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Definition: Let F : V(p)
n → V(p)

m be a function. The Walsh transform of F
is the complex valued function

WF (a, b) =
∑

x∈V(p)
n

ϵ⟨a,F (x)⟩m−⟨b,x⟩n
p , ϵp = e2πi/p,

where ⟨, ⟩k denotes a non-degenerate inner product in V(p)
k .

If V(p)
k = Fk

p , one may take the conventional dot product.

If V(p)
k = Fpk , the standard inner product is ⟨b, x⟩k = Trk1(bx), where Trkr

denotes the trace function from Fpk to Fpr .

A function F : V(p)
n → V(p)

m is called a bent function if |WF (a, b)| = pn/2

for all nonzero a ∈ V(p)
m and b ∈ V(p)

n .

If m = 1, then F is also called a p-ary bent function. The Walsh

transform of a p-ary function F : V(p)
n → Fp is of the form

WF (1, b) = WF (b) =
∑

x∈V(p)
n

ϵF (x)−⟨b,x⟩n
p .

If m > 1, then F is also called a vectorial bent function. The p-ary

functions Fa(x) =< a,F (x) >m for nonzero a ∈ V(p)
m are called the

component functions of F .
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Construction of p-ary bent functions with a complete spread:

Let n = 2m. Consider the partition Ω = {U0,U
∗
1 , . . . ,U

∗
pm} of V(p)

n , where

• Ui ≤ V(p)
n and dim(Ui ) = m for all 0 ≤ i ≤ pm,

• Ui ∩ Uj = {0} for all 0 ≤ i < j ≤ pm,

• U∗
i = Ui \ {0}, for all 1 ≤ i ≤ pm, (i.e., {U0,U1, . . . ,Upm} is a

complete spread of V(p)
n ).

One can obtain a bent function from V(p)
n to Fp as follows.

I) For every c ∈ Fp, the elements of exactly pm−1 of U∗
j , 1 ≤ j ≤ pm

are mapped to c.

II) The elements of U0 are mapped to a fixed c0 ∈ Fp.
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Definition: Let ◦ be a binary operation on an m-dimensional vector space

V(p)
m , without loss of generality Fpm , satisfying

I) x ◦ y = 0 ⇒ x = 0 or y = 0,

II) (x + y) ◦ s = (x ◦ s) + (y ◦ s) and s ◦ (x + y) = (s ◦ x) + (s ◦ y),
for all x , y , s ∈ Fpm . Then P = (Fpm ,+, ◦) is called a presemifield.

A presemifield, for which there is an element e ̸= 0 such that
e ◦ x = x ◦ e = x for all x ∈ Fpm , is a semifield.

Let n = 2m and V(p)
n = Fpm × Fpm . Consider {U,Us : s ∈ Fpm}, where

Us = {(x , s◦x) : x ∈ Fpm} and U = {(0, y) : y ∈ Fpm}.
Then {U,Us : s ∈ Fpm} is the semifield spread.

If the semifield is the finite field, i.e., s ◦ x = sx , then {U,Us : s ∈ Fpm}
is the Desarguesian spread.
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Recall: Construction of p-ary bent functions with a complete spread

Let n = 2m. Consider the partition Ω = {U,U∗
1 , . . . ,U

∗
pm} of V(p)

n . One

can obtain a bent function from V(p)
n to Fp as follows.

I) For every c ∈ Fp, the elements of exactly pm−1 of U∗
j , 1 ≤ j ≤ pm

are mapped to c.

II) The elements of U are mapped to a fixed c0 ∈ Fp.

Definition (Anbar, Meidl, 2022): Let n = 2m, U ≤ V(p)
n and

dim(U) = m. A partition Ω = {U,A1, . . . ,AK} of V(p)
n is called a normal

bent partition of depth K if every function from V(p)
n to Fp with the

following properties, is a bent function.

I) Every c ∈ Fp has exactly K/p of the sets A1, . . . ,AK in its preimage

set f −1(c) = {x ∈ V(p)
n : f (x) = c},

II) f (x) = c0 for all x ∈ U and some fixed c0 ∈ Fp.



Generalized semifield spreads

Given a (pre)semifield P = (Fpm ,+, ◦), consider the (pre)semifield
Pd = (Fpm ,+, ⋆) obtained by defining x ⋆ y with the equation

Trm1 (x(b ⋆ y)) = Trm1 (b(x ◦ y)) for all b, x , y ∈ Fpm .

Then Pd is called the dual of P.



Let P = (Fpm ,+, ◦) be a (pre)semifield, m, k, l ∈ Z+ such that k | m,
e ≡ pl mod (pk − 1), gcd(pm − 1, e) = 1. Consider the following
partition of Fpm × Fpm .

Ω1 = {U,A(γ) : γ ∈ Fpk}

A(γ) =
⋃

s∈Fpm :Trmk (s)=γ

U∗
s , Us = {(x , s◦xe) : x ∈ Fpm},

U = {(0, y) : y ∈ Fpm}, U∗
s = Us \ {(0, 0)},

Theorem (Anbar, K., Meidl, 2023): Suppose that P = (Fpm ,+, ◦) is a
(pre)semifield such that the dual Pd = (Fpm ,+, ⋆) satisfies

x ⋆ (cy) = c(x ⋆ y) for all x , y ∈ Fpm , c ∈ Fpk ,

(i.e., Pd is right Fpk -linear ).
Then Ω1 is a bent partition of Fpm × Fpm .
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Let P = (Fpm ,+, ◦) be a (pre)semifield, m, k, l ∈ Z+ such that k | m,
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Recall: Let P = (Fpm ,+, ◦) be a (pre)semifield, m, k, l ∈ Z+ such that
k | m, e ≡ pl mod (pk − 1), gcd(pm − 1, e) = 1, and de ≡ 1
mod (pm − 1).

▶ Ω1 = {U,A(γ) : γ ∈ Fpk},where A(γ) =
⋃

s∈Fpm :Trmk (s)=γ U
∗
s ,

Us = {(x , s ◦ xe) : x ∈ Fpm},U∗
s = Us \ {(0, 0)},

U = {(0, y) : y ∈ Fpm},
▶ Ω2 = {V ,B(γ) : γ ∈ Fpk}, where

B(γ) =
⋃

s∈Fpm :Trmk (s)=γ V
∗
s ,V

∗
s = Vs \ {(0, 0)},

Vs = {(s ◦ xd , x) : x ∈ Fpm}, V = {(x , 0) : x ∈ Fpm}.
Remark: The semifield spread {U,Us : s ∈ Fpm}, where

U = {(0, y) : y ∈ Fpm} and Us = {(x , s ◦ x) : x ∈ Fpm},

can be obtained from the partitions Ω1 and Ω2 by taking k = m.

Proposition (Anbar, Meidl, 2022): Let k < m and consider the bent
partitions Ω1 and Ω2 constructed with the finite field operation. Then the
functions obtained from Ω1 and Ω2 can not be obtained from any spread.
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Recall: If F : V(p)
n → Fp is a p-ary bent function, then

|WF (b)| = |
∑

x∈V(p)
n

ϵF (x)−⟨b,x⟩n
p | = pn/2,

for all b ∈ V(p)
n .

The Walsh transform of a p-ary bent function F : V(p)
n → Fp satisfies

WF (b) = ζpn/2ϵF
∗(b)

p

for a function F ∗: V(p)
n → Fp and for some ζ ∈ {±1,±i} for all b ∈ V(p)

n .
The function F ∗ is called the dual of F .

If WF (b) = ζpn/2ϵ
F∗(b)
p for all b ∈ V(p)

n for some ζ ∈ {±1,±i}, then F is
called weakly regular.
If ζ = 1, then F is called regular.

Proposition: If F is a weakly regular bent function, then F ∗ is a bent
function.

Question: Is the set of the duals of the bent functions obtained from Ω1

and Ω2 obtained from a bent partition?
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Proposition: If F is a weakly regular bent function, then F ∗ is a bent
function.

Question: Is the set of the duals of the bent functions obtained from Ω1

and Ω2 obtained from a bent partition?
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Recall: Let P = (Fpm ,+, ◦) be a (pre)semifield, m, k, l ∈ Z+ such that
k | m, e = pk + pl − 1, gcd(pm − 1, e) = 1, and de ≡ 1 mod (pm − 1).

▶ Ω1 = {U,A(γ) : γ ∈ Fpk},where A(γ) =
⋃

s∈Fpm :Trmk (s)=γ U
∗
s ,

Us = {(x , s ◦ xe) : x ∈ Fpm},U∗
s = Us \ {(0, 0)},

U = {(0, y) : y ∈ Fpm},

▶ Ω2 = {V ,B(γ) : γ ∈ Fpk}, where
B(γ) =

⋃
s∈Fpm :Trmk (s)=γ V

∗
s ,V

∗
s = Vs \ {(0, 0)},

Vs = {(s ◦ xd , x) : x ∈ Fpm}, V = {(x , 0) : x ∈ Fpm}.

Theorem (Anbar, Meidl, 2022): If P = (Fpm ,+, ◦) is the finite field, then
the set of the duals of the bent functions obtained from Ω1 is the set of
the duals of the bent functions obtained from Ω2 and vice versa.



Recall: Suppose that P = (Fpm ,+, ◦) is a (pre)semifield such that the
dual Pd = (Fpm ,+, ⋆) is right Fpk -linear, m, k, l ∈ Z+ such that k | m,
e ≡ pl mod (pk − 1), gcd(pm − 1, e) = 1. and d satisfies de ≡ 1
mod (pm − 1).

Ω1 = {U,A(γ) : γ ∈ Fpk},where A(γ) =
⋃

s∈Fpm :Trmk (s)=γ U
∗
s ,

Us = {(x , s ◦ xe) : x ∈ Fpm},U∗
s = Us \ {(0, 0)},

U = {(0, y) : y ∈ Fpm},
Given x ∈ F∗

pm , let ηx ∈ Fpm be the element satisfying x ⋆ η−1
x = 1 (for

convention set η0 = 0). Consider the following partition of Fpm × Fpm .

Θ1 = {W , C(β) : β ∈ Fpk}

C(β) =
⋃

s∈Fpm :Trmk (s)=β

W ∗
s Ws = {(sηx d , x) : x ∈ Fpm},

W = {(0, y) : y ∈ Fpm}, W ∗
s = Ws \ {(0, 0)},

Theorem (Anbar, K., Meidl, 2023): The partition Θ1 is a bent partition
of Fpm × Fpm and the set of the duals of the bent functions obtained from
Ω1 is the set of the duals of the bent functions obtained from Θ1 and
vice versa.
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e = pk + pl − 1, gcd(pm − 1, e) = 1.

Ω2 = {V ,B(γ) | γ ∈ Fpk},where
B(γ) =

⋃
s∈Fpm :Trmk (s)=γ V

∗
s ,V

∗
s = Vs \ {(0, 0)}

Vs = {(s◦xd , x) : x ∈ Fpm}, V = {(x , 0) : x ∈ Fpm}, .
Given x ∈ F∗

pm , let ηx ∈ Fpm be the element satisfying x ⋆ η−1
x = 1 (for

convention set η0 = 0). Consider the following partition of Fpm × Fpm .

Θ2 = {T ,D(β) : β ∈ Fpk},

D(β) =
⋃

s∈Fpm :Trmk (s)=β

T ∗
s , Ts = {(x , sηex ) : x ∈ Fpm},

T = {(x , 0) : x ∈ Fpm}, T ∗
s = Ts \ {(0, 0)}.

Theorem (Anbar, K., Meidl, 2023): The partition Θ2 is a bent partition
of Fpm × Fpm and the set of the duals of the bent functions obtained from
Ω2 is the set of the duals of the bent functions obtained from Θ2 and
vice versa.



Partial difference sets and generalized semifield spreads

Definition:
• Let G be a finite abelian group of order v . A κ-subset D of G is called
a (v , κ, λ, µ) partial difference set if

I) Every nonzero element of D can be written as a difference of
elements in D in exactly λ ways,

II) Every nonzero element of G \ D can be written as a difference of
elements in D in exactly µ ways.

• A partial difference set D is called regular if 0 ̸∈ D and −D = D.



Lemma (Ma, 1994): Let G be an abelian group of order v . Suppose that
D is a κ-subset of G which satisfies −D = D and 0 ̸∈ D. Then D is a
(v , κ, λ, µ) partial difference set if and only if for each non-principal
character χ of G we have

χ(D) =
β ±

√
∆

2
,

where β = λ− µ, δ = κ− µ and ∆ = β2 + 4δ.

Theorem (Anbar, K., Meidl, 2024): Let Ω1 (Ω2,Θ1,Θ2) be a bent
partition. Then any union of sets from Ω1(Ω2,Θ1,Θ2) is a regular
partial difference set.
Sketch of Proof: Let 1 ≤ r ≤ pk + 1 and Ψ be a union of r sets of the
partition Ω1( Ω2,Θ1,Θ2 ). The non-principal characters of Fpm × Fpm are

χu,v (x , y) = ϵ
Trm(ux+vy)
p , (u, v) ̸= (0, 0).

• If Ψ contains U∗(V ∗,W ∗,T ∗), then

χu,v (Ψ) =

{
pm − (r − 1)pm−k − 1 or
−(r − 1)pm−k − 1 .

• If Ψ does not contain U∗(V ∗,W ∗,T ∗), then

χu,v (Ψ) =

{
pm − rpm−k or
−rpm−k .
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Vectorial dual-bent functions

Recall: Let F : V(p)
n → V(p)

m be a vectorial bent function. Then the
component functions Fa(x) =< a,F (x) >m of F are p-ary bent functions

for all a ∈ V(p)
m \ {0}.

In this case, the set

{Fa : a ∈ V(p)
m \ {0}} = {⟨a,F ⟩m : a ∈ V(p)

m \ {0}}

can be seen as an m-dimensional vector space of bent functions over Fp

together with the 0-function.

{F ∗
a : a ∈ V(p)

m \ {0}} = {⟨a,F ⟩∗m : a ∈ V(p)
m \ {0}}

In general
⟨a1,F ⟩∗m + ⟨a2,F ⟩∗m ̸= ⟨a1 + a2,F ⟩∗m.
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Recall: Let F : V(p)
n → V(p)

m be a vectorial bent function. Then the
component functions Fa(x) =< a,F (x) >m of F are p-ary bent functions

for all a ∈ V(p)
m \ {0}. In this case, the set

{Fa : a ∈ V(p)
m \ {0}} = {⟨a,F ⟩m : a ∈ V(p)

m \ {0}}

can be seen as an m-dimensional vector space of bent functions over Fp

together with the 0-function.

Definition (Çeşmelioğlu, Meidl, Pott, 2018): A vectorial bent function

F : V(p)
n → V(p)

m is called vectorial dual-bent if the set

{(Fa)
∗ : a ∈ V(p)

m \ {0}} = {⟨a,F ⟩∗m : a ∈ V(p)
m \ {0}}

of the duals of the component functions of F also forms an
m-dimensional vector space of bent functions over Fp together with the
0-function.



Definition (Wang, Fu, Wei, 2023): Let k, n be positive integers with n
even, k ≤ n/2.

A vectorial dual-bent function F : V(p)
n → V(p)

k satisfies Condition A if

I) every component function Fα = ⟨α,F ⟩k , α ∈ V(p)
k \ {0}, of F is

regular (Type I), or
every component function Fα is weakly regular but not regular
(Type II),

II) For all α, β ∈ V(p)
k \ {0} with α+ β ̸= 0,

(Fα)
∗ + (Fβ)

∗ = (Fα + Fβ)
∗

A bent partition Ω = {Ac : c ∈ V(p)
k } of V(p)

n of depth pk satisfies
Condition C if

I) F∗
pAc = Ac for all c ∈ V(p)

k ,

II) every bent function which is obtained from Ω is regular (Type I), or
every bent function which is obtained from Ω is weakly regular but
not regular (Type II).



Theorem (Wang, Fu, Wei, 2023): Let k, n be positive integers with n
even, k ≤ n/2.

Let F : V(p)
n → V(p)

k , and Dc
F be the preimage set of c for every c ∈ V(p)

k .

I) If p is odd, then the following are equivalent.

i) F is a vectorial dual-bent function satisfying Condition A.

ii) Ω = {Dc
F : c ∈ V(p)

k } is a bent partition of V(p)
n of depth pk

satisfying Condition C.

II) If p = 2, then (i) implies (ii).

Remark: The converse of the statement does not hold for p = 2.
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Latin square type partial difference set packings

• A partial difference set is called (n, s) Latin square type if
(v , κ, λ, µ) = (n2, s(n − 1), n + s2 − 3s, s2 − s).

Definition (Jedwab, Li, 2022): Let

• t > 1 and c > 0 be integers,

• G be an abelian group, |G | = t2c2,

• U ≤ G , |U| = tc.

A (c , t) LP-packing in G relative to U is a collection {P1, . . . ,Pt} of
subsets of G such that

I) Pi are pairwise disjoint regular (tc, c) Latin square type partial
difference sets in G for 1 ≤ i ≤ t,

II)
⋃t

i=1 Pi = G \ U.

Example: Let {U0,U1, . . . ,Upm} be a spread of V(p)
2m and U∗

i = Ui \ {0}.
Then {U∗

1 , . . . ,U
∗
pm} is a (1, pm) LP-packing in V(p)

2m relative to U0.
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Proposition (Alkan, Anbar, K., Meidl, 2025): For an odd prime p, an

even integer n and an integer k ≤ n/2 with pk > 3, let F : V(p)
n → V(p)

k ,

and for every c ∈ V(p)
k , let Dc

F be the preimage set of c. Then the
following are equivalent.

I) F is a vectorial dual-bent function satisfying Condition A,
which is constant c0 on an (n/2)-dimensional subspace U.

II) ΩF = {U,Dc0
F \U,Dc

F : c ∈ V(p)
k , c ̸= c0} is a normal bent partition

of V(p)
n with F∗

pD
c
F = Dc

F , c ∈ V(p)
k , and F∗

p(D
c0
F \ U) = Dc0

F \ U.

III) ΩF = {U,Dc0
F \ U,Dc

F : c ∈ V(p)
k , c ̸= c0} induces a (pn/2, pn/2−k)

LP-packing in V(p)
n relative to U with F∗

pD
c
F = Dc

F , c ∈ V(p)
k , and

F∗
p(D

c0
F \ U) = Dc0

F \ U.

IV) ΩF = {U,Dc0
F \ U,Dc

F : c ∈ V(p)
k , c ̸= c0} induces a (pk + 1)-class

amorphic association scheme on V(p)
n .
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Direct sum constructions

Theorem (Alkan, Anbar, K., Meidl, 2025): Let F : V(p)
n → Fpk and

G : V(p)
s → Fpk be vectorial dual-bent functions satisfying Condition A.

Consider H : V(p)
n × V(p)

s → Fpk given by H(x , y) = F (x) + G (y). Then

• H is a vectorial dual-bent function satisfying Condition A,

• ΩH = {Cj : j ∈ Fpk} is a bent partition of V(p)
n × V(p)

s satisfying
Condition C,

Cj =
⋃

i∈F
pk

(Ai × Bj−i ),

ΩF = {Ai : i ∈ Fpk}, ΩG = {Bi : i ∈ Fpk} are bent partitions of V(p)
n ,

V(p)
s satisfying Condition C and the indices are determined in Fpk .



Theorem (Alkan, Anbar, K., Meidl, 2025 ) Let F : V(p)
n → Fpk ,

G : V(p)
s → Fpk be vectorial dual-bent functions satisfying Condition A.

• F (x) = β if x ∈ U1 ≤ V(p)
n , dim(U1) = n/2.

• G (x) = γ if x ∈ U2 ≤ V(p)
s , dim(U2) = s/2.

Consider H : V(p)
n × V(p)

s → Fpk given by H(x , y) = F (x) + G (y).

• H is a vectorial dual-bent function satisfying Condition A,
• H(x , y) = γ + β for (x , y) ∈ U1 × U2,
• ΩH = {U1 × U2,Cj : j ∈ Fpk} is a normal bent partition of

V(p)
n × V(p)

s ,

Cj = (Aj−γ × U2) ∪ (U1 × Bj−β) ∪
⋃

i∈F
pk

(Ai × Bj−i ),

ΩF = {U1,Ai : i ∈ Fpk}, ΩG = {U2,Bi : i ∈ Fpk} are the normal bent

partitions of V(p)
n and V(p)

s obtained from F and G , respectively, and the
indices are determined in Fpk .

Remark: The normal bent partition ΩH gives rise to a (p(n+s)/2−k , pk)
LP-packing in Vn × Vs relative to U1 × U2, which is a direct sum of the

(pn/2−k , pk) LP-packing in V(p)
n relative to U1 and (ps/2−k , pk)

LP-packing in V(p)
s relative to U2, obtained from normal bent partitions

ΩF and ΩG , respectively.



Generalized Maiorana-McFarland construction

Theorem (Çeşmelioğlu, Meidl, Pott, 2013)
Let s and n be positive integers with s < n, and let
{F (z) : Fpn → Fp | z ∈ Fps} be a set of p-ary bent functions. Consider
the function H : Fpn × Fps × Fps → Fp given by

H(x , y , z) = F (z)(x) + Trs1(yz).

Then H is a p-ary bent function.
Theorem (Alkan, Anbar, K., Meidl, 2025):
Let n, s be an integers, s < n and let k be a divisor of s. Let
{F (z) : Fpn → Fpk | z ∈ Fps} be a set of vectorial bent functions. Let
H : Fpn × Fps × Fps → Fpk defined by

H(x , y , z) = F (z)(x) + Trsk(yπ(z)),

where π is a permutation of Fps with π(0) = 0.
Then H is a vectorial bent function.



Recall A vectorial generalized Maiorana-McFarland function
H : Fpn × Fps × Fps → Fpk is given by

H(x , y , z) = F (z)(x) + Trsk(yπ(z)),

where π is a permutation of Fps with π(0) = 0.
Corollary (Alkan, Anbar, K., Meidl, 2025):
Let n be even and H : Fpn × Fps × Fps → Fpk be a vectorial generalized
Maiorana-McFarland bent function. Then the following statements hold.

I) Suppose that the functions F (z) are vectorial dual-bent functions of
the same type that satisfy Condition A and

• F (αz) = F (z),
• π−1(z/α) = απ−1(z) for all nonzero α ∈ Fpk , z ∈ Fps .

Then

• H is a vectorial dual-bent function satisfying Condition A.
• ΩH = {Cj : j ∈ Fpk } is a bent partition of Fpn × Fps × Fps satisfying

Condition C.



Recall A vectorial generalized Maiorana-McFarland function
H : Fpn × Fps × Fps → Fpk is given by

H(x , y , z) = F (z)(x) + Trsk(yπ(z)),

where π is a permutation of Fps with π(0) = 0.

II) Suppose that the functions F (z) are vectorial dual-bent functions of
the same type that satisfy Condition A and

• F (αz) = F (z) for all z ∈ Fpk ,

• π−1(z/α) = απ−1(z) for all nonzero α ∈ Fps ,

and

• F (0)(x) = 0 for all x ∈ U, where U ≤ V(p)
n , dim(U) = n/2.

Then

• H(x , y , z) = 0 for all (x , y , z) ∈ U × Fps × {0} ≤ Fpn × Fps × Fps ,
dim(U × Fps × {0}) = (n/2 + s),

• ΩH is a normal bent partition of Fpn × Fps × Fps ,
• ΩH gives rise to a (pn/2+s−k , pk) LP-packing in Fpn × Fps × Fps

relative to the subspace U × Fps × {0}.



A secondary construction by Wang, Fu, Wei

Theorem (Wang, Fu, Wei, 2023): Let m, n be integers, n even, m ≤ n/2
and let k < m be a divisor of m. For every i ∈ Fpk , let F (i ; x) be a

vectorial dual-bent function from V(p)
n to Fpk satisfying Condition A, and

suppose that all F (i ; x) are of the same type. Let α, β ∈ Fpm be linearly
independent over Fpk , let R be a permutation of Fpm with R(0) = 0.

Then H : V(p)
n × Fpm × Fpm → Fpk

H(x , y , z) = F (Trmk (αR(yz
pm−2)); x) + Trmk (βR(yz

pm−2))

is a vectorial dual-bent function satisfying Condition A.



Theorem (Alkan, Anbar, K., Meidl, 2025): Let n be an even integer,
m, k be integers with s ≤ m ≤ n/2, and let k be a divisor of s. For every

i ∈ Fpk , let F (i ; x) be a vectorial dual-bent function from V(p)
n to Fpk

satisfying Condition A, and suppose that all F (i ; x) are of the same type.

Let e : V(p)
2m → Fps be a vectorial dual-bent function satisfying Condition

A, and let α, β ∈ Fps be linearly independent over Fpk . Then

H : V(p)
n × Fps × Fps → Fpk

H(x , y) = F (Trsk(αe(y)); x) + Trsk(βe(y))

is a vectorial dual-bent function satisfying Condition A.



Question: Are there bent partitions which do not yield LP-packings?

Theorem (Anbar, Fu, K., Meidl, Wang, Wei, 2025):
Let k ,m be positive integers with k | m, k ≥ 2, a, b be integers with
a ≡ b ≡ pl mod (pk − 1) and gcd(a, pm − 1) = gcd(b, pm − 1) = 1.
Let M : Fpm → Fpk with M(cx) = cM(x), c ∈ F∗

pk .
Consider F : Fpm × Fpm → Fpk be given by

F (x , y) = Trmk (yx
−a) +M(x−b).

Let Dc
F be the preimage set of c ∈ Fpk and U = {(0, y) : y ∈ Fpm}. Then

I) ΩF = {U,D0
F\U, Dc

F : c ∈ F∗
pk} is a normal bent partition.

II) If M(x) ̸= 0, then for any c ∈ Fpk , Dc
F is not a partial difference set.

III) ΩF = {U,D0
F\U, Dc

F : c ∈ F∗
pk} does not yield an LP-packing.

Remark: The function G (x , y) = Trmk (yx
−a) is a vectorial dual-bent

function satisfying Condition A, therefore, from the preimage sets one
can obtain an LP-packing.

• The sets in ΩF are not the shifts of the partial difference sets in ΩG .

• The p-ary bent functions obtained from ΩF and the p-ary bent
functions obtained from ΩG are not equivalent.
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Open Problems:

▶ (Kantor, 1983) The number of pairwise inequivalent bent functions
obtained from Desarguesian spread grows exponentially with n.

• How many pairwise inequivalent bent functions can be obtained from
generalized semifield spreads?

▶ Let Ω1 and Ω2 be bent partitions obtained from vectorial bent
functions F , F̃ and G , G̃ , respectively.
Consider the vectorial bent functions H(x , y) = F (x) + G (y) and
H̃(x , y) = F̃ (x) + G̃ (y), and the associated bent partitions ΩH and
ΩH̃ . Are the bent partitions ΓH and ΓH̃ inequivalent?



Open Problems:

▶ There exist normal bent partitions where the sets are not partial
difference sets.

• What are these sets? Do they correspond to combinatorial objects?
• What can be said about the corresponding Cayley graphs? Do they

have interesting properties?

▶ Suppose that Ω1 and Ω2 are not equivalent bent partitions obtained
from two semifields. Are the amorphic association schemes obtained
from Ω1 and Ω2 are isomorphic?


