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Order 4

Here is a skew-type (skew) Hadamard matrix of order 4:
1 1 1 1
− 1 1 −
− − 1 1
− 1 − 1

 ,

a regular: Row and column sums are 2 mod 4,
− 1 1 1
1 − 1 1
1 1 − 1
1 1 1 −

 ,

a hybrid: skew, row sums: 2 mod 4, column sums: 0 mod 4,
1 1 − 1
− 1 1 1
1 − 1 1
− − − 1

 .
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A recursive method



Mukhopadhaya in JCTA(1978) introduced a recursive method

that
was extended by Seberry in J. Austral. Math.Soc.(1980):
The recursive method for orthogonal designs:
In skew-type OD(4; 1, 1, 1, 1)

D =


a b b b
b̄ a b b̄
b̄ b̄ a b
b̄ b b̄ a

 ,

repeatedly changing a to

b b b
b b b
b b b

 and b to

a b b̄
b̄ a b
b b̄ a

 results

in an OD(4(3n); 3n, 3n+1), and therefore a Hadamard matrix of
order 4(3n) for each n ∈ N.
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a b b̄ b
b̄ a b b
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b̄ b̄ b̄ a

 ,

makes the corresponding Hadamard matrices of order 4(32n)
absolutely regular for each n.
Ionin-Kharaghani DCC(2003): Whenever q = (2h − 1)2, h = ±3n,
is a prime power, for every positive integer m, there is a symmetric
design with parameters(

4h2(
qm+1 − 1

q − 1
), (2h2 − h)qm, (h2 − h)qm

)
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Order 36

Before I lose your interest! There are many hybrid Hadamard
matrices of order 36. Here is a Skew-type Hadamard matrix of
order 36 with row sums ±6.

1 1−−1 1 1−1 1−−−−−1 1−1 1−−1−−1 1−1 1 1−1 1 1 1
−1 1 1−1−1−−−1−−−1−−1 1−1 1−1−1−−−1−−−−1
1−1−1−−−1−1 1−−−−−1 1 1 1 1 1 1−−1 1 1−1 1 1 1−1
1−1 1 1−−1 1−−−1 1−1−−−1−−1 1 1 1−1−1 1 1 1−1 1
−1−−1 1 1−1−−−1−−−−1 1 1−1−1 1 1−1−−−−1−−−
−−1 1−1−1−−−−−−1−1 1 1 1 1−−1 1 1 1 1 1 1 1−1 1 1−
−1 1 1−1 1 1−1 1−1−−−−−−1 1 1 1−−1−1 1 1−1 1 1−1
1−1−1−−1 1 1−−−−1−−−1−1 1 1−1 1−−−1−−−1−−
−1−−−1 1−1−−1−1 1−−−−−1 1 1 1 1 1 1 1−1 1 1−1 1 1
−1 1 1 1 1−−1 1 1−−1 1 1−1 1−−−−−1 1−1 1−1 1−1−1
1 1−1 1 1−1 1−1 1 1−1−1−−1−−1 1 1 1 1−1−−1−1−−
1−−1 1 1 1 1−1−1−1−−−1 1 1−1−1 1−−−1 1−1−1 1 1
1 1 1−−1−1 1 1−1 1 1−−1 1−−−1 1−1−−1 1−1−1 1 1−
1 1 1−1 1 1 1−−1−−1 1 1−1−1 1 1 1 1−1−−1−1−−−1−
1 1 1 1 1−1−−−−1 1−1−1−1−1 1−−1 1−−1−1 1 1−1 1
−−1−1 1 1 1 1−1 1 1−1 1 1−1 1−1−−−−−1−1 1 1−1 1−
−1 1 1 1−1 1 1 1−1−1−−1 1 1 1 1−1−−1 1 1−−−1−−1−
1 1−1−−1 1 1−1−−−1 1−1 1−−1 1−1−1 1 1 1−1 1−1−
−−−1−−1−1−1−1 1−−−−1 1 1−1−1−−−1−1−−1 1−
−−−−−−−1 1 1−−1−1−−1−1−1−−−1 1−1−1 1−−1 1
1 1−1 1−−−−1 1 1 1−−1−1−1 1 1−−1 1 1 1−1 1−−1 1−
1−−1−1−−−1 1−−−−−1−1−−1 1 1−1−1−−1 1−−1−
−−−−1 1−−−1−1−−1 1−−−1 1−1−1−−1 1−−1 1−1−
1 1−−−−1 1−1−−1−1 1 1 1 1 1 1−1 1 1−−1−−1 1−1−1
1−1−−−1−−−−−−1−1 1−−1−1−−1 1 1 1 1−−1−1−−
−1 1−−−−−−−−1 1−−1−1 1−−−1 1−1−−1 1−1−1 1−
−−−1 1−1 1−1−1 1 1 1 1−−1−−1 1 1−1 1 1 1−1−1 1−−
1 1−−−−−1−−1 1−1 1−−−1 1−−−−−1−1−−−−1 1 1 1
−1−1 1−−1 1−−−−−−1 1−−−1 1−1−−−1 1−−−−1 1 1
−1 1−1−−−−1 1−1 1 1−1−1 1−1 1 1 1−1 1 1 1−−−−1 1
−−−−1−1 1−−1 1−−−−1 1−−−−1−1 1−1 1 1 1−−−−1
1 1−−1 1−1−−−−1 1−−−−1−1−−−−−1 1 1 1 1 1−−−−
−1−−−−−1 1 1 1 1−1−1 1−1 1 1 1−1 1 1−−1 1 1 1 1−−−
−1−1 1−−−−−−−−1 1−1 1−1−1 1−−−−−−1 1 1 1 1−−
−1 1−1−1 1−1 1−−−−−−−−−−−−1 1−1−−−1 1 1 1 1−
−−−−1 1−1−−1−1 1−1 1 1 1−1 1 1−1 1 1−−−−1 1 1 1 1


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1−−1−1−−−1 1−−−−−1−1−−1 1 1−1−1−−1 1−−1−
−−−−1 1−−−1−1−−1 1−−−1 1−1−1−−1 1−−1 1−1−
1 1−−−−1 1−1−−1−1 1 1 1 1 1 1−1 1 1−−1−−1 1−1−1
1−1−−−1−−−−−−1−1 1−−1−1−−1 1 1 1 1−−1−1−−
−1 1−−−−−−−−1 1−−1−1 1−−−1 1−1−−1 1−1−1 1−
−−−1 1−1 1−1−1 1 1 1 1−−1−−1 1 1−1 1 1 1−1−1 1−−
1 1−−−−−1−−1 1−1 1−−−1 1−−−−−1−1−−−−1 1 1 1
−1−1 1−−1 1−−−−−−1 1−−−1 1−1−−−1 1−−−−1 1 1
−1 1−1−−−−1 1−1 1 1−1−1 1−1 1 1 1−1 1 1 1−−−−1 1
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Order 36
Before I lose your interest! There are many hybrid Hadamard
matrices of order 36. Here is a Skew-type Hadamard matrix of
order 36 with row sums ±6.
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A new class of Hadamard matrices



skew-regular Hadamard matrices

Definition
An absolutely regular Hadamard matrix is a Hadamard matrix for
which the absolute value of row sums is constant.

Definition
A skew-regular Hadamard matrix is a skew-type Hadamard
matrix which is absolutely regular.
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A non-existence theorem

Theorem (BKST 2025+)
Let H be a skew-regular Hadamard matrix of order 4m2; then m is
odd.

Proof.
Note that each column sum of H is 2m + 2 modulo 4 and that
negating any row of H changes every column sum by exactly two
modulo 4.

There are exactly 2m2 − m rows with row-sum −2m. If
we negate each of these rows to obtain H ′, the column-sums of H
are changed by 2(2m2 − m) modulo 4. Since each column-sum of
H was originally 2m + 2 modulo 4, the new column-sums are all 2
modulo 4. Since H ′ is regular, the column-sums must equal 2m.
Thus, m is odd.
This rather simple-looking theorem has strong implications.
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First an application

• If there is a skew-regular Hadamard matrix of order 4m2, then
there is a regular Hadamard matrix of order 4m2(4m2 − 1)2n

for each n.
• If there is a skew-regular Hadamard matrix of order 4k2. Then

potentially whenever q = (2h − 1)2, h = ±(4k2 − 1)n, is a
prime power, for every positive integer m, there is a symmetric
design with parameters(

4h2(
qm+1 − 1

q − 1
), (2h2 − h)qm, (h2 − h)qm

)
.
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Some not easy to see implications

• A Hadamard matrix is skew-regular if and only if it is
equivalent to a regular and a skew-type Hadamard matrix.

• In order 16n2, the set of skew-type Hadamard matrices is
disjoint from the set of regular matrices.

• In order 16, a skew-regular Hadamard matrix belongs to Hall
class 4 or 5.

• No skew-type Hadamard matrix of order 16n2 has a bent
sequence.

• No skew-type Hadamard matrix of order 16n2 has an
unbiased mate.
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Order 4n2, n odd

Regular H-matrices

Skew-type H-matrices



Two skew Hadamard matrices are considered SH-equivalent if they
are similar by a signed permutation matrix.

Theorem (Araya, Harada, Kharaghani,
Mohammadian,Tayfeh-Rezaie (DCC 2024)
There are at least 157132 SH-inequivalent skew-type Hadamard
matrices of order 36.

Theorem (Best, Kharaghani, Tayfeh-Rezaie, Suda 2025+)
There are at least 157132 SH-inequivalent skew-regular Hadamard
matrices of order 36.
Remark: This new fact that every skew-type H(36) is equivalent
to regular ones and all known H(36)s are potentially regular made
me consult with AI.
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A conversation with Google Gemini
and

Microsoft Copilot



Question and answers

Hadi: Is it true that all Hadamard matrices of order 36 are
equivalent to regular ones?
Gemini:
Yes, according to current mathematical knowledge, all Hadamard
matrices of order 36 are equivalent to a regular Hadamard matrix,
meaning that any Hadamard matrix of order 36 can be
transformed into a regular one by operations like row/column
permutations and negations.
Copilot:
Yes, it is true that every Hadamard matrix of order 36 is equivalent
to a regular Hadamard matrix. This means that all Hadamard
matrices of this order can be transformed into a regular form
through equivalence operations.
Is it time to try to prove every H(36) is equivalent to a
regular one?
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Regularity test

Definition
Let H be a quaternary complex Hadamard matrix of order n
(QH(n)). A solution to the equation HX =

√
nY , X ,Y in

{±1,±i}n is called a bent sequence.

Lemma
Let X be a bent sequence for the QH(n), and D the diagonal
matrix with entries of X on its diagonal, then the quaternary
Hadamard matrix HD is regular.

Proof.
Let J be the column vector with all one entries, then the row sums
HDJ = HX =

√
nY are of absolute value

√
n.



Regularity test

Definition
Let H be a quaternary complex Hadamard matrix of order n
(QH(n)).

A solution to the equation HX =
√

nY , X ,Y in
{±1,±i}n is called a bent sequence.

Lemma
Let X be a bent sequence for the QH(n), and D the diagonal
matrix with entries of X on its diagonal, then the quaternary
Hadamard matrix HD is regular.

Proof.
Let J be the column vector with all one entries, then the row sums
HDJ = HX =

√
nY are of absolute value

√
n.



Regularity test

Definition
Let H be a quaternary complex Hadamard matrix of order n
(QH(n)). A solution to the equation HX =

√
nY , X ,Y in

{±1,±i}n is called a bent sequence.

Lemma
Let X be a bent sequence for the QH(n), and D the diagonal
matrix with entries of X on its diagonal, then the quaternary
Hadamard matrix HD is regular.

Proof.
Let J be the column vector with all one entries, then the row sums
HDJ = HX =

√
nY are of absolute value

√
n.



Regularity test

Definition
Let H be a quaternary complex Hadamard matrix of order n
(QH(n)). A solution to the equation HX =

√
nY , X ,Y in

{±1,±i}n is called a bent sequence.

Lemma
Let X be a bent sequence for the QH(n),

and D the diagonal
matrix with entries of X on its diagonal, then the quaternary
Hadamard matrix HD is regular.

Proof.
Let J be the column vector with all one entries, then the row sums
HDJ = HX =

√
nY are of absolute value

√
n.



Regularity test

Definition
Let H be a quaternary complex Hadamard matrix of order n
(QH(n)). A solution to the equation HX =

√
nY , X ,Y in

{±1,±i}n is called a bent sequence.

Lemma
Let X be a bent sequence for the QH(n), and D the diagonal
matrix with entries of X on its diagonal, then the quaternary
Hadamard matrix HD is regular.

Proof.
Let J be the column vector with all one entries, then the row sums
HDJ = HX =

√
nY are of absolute value

√
n.



Regularity test

Definition
Let H be a quaternary complex Hadamard matrix of order n
(QH(n)). A solution to the equation HX =

√
nY , X ,Y in

{±1,±i}n is called a bent sequence.

Lemma
Let X be a bent sequence for the QH(n), and D the diagonal
matrix with entries of X on its diagonal, then the quaternary
Hadamard matrix HD is regular.

Proof.
Let J be the column vector with all one entries,

then the row sums
HDJ = HX =

√
nY are of absolute value

√
n.



Regularity test

Definition
Let H be a quaternary complex Hadamard matrix of order n
(QH(n)). A solution to the equation HX =

√
nY , X ,Y in

{±1,±i}n is called a bent sequence.

Lemma
Let X be a bent sequence for the QH(n), and D the diagonal
matrix with entries of X on its diagonal, then the quaternary
Hadamard matrix HD is regular.

Proof.
Let J be the column vector with all one entries, then the row sums
HDJ = HX =

√
nY are of absolute value

√
n.



Quaternary complex Hadamard matrices of order 18

It was necessary to use all related literature before proving that any
Hadamard matrix of order 36 is regular.
A recent paper by Patric Östergård, and William Paavola, [J.
Combin. Des., 2021] shows that:
There are 1,955,625 inequivalent classes of quaternary
Hadamard matrices of order 18.
First step: Check the 1,955,625 matrices for regularity.
An email on Sat, Feb 15, 2025, at 2:40 PM, Zaitsev, Vlad, had the
subject: NOT Regular
And it said: I think this is very interesting! The Hadamard matrix
of order 36 coming from the complex matrix also had NO
regularizing vectors!

😂



Quaternary complex Hadamard matrices of order 18

It was necessary to use all related literature before proving that any
Hadamard matrix of order 36 is regular.

A recent paper by Patric Östergård, and William Paavola, [J.
Combin. Des., 2021] shows that:
There are 1,955,625 inequivalent classes of quaternary
Hadamard matrices of order 18.
First step: Check the 1,955,625 matrices for regularity.
An email on Sat, Feb 15, 2025, at 2:40 PM, Zaitsev, Vlad, had the
subject: NOT Regular
And it said: I think this is very interesting! The Hadamard matrix
of order 36 coming from the complex matrix also had NO
regularizing vectors!

😂



Quaternary complex Hadamard matrices of order 18

It was necessary to use all related literature before proving that any
Hadamard matrix of order 36 is regular.
A recent paper by Patric Östergård, and William Paavola, [J.
Combin. Des., 2021] shows that:

There are 1,955,625 inequivalent classes of quaternary
Hadamard matrices of order 18.
First step: Check the 1,955,625 matrices for regularity.
An email on Sat, Feb 15, 2025, at 2:40 PM, Zaitsev, Vlad, had the
subject: NOT Regular
And it said: I think this is very interesting! The Hadamard matrix
of order 36 coming from the complex matrix also had NO
regularizing vectors!

😂



Quaternary complex Hadamard matrices of order 18

It was necessary to use all related literature before proving that any
Hadamard matrix of order 36 is regular.
A recent paper by Patric Östergård, and William Paavola, [J.
Combin. Des., 2021] shows that:
There are 1,955,625 inequivalent classes of quaternary
Hadamard matrices of order 18.

First step: Check the 1,955,625 matrices for regularity.
An email on Sat, Feb 15, 2025, at 2:40 PM, Zaitsev, Vlad, had the
subject: NOT Regular
And it said: I think this is very interesting! The Hadamard matrix
of order 36 coming from the complex matrix also had NO
regularizing vectors!

😂



Quaternary complex Hadamard matrices of order 18

It was necessary to use all related literature before proving that any
Hadamard matrix of order 36 is regular.
A recent paper by Patric Östergård, and William Paavola, [J.
Combin. Des., 2021] shows that:
There are 1,955,625 inequivalent classes of quaternary
Hadamard matrices of order 18.
First step: Check the 1,955,625 matrices for regularity.

An email on Sat, Feb 15, 2025, at 2:40 PM, Zaitsev, Vlad, had the
subject: NOT Regular
And it said: I think this is very interesting! The Hadamard matrix
of order 36 coming from the complex matrix also had NO
regularizing vectors!

😂



Quaternary complex Hadamard matrices of order 18

It was necessary to use all related literature before proving that any
Hadamard matrix of order 36 is regular.
A recent paper by Patric Östergård, and William Paavola, [J.
Combin. Des., 2021] shows that:
There are 1,955,625 inequivalent classes of quaternary
Hadamard matrices of order 18.
First step: Check the 1,955,625 matrices for regularity.
An email on Sat, Feb 15, 2025, at 2:40 PM, Zaitsev, Vlad, had the
subject: NOT Regular

And it said: I think this is very interesting! The Hadamard matrix
of order 36 coming from the complex matrix also had NO
regularizing vectors!

😂



Quaternary complex Hadamard matrices of order 18

It was necessary to use all related literature before proving that any
Hadamard matrix of order 36 is regular.
A recent paper by Patric Östergård, and William Paavola, [J.
Combin. Des., 2021] shows that:
There are 1,955,625 inequivalent classes of quaternary
Hadamard matrices of order 18.
First step: Check the 1,955,625 matrices for regularity.
An email on Sat, Feb 15, 2025, at 2:40 PM, Zaitsev, Vlad, had the
subject: NOT Regular
And it said: I think this is very interesting! The Hadamard matrix
of order 36 coming from the complex matrix also had NO
regularizing vectors!

😂



Quaternary complex Hadamard matrices of order 18

It was necessary to use all related literature before proving that any
Hadamard matrix of order 36 is regular.
A recent paper by Patric Östergård, and William Paavola, [J.
Combin. Des., 2021] shows that:
There are 1,955,625 inequivalent classes of quaternary
Hadamard matrices of order 18.
First step: Check the 1,955,625 matrices for regularity.
An email on Sat, Feb 15, 2025, at 2:40 PM, Zaitsev, Vlad, had the
subject: NOT Regular
And it said: I think this is very interesting! The Hadamard matrix
of order 36 coming from the complex matrix also had NO
regularizing vectors!

😂



28 nonregular QH(18)

Kharaghani, Tayfeh-Rezaie, Zaitsev [2025+]:
There are 28 non-regular and 1,955,597 regular quaternary
complex Hadamard matrices of order 18.
The 28 non-regular QH(18) leads to two classes of Hadamard
matrices of order 36 (H36).

• First class consisting of eight inequivalent H36 with a
maximum excess of 208.

• The second class consisting of eight inequivalent H36 with a
maximum excess of 204.
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One H36 with maximum excess 204



−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1
111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1−1−1−1−1−1−1−1−1 1 1 1−1−1−1−1−1−1−1−−−
111 1 1 1 1 1 1 1 1 1 1 1 1 1 1−−−−−−−−−−−−−−−−−−1
−1−1−1 1−1−1−1−−−1 1−1−1 1 1 1 1 1−1−−−−−−1
111 1 1 1−−−−−−−−−1 1−1 1 1 1 1−1−−−−−−1−1 1 1
−1−1 1−−1 1 1 1−1−−−1 1 1 1 1−−1−−−1−−1 1−−1−
111 1−−1 1 1−−−−−−1 1−1−−−1 1−1 1 1−1 1−−1−−
−1−1 1−1−−−1−−1 1 1−−1 1−−1 1−−−−1 1 1 1 1−−1
111 1−−−−−1−−1 1 1−−1 1−−1 1−−1−1 1−1−−−1 1
−1−1 1−1−1 1−−1−1 1−1 1−1 1−−1 1−−−1−−1 1−−
111 1−−−−1−−1−−1−1 1−−1−−1 1−−1 1 1−1 1−−1
−1−1 1 1−1 1−1 1−−1−−−−−−1 1−1−−1 1 1 1−−1 1−
111 1 1−1 1−−1−−1−−−1−1 1 1−−−−1 1 1−−−1 1−−
−1−1 1−1−−−−1 1 1−−1−−−−−−−1 1 1 1−−1 1 1 1 1 1
111 1−−−−−1 1 1 1−−1−−−1−1−1 1−1−−1 1−1−1−
−11 1−1−−1 1 1−−1 1−−−−−1−1 1−1 1−−−−1 1 1 1−
111−1 1−1 1−−−1 1−−−1−1−−1−1 1−−−1 1 1 1−−−
−11−−−1 1 1 1−−−−1 1−1−1−−−−1−1−1−1 1−1 1 1
11−−−1 1−1−−1−1 1−1 1 1 1−1−1−−−−−−1−1 1 1−
−11−−−1 1−1 1 1−−1−1−1 1−1 1−1 1−1−−−1 1−−−
11−−−1 1−1 1 1−−1−−−−1−1 1−−1−1 1−1 1 1−−−1
−11−1−−−1−1 1−1−1 1 1 1−−1−−−1 1−1 1−1−−1−
11−−−−−1−−1−1 1 1 1 1−−−1 1−1 1 1−−1−1 1−1−−
−11−1 1−−−1−−1 1 1−1−1 1−−−1 1−1 1 1 1−−−1−−
11−−1−−1 1 1−1 1−−−−−1−−1 1 1−−1−1−−1 1 1−1
−11−−−1 1−−1 1 1 1−−−1 1−1−1 1 1−−−−1−−−1 1 1
11−−−1 1−−1 1−1−−1 1 1−−−−1−−−−1 1 1−1 1 1 1−
−11−1 1 1−−−−1 1−1 1−1−−1 1 1 1−−1 1−−1 1−−−−
11−−1−−−−1 1 1−−1−1 1−1 1−1−−1 1−−1 1−−1−1
−11−−1−−1−1 1 1−−1−−1 1 1−−−−1−1 1−1−1 1−1
11−−1 1−1−−1−−−1 1−1 1−−−−1 1 1 1 1−−−−1−1 1
−11−1 1 1 1−1−−−−−−1−−−1 1−1−1−−1 1 1−1−1 1
11−−1−1−1 1−1−1−1−−−1 1−1 1 1 1−1 1−−−−−1−
−1−−−−−1 1−−−1 1 1 1 1−−1 1 1 1−−−1 1−1−−1−1 1
11−1−1 1 1−−−1 1−1−−−1 1 1−−−−1 1−1 1−1−−1−
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Answer to possible questions

We have seen that every skew-type H(36) is also skew-regular.
Question 1: Is it true that every skew-type H(100) is also
skew-regular?
Answer: No! We have tested five out of the nine known skew-type
H(100) arising from Good matrices and none were equivalent to a
regular one.
Question 2: Is there a skew-regular H(100)?
Answer: Yes!
Question 3: Is it true that for any odd integer n, there is a
skew-regular H(4n2)?

Answer: I don’t know!
And I leave that for you to show.
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