Non-commutative association schemes having divisible design graphs as relations from pseudo-cyclic association schemes

Koji Momihara

Kumamoto University, Division of Natural Science, Faculty of Advanced Science and Technology

(Joint work with Sho Suda)

Abstract

It is known that by replacing the entry +1 by I_2 and the entry -1 by $J_2 - I_2$ in a Hadamard matrix, the resulting matrix forms an incidence matrix of a symmetric group divisible design. Gibbons-Mathon [1] generalized this construction of symmetric group divisible designs based on balanced generalized weighing matrices.

In this talk, we modify Gibbons-Mathon's construction by using d-class pseudo-cyclic symmetric association schemes to obtain (2d - 1)-class noncommutative association schemes such that exactly d nontrivial relations are divisible design graphs. Furthermore, we discuss the problem on isomorphism between non-commutative association schemes obtained by our construction, which is related to a problem on normalization of balanced generalized weighing matrices. In particular, when d = 2, the problem is described in terms of Godsil-McKay switching for conference graphs. For example, we claim the following. Let \mathcal{A}_1 and \mathcal{A}_2 be two non-isomorphic 2-class pseudo-cyclic symmetric association schemes. If any association scheme obtained by applying Godsil-McKay switching to the conference graphs in \mathcal{A}_1 is not isomorphic to \mathcal{A}_2 , then the non-commutative association schemes obtained by applying our construction to \mathcal{A}_1 and \mathcal{A}_2 are non-isomorphic.

References

 P. B. Gibbons, R. Mathon, Construction methods for Bhaskar Rao and related designs, J. Austral. Math. Soc. Ser. A 42 5–30, (1987).