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Introduction to Mutually Unbiased Bases (MUBs)

Definition: Two orthonormal bases B1 = {a1, a2..., ad} and B2 = {b1, b2, .....bd}
in d dimensional Hilbert spaces are mutually unbiased if,

|⟨ai, bj⟩| =
1√
d
; for every 1 ≤ i, j ≤ d.

A set {B1, B2, . . . , Bm} of orthonormal bases in Cd is called a set of
mutually unbiased bases (a set of MUB) if each pair of bases Bi and Bj are
mutually unbiased.
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MUBs in dimension 2

B1 =

{(
1
0

)
,

(
0
1

)}
,

B2 = 1√
2

{(
1
1

)
,

(
−1
1

)}
,

B3 = 1√
2

{(
1
i

)
,

(
1
−i

)}
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MUBs in dimension 3

B1 =

1 0 0
0 1 0
0 0 1

,

B2 = 1√
3

1 1 1
1 ω ω2

1 ω2 ω

,

B3 = 1√
3

 1 1 1
ω2 1 ω
ω2 ω 1

,

B4 = 1√
3

1 1 1
ω ω2 1
ω 1 ω2
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Known Results:

N(d) := max{n : there exist n MUBs of Cd}.

Upper bound: N(d) ≤ d+ 1.

Lower bound: If d = pk1
1 p

k2
2 ...p

kr
r such that pk1

1 < pk2
2 < ... < pkr

r ; then

N(d) ≥ pk1
1 + 1.

N(pk) = pk + 1 for all primes p.

Some special constructions in specific dimensions beat lower bound.

example: There are at least 6 MUBs in dimension d = 262.
[Wockjan and Beth’ 2004]
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Open Problem

Determine N(d) exactly for any d, not a prime power, or even just improve on the
upper bound :

N(d) ≤ d < d+ 1

Zauner’s conjecture: N(6) = 3
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Preliminaries:

1 If M1,M2, . . . ,Mk be a system of k MUBs in Cd. Then for any unitary
matrix U , the system UM1, UM2, . . . , UMk is again a system of k MUBs in
Cd .

2 By corollary, if (M1,M2) are pair of MUB in Cd then (I,M−1
1 M2) are also

pair of MUB in Cd and M−1
1 M2 = 1√

d
H.

3 If tensor product of two unitary matrices is a Hadamard matrix, then both
unitaries has to be Hadamard.

4 If (Mi ⊗Ni,Mj ⊗Nj) are MUBs, this implies Mi and Mj are MUBs, and Ni

and Nj are MUBs in corresponding dimensions. (follows from statement 3)
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Main result

Theorem

There does not exist a unitary matrix U in the zero-entanglement subspace such
that

{M1 ⊗N1, M2 ⊗N2, M3 ⊗N3, U}

are MUBs in C6, where Mi ∈ U2, Ni ∈ U3 and U ∈ U6.
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Proof Sketch

Lemma

A unitary matrix U ∈ C6×6 in zero-entanglement sector can be represented in one
of the following two forms:

Form 1:
U = A⊗B

where
A ∈ U2, B ∈ U3.

Form 2:
U = A1 ⊗B1 +A2 ⊗ V3B1

where
A1 =

[
|a1⟩ 0

]
, A2 =

[
0 |a2⟩

]
, and B1, V3 ∈ U3.
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Proof of Lemma

Let,
U =

[
|ψ1⟩ |ψ2⟩ |ψ3⟩ |ψ4⟩ |ψ5⟩ |ψ6⟩

]
;

such that
⟨ψi|ψj⟩ = δij and U†U = I.

Since |ψi⟩ = |ai⟩ ⊗ |bi⟩, then

⟨ψi|ψj⟩ = ⟨ai|aj⟩ ⟨bi|bj⟩ = δij = 0 for i ̸= j.

Notation: For a set S, the cardinality |S| represents the number of distinct
elements in the set S.

We have only three cases:
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Case Analysis Diagram (Proof Cont...)

|{|ai⟩}| = 1 then ⟨bi|bj⟩ = 0
Not Possible

|{|ai⟩}| = 2

|{|ai⟩}| ≥ 3
Not Possible

⟨a1|a2⟩ ̸= 0
Not Possible

⟨a1|a2⟩ = 0
Possible
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Only Possibility (Proof Cont...)

|{|ai⟩}| = 2

|{|bi⟩}| = 3

Then, U = A ⊗ B

|{|bi⟩}| = 6

Then, U = A1 ⊗ B1 + A2 ⊗ V3B1
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Proof of Main result if U = U2 ⊗ U3

{M1 ⊗N1,M2 ⊗N2,M3 ⊗N3, U2 ⊗ U3} are MUBs;

So, (U2 ⊗ U3)
†(Mi ⊗Ni) =

1√
6
Hi.

Let
U†
2Mi = Ai and U†

3Ni = Bi,

such that

Ai ⊗Bi =
1√
6
Hi.

Fact: If tensor product of two unitary matrices is a Hadamard matrix, then both
unitaries has to be Hadamard.
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Proof of Main result if U = A1 ⊗B1 + A2 ⊗B2

{M1 ⊗N1,M2 ⊗N2,M3 ⊗N3, U} are MUBs;

So, U†(Mi ⊗Ni) =
1√
6
Hi.

Since,
U =

[
|a1⟩ 0

]
⊗B1 +

[
0 |a2⟩

]
⊗B2

Where,

A1 =
[
|a1⟩ 0

]
=

[
a11 0
a21 0

]
, A2 =

[
0 |a2⟩

]
=

[
0 a12
0 a22

]
.
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Proof (Cont...)

U†(Mi ⊗Ni) =
([

|a1⟩ 0
]† ⊗B†

1 +
[
0 |a2⟩

]† ⊗B†
2

)
(Mi ⊗Ni)

=
[
|a1⟩ 0

]†
Mi ⊗B†

1Ni +
[
0 |a2⟩

]†
Mi ⊗B†

2Ni

Let,
B†

1Ni = V i
1 and B†

2Ni = V i
2 .

Note:

V i
1 , V

i
2 ∈ U3.

If X and Y be unitary matrices such that

X =
[
|x1⟩ |x2⟩ · · · |xd⟩

]
, Y =

[
|y1⟩ |y2⟩ · · · |yd⟩

]
then,

(X†Y )ij = ⟨xi|yj⟩

.
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Proof(Cont...)

So,

U†(Mi ⊗Ni) =

[
⟨a1|mi

1⟩ ⟨a1|mi
2⟩

0 0

]
⊗ V i

1 +

[
0 0

⟨a2|mi
1⟩ ⟨a2|mi

2⟩

]
⊗ V i

2

=

[
⟨a1|mi

1⟩V i
1 ⟨a1|mi

2⟩V i
1

⟨a2|mi
1⟩V i

2 ⟨a2|mi
2⟩V i

2

]
=

1√
6
Hi.

This implies,

A†Mi =

[
⟨a1|mi

1⟩ ⟨a1|mi
2⟩

⟨a2|mi
1⟩ ⟨a2|mi

2⟩

]
is

1√
2
times a Hadamard matrix in d=2,

which means A and Mi must be MUBs for all i.
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Generic Result

Result: Consider generic composite dimension d = pk1
1 p

k2
2 ...p

kr
r such that

pk1
1 < pk2

2 < ... < pkr
r ; then it is not possible to have more than pk1 + 1 MUBs if

all vectors come from the tensor product space.
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Thank you !
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