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Order 4

Here is a skew-type (skew) Hadamard matrix of order 4:

1 1 1 1
-1 1 =
- — 1 1/’
__ 1 - 1_
a regular: Row and column sums are 2 mod 4,
[— 1 1 17
1 — 1 1
1 1 - 11’
11 1 —]
a hybrid: skew, row sums: 2 mod 4, column sums: 0 mod 4,
1 1 — 1
-1 1 1
1 — 1 1
- - =1
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Mukhopadhaya in JCTA(1978) introduced a recursive method that
was extended by Seberry in J. Austral. Math.Soc.(1980):

The recursive method for orthogonal designs:

In skew-type OD(4;1,1,1,1)

a b b b
b a b b
P=1b b 2 b
b b b a
b b b a b b
repeatedly changing ato |[b b b| and bto |[b a b]| results
b b b b b a

in an OD(4(3");3",3"1), and therefore a Hadamard matrix of
order 4(3") for each n € N.
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By changing

a b b b
b a b b
P=155 a2 b|
_BbBa_
to _ -
a b b b
b a b b
D_bBab’
5 b b a

makes the corresponding Hadamard matrices of order 4(32")
absolutely regular for each n.
lonin-Kharaghani DCC(2003): Whenever g = (2h — 1)2, h = £3",
is a prime power, for every positive integer m, there is a symmetric
design with parameters
m+1
<4h2(q

T8 W (8 = )



Order 36

<O <Fr <=»

«E»

Q>



Order 36

Before | lose your interest!



Order 36

Before | lose your interest! There are many hybrid Hadamard
matrices of order 36.



Order 36

Before | lose your interest! There are many hybrid Hadamard
matrices of order 36. Here is a Skew-type Hadamard matrix of
order 36 with row sums +6.



Order 36
Before | lose your interest! There are many hybrid Hadamard

matrices of order 36. Here is a Skew-type Hadamard matrix of
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skew-regular Hadamard matrices

Definition
An absolutely regular Hadamard matrix is a Hadamard matrix for
which the absolute value of row sums is constant.

Definition
A skew-regular Hadamard matrix is a skew-type Hadamard
matrix which is absolutely regular.
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A non-existence theorem

Theorem (BKST 2025+)

Let H be a skew-regular Hadamard matrix of order 4m?; then m is
odd.

Proof.

Note that each column sum of H is 2m + 2 modulo 4 and that
negating any row of H changes every column sum by exactly two
modulo 4. There are exactly 2m? — m rows with row-sum —2m. If
we negate each of these rows to obtain H’, the column-sums of H
are changed by 2(2m? — m) modulo 4. Since each column-sum of
H was originally 2m + 2 modulo 4, the new column-sums are all 2
modulo 4. Since H' is regular, the column-sums must equal 2m.
Thus, m is odd. O

This rather simple-looking theorem has strong implications.
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First an application

® |f there is a skew-regular Hadamard matrix of order 4m?, then
there is a regular Hadamard matrix of order 4m?(4m? — 1)2"
for each n.

® If there is a skew-regular Hadamard matrix of order 4k2. Then
potentially whenever g = (2h — 1)2, h = 4+(4k*> — 1), is a
prime power, for every positive integer m, there is a symmetric
design with parameters

(4h2<"m+1]1>, (2% — h)g™, (H — h)q'"> |

q_
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Some not easy to see implications

A Hadamard matrix is skew-regular if and only if it is
equivalent to a regular and a skew-type Hadamard matrix.
In order 16n?, the set of skew-type Hadamard matrices is
disjoint from the set of regular matrices.

In order 16, a skew-regular Hadamard matrix belongs to Hall
class 4 or 5.

No skew-type Hadamard matrix of order 16n? has a bent
sequence.

No skew-type Hadamard matrix of order 16n? has an
unbiased mate.
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Two skew Hadamard matrices are considered SH-equivalent if they
are similar by a signed permutation matrix.

Theorem (Araya, Harada, Kharaghani,
Mohammadian, Tayfeh-Rezaie (DCC 2024)

There are at least 157132 SH-inequivalent skew-type Hadamard
matrices of order 36.

Theorem (Best, Kharaghani, Tayfeh-Rezaie, Suda 2025+)

There are at least 157132 SH-inequivalent skew-regular Hadamard
matrices of order 36.

Remark: This new fact that every skew-type H(36) is equivalent
to regular ones and all known H(36)s are potentially regular made
me consult with Al.



A conversation with Google Gemini

and
Microsoft Copilot



Question and answers

«O>» «Fr «=»

«E)»

nae



Question and answers

Hadi: Is it true that all Hadamard matrices of order 36 are
equivalent to regular ones?



Question and answers

Hadi: Is it true that all Hadamard matrices of order 36 are
equivalent to regular ones?

Gemini:

Yes, according to current mathematical knowledge, all Hadamard
matrices of order 36 are equivalent to a regular Hadamard matrix,



Question and answers

Hadi: Is it true that all Hadamard matrices of order 36 are
equivalent to regular ones?

Gemini:

Yes, according to current mathematical knowledge, all Hadamard
matrices of order 36 are equivalent to a regular Hadamard matrix,
meaning that any Hadamard matrix of order 36 can be
transformed into a regular one by operations like row/column
permutations and negations.



Question and answers

Hadi: Is it true that all Hadamard matrices of order 36 are
equivalent to regular ones?

Gemini:

Yes, according to current mathematical knowledge, all Hadamard
matrices of order 36 are equivalent to a regular Hadamard matrix,
meaning that any Hadamard matrix of order 36 can be
transformed into a regular one by operations like row/column
permutations and negations.

Copilot:

Yes, it is true that every Hadamard matrix of order 36 is equivalent
to a regular Hadamard matrix. This means that all Hadamard
matrices of this order can be transformed into a regular form
through equivalence operations.



Question and answers

Hadi: Is it true that all Hadamard matrices of order 36 are
equivalent to regular ones?

Gemini:

Yes, according to current mathematical knowledge, all Hadamard
matrices of order 36 are equivalent to a regular Hadamard matrix,
meaning that any Hadamard matrix of order 36 can be
transformed into a regular one by operations like row/column
permutations and negations.

Copilot:

Yes, it is true that every Hadamard matrix of order 36 is equivalent
to a regular Hadamard matrix. This means that all Hadamard
matrices of this order can be transformed into a regular form
through equivalence operations.

Is it time to try to prove every H(36) is equivalent to a
regular one?
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Regularity test

Definition

Let H be a quaternary complex Hadamard matrix of order n
(QH(n)). A solution to the equation HX = /nY, X, Y in
{£1,+i}" is called a bent sequence.

Lemma

Let X be a bent sequence for the QH(n), and D the diagonal
matrix with entries of X on its diagonal, then the quaternary
Hadamard matrix HD is regular.

Proof.
Let J be the column vector with all one entries, then the row sums

HDJ = HX = /nY are of absolute value \/n. O
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Quaternary complex Hadamard matrices of order 18

It was necessary to use all related literature before proving that any
Hadamard matrix of order 36 is regular.

A recent paper by Patric Ostergérd, and William Paavola, [J.
Combin. Des., 2021] shows that:

There are 1,955,625 inequivalent classes of quaternary
Hadamard matrices of order 18.

First step: Check the 1,955,625 matrices for regularity.

An email on Sat, Feb 15, 2025, at 2:40 PM, Zaitsev, Vlad, had the
subject: NOT Regular

And it said: | think this is very interesting! The Hadamard matrix
of order 36 coming from the complex matrix also had NO
regularizing vectors!
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28 nonregular QH(18)

Kharaghani, Tayfeh-Rezaie, Zaitsev [2025+]:

There are 28 non-regular and 1,955,597 regular quaternary
complex Hadamard matrices of order 18.

The 28 non-regular QH(18) leads to two classes of Hadamard
matrices of order 36 (H36).

® First class consisting of eight inequivalent H36 with a
maximum excess of 208.

® The second class consisting of eight inequivalent H36 with a
maximum excess of 204.
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We have seen that every skew-type H(36) is also skew-regular.
Question 1: Is it true that every skew-type H(100) is also
skew-regular?
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And | leave that for you to show.
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