Conditional Recurrences and 2-Quasi-Cyclic Codes

Emre Güday¹ and Murat Sahin²

Bilecik Seyh Edebali University¹ Ankara University²

8th Workshop on Design Theory, Hadamard Matrices and Applications (Hadamard 2025) May 26-30, 2025

• • • • • • • • • • • • • •

Outline

- Purpose: Construction of linear codes with desirable properties.
- Method:
 - * Conditional linear recurrence relation
 - * Some facts about the cyclic codes
- Result: 2-quasi-cyclic codes
 - * 1-weight, and 2-weight codes,
 - * Projective codes,
 - * Almost Maximum Distance Seperable (AMDS) codes.

Isomorphism Between \mathbb{F}_q^n and $\mathbb{F}_q[x]/\langle x^n-1\rangle$

\mathbb{F}_q^n	\cong	$\mathbb{F}_q[x]/\langle x^n-1\rangle =: \mathcal{R}$
(c_0,c_1,\ldots,c_{n-1})		$c_0 + c_1 x + \dots + c_{n-1} x^{n-1}$
$\mathbf{C} \subset \mathbb{F}_q^n$ code		$\mathbf{C}\subset \mathcal{R}$
$\mathbf{C} \leq \mathbb{F}_q^n$ linear code		$\mathbf{C} \leq \mathcal{R}$
Cyclic Codes		Ideals

イロト イヨト イヨト イヨト

э.

- A linear code is called **quasi-cyclic** if there is some integer *l* such that every cyclic shift of a codeword by *l* places is again a codeword. A **cyclic code** is a quasi-cyclic code with *l* = 1.
- The number of nonzero components of $\mathbf{x} \in \mathbb{F}_q^n$ is called the **weight** of \mathbf{x} and is denoted by $w(\mathbf{x})$.
- Let A_i denote the **number of codewords** (or frequency) with Hamming weight *i* in a code C of length *n*.
- The set $\{(0,1), (1,A_1), \ldots, (n,A_n)\}$ is called the weight distribution of the code C.
- A code C is called *t*-weight if it has exactly *t* non-zero weights.

イロト イヨト イヨト イヨト

The Conditional Linear Recurrence Relation

Definition 1

Let \mathbb{F}_q be a finite field, and let $a_{0,1}, a_{0,2}, a_{1,1}, a_{1,2}$ be elements of \mathbb{F}_q such that $a_{0,2}a_{1,2} \neq 0$. The conditional linear recurrence relation is defined for all $n \geq 2$ by:

$$s_n = \begin{cases} a_{0,1}s_{n-1} + a_{0,2}s_{n-2}, & n \equiv 0 \pmod{2}, \\ a_{1,1}s_{n-1} + a_{1,2}s_{n-2}, & n \equiv 1 \pmod{2}. \end{cases}$$
(1)

A sequence $\{s_n\}_{n=0}^{\infty}$ that satisfy relation (1) is called a conditional sequence. The pair (s_0, s_1) is referred as the initial values of the sequence.

Lemma 1 (Panario et al., [5])

Let $\{s_n\}_{n=0}^{\infty}$ be a conditional sequence satisfying the relation (1). The sequence $\{s_n\}_{n=0}^{\infty}$ satisfies the linear recurrence relation,

$$s_{n+4} = (a_{0,1}a_{1,1} + a_{0,2} + a_{1,2})s_{n+2} - a_{0,2}a_{1,2}s_n.$$

• It is known that the **linear recurrence relations** over any finite field generate the **cyclic codes** which is an important family of linear codes.

Problem 1

Construction of codes which have good properties by using CLRR.

- S: The set of all conditional sequences satisfying the relation (1)
- \mathcal{L} : The set of all linear recurring sequences satisfying the relation (2)

•
$$A := a_{0,1}a_{1,1} + a_{0,2} + a_{1,2}, B := -a_{0,2}a_{1,2}$$

- $f_{(2)}(x)$: The characteristic polynomial of $s_{n+2} = As_{n+1} + Bs_n$
- $\mathbf{C}^{(2)}$: 2-dimensional cyclic code corresponding to $f_{(2)}(x)$
- $f_{(4)}(x)$: The characteristic polynomial of $s_{n+4} = As_{n+2} + Bs_n$
- ${f C}^{(4)}$: 4-dimensional cyclic code corresponding to $f_{(4)}(x)$

Lemma 2 (Güday and Sahin, [3])

If ord(f) = N, then the code $\mathbf{C}^{(4)}$ is a [2N, 4] code over \mathbb{F}_q .

Lemma 3 (Güday and Sahin, [3])

The code $\mathbf{C}^{(4)}$ is permutation equivalent to $(\mathbf{C}^{(2)})^2$.

- We can construct a subcode of $C^{(4)}$ using the conditional recurrences.
- This code is permutation equivalent to a subcode of the code $\left(\mathbf{C}^{(2)}
 ight)^2$.

4 日本 4 周本 4 日本 4 日本

Some Properties of the Conditional Sequences

Lemma 4

The set S is a 2-dimensional subspace of \mathcal{L} over \mathbb{F}_q .

Result 1

Let $\{s_n\}_{n=0}^{\infty}$ be an arbitrary conditional sequence that satisfies relation (1). Then the sequence is periodic.

• • • • • • • • • • • •

The Code Construction

Let $f(x) = f_{(2)}(x) = x^2 - Ax - B \in \mathbb{F}_q[x]$ be a polynomial, where $A = a_{0,1}a_{1,1} + a_{0,2} + a_{1,2}$, and $B = -a_{0,2}a_{1,2}$. The code C_f , using the conditional recurrence relation (1), is defined by

$$\mathbf{C}_{f} = \left\{ (s_{n})_{n=0}^{2N-1} : \ s_{n} = \sum_{j=1}^{2} a_{i,j} s_{n-j}, \ n \equiv i \pmod{2}, \ (s_{0}, s_{1}) \in \mathbb{F}_{q}^{2} \right\},$$
(3)

where N = ord(f).

- \mathbf{C}_f is a [2N, 2] code over \mathbb{F}_q .
- C_f is 2-quasi-cyclic code.

Theorem 1 (Güday and Sahin, [3])

Let the weight distribution of the code $C^{(2)}$ a) be $\{(0, 1), (w_1 = N - \frac{N}{e}, B_1), (w_2 = N, B_2)\}$. i) If e = 2, then $C^{(4)}$ is a 4-weight code, ii) If e > 2, then $C^{(4)}$ is a 5-weight code. b) be $\{(0, 1), (w_1 = N - \frac{N}{p}, B_1), (w_2 = N, B_2)\}$.

i) If p = 2, then $\mathbf{C}^{(4)}$ is a 4-weight code, ii) If p > 2, then $\mathbf{C}^{(4)}$ is a 5-weight code.

The weight distribution of $C^{(4)}$ is given in Table 1.

4 D N 4 🗐 N 4 E N 4

Table 1: The Weight Distribution of $\mathbf{C}^{(4)}$

For $e = 2$ (or $p = 2$)		For $e > 2$ (or $p > 2$)	
Weight	Frequency	Weight	Frequency
0	1	0	1
w_1	$2B_1$	w_1	$2B_1$
$2w_1$	$B_1^2 + 2B_2$	w_2	$2B_2$
$3w_1$	$2B_1B_2$	$2w_1$	B_{1}^{2}
$4w_1$	B_{2}^{2}	$w_1 + w_2$	$2B_1B_2$
		$2w_2$	B_{2}^{2}

イロト イヨト イヨト イヨト

Theorem 2 (Güday and Sahin, [3])

If $\mathbf{C}^{(2)}$ is a 1-weight code with nonzero weight $\{w_1 = N - \frac{N}{e}\}$, then the code $\mathbf{C}^{(2r)}$ is an *r*-weight code with nonzero weights $\{w_1, 2w_1, \ldots, rw_1\}$ and respective frequencies $\{r(q^2 - 1), \binom{r}{2}(q^2 - 1)^2, \ldots, (q^2 - 1)^r\}$.

Result 2

If $\mathbf{C}^{(2)}$ is a 1-weight code with nonzero weight $\{w_1 = N - \frac{N}{e}\}$, then $\mathbf{C}^{(4)}$ is a 2-weight code with nonzero weights $\{w_1, 2w_1\}$ and respective frequencies $\{2(q^2-1), (q^2-1)^2\}$.

Properties of the Conditional Sequences

Lemma 5

Let $a_{0,1}a_{1,1} \neq 0$. If $s_n = 0$ and $s_{n+1} \neq 0$, then $s_{n+2} \neq 0$ for all $n \in \mathbb{N}$.

Proof

Let $s_n = 0$ and $s_{n+1} \neq 0$ for some $n \in \mathbb{N}$. By the definition of relation (1),

$$s_{n+2} = a_{i,1}s_{n+1} + a_{i,2}s_n$$
$$= a_{i,1}s_{n+1}$$

which is nonzero, since $a_{i,1} \neq 0$.

• • • • • • • • • • • •

Properties of the Conditional Sequences

Lemma 6

Let $a_{0,1}a_{1,1} \neq 0$. The pairs (s_0, s_2) and (s_1, s_3) run the set \mathbb{F}_q^2 when (s_0, s_1) runs \mathbb{F}_q^2 .

Proof

By definition, we can write $s_2 = a_{0,1}s_1 + a_{0,2}s_0$ and $s_3 = a_{1,1}s_2 + a_{1,2}s_1$. Since $a_{0,1}, a_{0,2}, a_{1,1}$, and $a_{1,2}$ are nonzero, the desired result is obtained.

• • • • • • • • • • • •

On the Minimum Distance of the Code C_f

Theorem 3

Let $d(\mathbf{C}^{(2)}) = w_1$. If $a_{0,1}a_{1,1} \neq 0$, then $d(\mathbf{C}_f) = 2w_1$, or $w_1 + w_2$.

Proof

Suppose that $C^{(2)}$ is a two-weight code with nonzero weights $\{w_1, w_2\}$. By Lemma 3, all possible weights of the code $C^{(4)}$ is of the form

i) $0 + w_1$ ii) $w_1 + w_1$ iii) $w_2 + w_2$ iv) $w_1 + w_2$

By Lemma 5, parts (i) and (ii) can not be happened. Therefore, the minimum distance can be at least $2w_1$. On the other hand, since there exist codewords which has the weight w_1 that correspond the initial values $(0, s_1)$ with $s_1 \neq 0$ or $(s_0, 0)$ with $s_0 \neq 0$, part (v) also cannot occur. If $\mathbf{C}^{(2)}$ is a one-weight code, then $d(\mathbf{C}_f) = 2w_1$, clearly.

Projective, AMDS, and 1-Weight Code

Theorem 4

Let the polynomial $f(x) = x^2 - Ax - B = (x - \alpha)(x - \beta)$ be irreducible over \mathbb{F}_q , where $A = a_{0,1}a_{1,1} + a_{0,2} + a_{1,2}$, $B = -a_{0,2}a_{1,2}$. Let e = q + 1, where e is the multiplicative order of element $\frac{\beta}{\alpha}$ in $\mathbb{F}_{q^2}^*$. Then the code \mathbf{C}_f is a 1-weight code with nonzero weight $\{2(N - \frac{N}{e})\}$. Furthermore, the code \mathbf{C}_f is AMDS and projective if e = N = q + 1.

Proof

Since f(x) is irreducible over \mathbb{F}_q and e = q + 1, $\mathbf{C}^{(2)}$ is a 1-weight code with weight $w_1 = N - \frac{N}{e}$. By Result 2, $\mathbf{C}^{(4)}$ has nonzero weights $\{w_1, 2w_1\}$. On the other hand, it is known from Lemma 5 that the code \mathbf{C}_f does not have any codeword with weight w_1 . Thus \mathbf{C}_f is a 1-weight code with the nonzero weight $\{2w_1\}$. If e = N, then the code is projective by [6] and the parameters [n, k, d] of the code \mathbf{C}_f satisfy the bound d = n - k which means that the code is AMDS.

Two-Weight Code

In this case,

$$s_n = \begin{cases} a_{0,2}s_{n-2}, & n \equiv 0 \pmod{2}, \\ a_{1,2}s_{n-2}, & n \equiv 1 \pmod{2}. \end{cases}$$
(4)

 $f_{(2)}(x) = (x - a_{0,2})(x - a_{1,2}), N = lcm(o(a_{0,2}), o(a_{1,2})).$

Theorem 5

Suppose that $a_{0,1} = a_{1,1} = 0$ and $a_{0,2} \neq a_{1,2}$. Then the code C_f is a 2-weight code with nonzero weights $\{w_2, 2w_2\}$ and respective frequencies $\{2(q-1), (q-1)^2\}$. Furthermore, if e = N, then the code is projective.

Proof

Since $a_{0,2}, a_{1,2} \in \mathbb{F}_q^*$, $\mathbf{C}^{(2)}$ is 2-weight code. Suppose that $a_{0,2} \neq a_{1,2}$. If e = N, then the code is projective by [6].

・ロト ・ 同ト ・ ヨト ・ ヨト

REFERENCES

- Calderbank, R. and Kantor, W., M. The Geometry of Two-Weight Codes. Bull. London Math. Soc., 18, pp.97-122 (1986)
- [2] Delsarte, P. Weights of Linear Codes and Strongly Regular Normed Spaces. Discrete Mathematics, 3, pp.47-64 (1972)
- [3] Güday, E., Sahin, M. Linear Recurring Sequences and Weight Distributions of Some Cyclic Codes. *Applicable Algebra in Engineering, Communication and Computing*, accepted for publication.
- [4] Lidl, R. and Niederreiter, H. Finite Fields. Cambridge University Press, New York (1997)
- [5] Panario, D., Sahin, M., and Wang, Q. A family of Fibonacci-like conditional sequences. *Integers* 13, (A78) (2013)
- [6] Shi, M., Zhang, Z., and Solé, P. Two-Weight Codes and Second Order Recurrences. *Chinese Journal of Electronics*, Vol. 28, No.6, pp. 1127-1130 (2019)

э

< □ > < 同 > < 三 > < 三 >

Thank you!

< □ > < □ > < □ > < □ > < □ >