇𝐵𝑇𝐴

𝑛𝜑0
when {𝐴, 𝐵} are MU. 

(Flatness corresponds to maximal circles!)

Goyeneche, D., & de la Torre, A. C. (2014). Quantum tomography 
meets dynamical systems and bifurcations theory. J. Math. Phys. 55(6).



Dynamical systems

Desired solutions are common fixed points

𝑇𝐴𝜑 = 𝑇𝐵𝜑 = 𝜑 if and only if 𝜑 is MU to the pair of bases {𝐴, 𝐵}

Sweet: MU vectors are always attractive fixed points

Bitter: 𝑇𝐵𝑇𝐴𝜑 = 𝜑 does not imply 𝑇𝐴𝜑 = 𝑇𝐵𝜑 = 𝜑

There are more attractive fixed points than MU vectors

Goyeneche, D., & de la Torre, A. C. (2014). Quantum tomography 
meets dynamical systems and bifurcations theory. J. Math. Phys. 55(6).



Convergence on the Bloch (Poincaré) sphere

Common fixed point 2Common fixed point 1

Set of fixed points for 𝑻𝑨

A={{1,0}; {0,1}}

Set of fixed points for 𝑻𝑩

= {1,i}{1,-i} =

B={{1,1};{1,-1}}

3 MU bases in ℂ2

A, B, C 
C={{1,i};{1,-i}}



How to reach the desired fixed points?

Smart approach: Common fixed point theorems

Problem:

Common fixed point theorems from the literature seem not to be
useful for us. State a suitable theorem seems to be hard.

Quick and dirty approach: Discard undesired solutions and keep trying.

Problem: The fraction desired/undesired solutions is very small in not-
so-small dimensions (𝑑 > 10), so most of the time the algorithm is
discarding undesired fixed points.

Our approach



Metrics in the probability space

Hellinger distance

Distributional “distance”



Properties of the distributional “distance”



Metric in the Hilbert space

Bures metric for pure states

Note that 𝑑 Φ,Ψ = 𝑑 Φ, 𝑒𝑖𝛼Ψ ,  for any 𝛼 ∈ [0, 2𝜋)

Property
Two different elements
can have the same
(flat) probability
distributions



What’s new in our current approach?

Efficient coding in Python

Use GPU to accelerate simulations

Chao2 to estimate the number of undetected MU vectors

Two workstations available at QuDIT

(1 workstation with exclusive dedication to the MU bases problem)



Results



Preliminar studies

16 triplets 𝕀, 𝐹6, 𝐻𝑖
90 vectors (no triplet)

10 triplets 𝕀, 𝐷6(0), 𝐻𝑖



Preliminar studies

16 triplets 𝕀, 𝐹6, 𝐻𝑖

10 triplets 𝕀, 𝐷6(0), 𝐻𝑖

Bruzda – Tadej – Życzkowski catalog

Equivalent?

90 vectors (no triplet)



48 MU vectors to 𝐹6

(6 elements)

(6 elements)

(36 elements)

Goyeneche, D. (2013). Mutually unbiased triplets from non-affine families of 
complex Hadamard matrices in dimension 6. J. Phys. A: Math & Theor., 46(10), 105301.

𝜏 = −𝑒𝑖𝜋/6



Goyeneche, D. (2013). Mutually unbiased triplets from non-affine families of 
complex Hadamard matrices in dimension 6. J. Phys. A: Math & Theor., 46(10), 105301.



Goyeneche, D. (2013). Mutually unbiased triplets from non-affine families of 
complex Hadamard matrices in dimension 6. J. Phys. A: Math & Theor., 46(10), 105301.



Convergence for vectors MU to 𝕀, 𝐹𝑑
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Estimating the total number of MU vectors

Chao2 estimation is a non-
parametric method to estimate
total species richness from
incidence (presence/absence)
data across multiple samples,
accounting for unseen species
based on the number of rare
ones.

Chao, A. (1987). Estimating the population size for 

capture-recapture data with unequal catchability.
Biometrics, 783-791.

Number of generated MU vectors
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MU vectors for
quaternary CHM

P. H. J. Lampio, F. Szöllősi, P. R. J. Östergård: The 
quaternary complex Hadamard matrices of orders 10, 
12, and 14. Discrete Math., 313:189–206 (2013).

https://wiki.aalto.fi/display/QCHmatrices/Home



MU vectors for
quaternary CHM

m= matrix label
#v= number of vectors
k = size of the largest orthogonal clique
c = number of distinct cliques of that size.

P. H. J. Lampio, F. Szöllősi, P. R. J. Östergård: The 
quaternary complex Hadamard matrices of orders 10, 
12, and 14. Discrete Math., 313:189–206 (2013).

https://wiki.aalto.fi/display/QCHmatrices/Home

10 matrices



MU vectors for
quaternary CHM

P. H. J. Lampio, F. Szöllősi, P. R. J. Östergård: The 
quaternary complex Hadamard matrices of orders 10, 
12, and 14. Discrete Math., 313:189–206 (2013).

https://wiki.aalto.fi/display/QCHmatrices/Home

319 matrices

10 matricesm= matrix label
#v= number of vectors
k = size of the largest orthogonal clique
c = number of distinct cliques of that size.



MU vectors for
quaternary CHM

P. H. J. Lampio, F. Szöllősi, P. R. J. Östergård: The 
quaternary complex Hadamard matrices of orders 10, 
12, and 14. Discrete Math., 313:189–206 (2013).

https://wiki.aalto.fi/display/QCHmatrices/Home

319 matrices

10 matrices

752 matrices

m= matrix label
#v= number of vectors
k = size of the largest orthogonal clique
c = number of distinct cliques of that size.
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