

Pekka Lampio Joint work with Mikhail Ganzhinov

8th Hadamard Workshop May 26-30, 2025 Sevilla

Definition

A weighing matrix of order *n* and weight *k*, denoted by W(n,k) is an $n \times n$ matrix with entries 0, 1, -1, such that,

$$\mathbf{W}\mathbf{W}^{T} = k \mathbf{I}_{n}$$

where $1 \leq k \leq n$.

Definition

A weighing matrix of order *n* and weight *k*, denoted by W(n, k) is an $n \times n$ matrix with entries 0, 1, -1, such that,

$$\mathbf{W}\mathbf{W}^{T} = k \mathbf{I}_{n}$$

,

where
$$1 \le k \le n$$
.

Example: a W(8,4)

0	0	0	0	1	1	1	1
0	0	1	1	0	0	1	-1
0	1	0	1	0	1	-1	0
0	1	-1	0	-1	0	1	0
1	0	0	1	0	-1	0	1
1	0	-1	0	1	0	0	-1
1	1	1	-1	0	0	0	0
1	-1	0	0	-1	1	0	0

Definition

A weighing matrix of order *n* and weight *k*, denoted by W(n,k) is an $n \times n$ matrix with entries 0, 1, -1, such that,

$$\mathbf{W}\mathbf{W}^T = k \mathbf{I}_n$$

where $1 \le k \le n$.

Example: a W(8, 4)

0	0	0	0	1	1	1	1
0	0	1	1	0	0	1	-1
0	1	0	1	0	1	-1	0
0	1	-1	0	-1	0	1	0
1	0	0	1	0	-1	0	1
1	0	-1	0	1	0	0	-1
1	1	1	-1	0	0	0	0
1	-1	0	0	-1	1	0	0

rows (columns) are mutually orthogonal

,

Definition

A weighing matrix of order *n* and weight *k*, denoted by W(n,k) is an $n \times n$ matrix with entries 0, 1, -1, such that,

$$\mathbf{W}\mathbf{W}^{T} = k \mathbf{I}_{n}$$

where $1 \le k \le n$.

Example: a W(8,4)

0	0	0	0	1	1	1	1
0	0	1	1	0	0	1	-1
0	1	0	1	0	1	-1	0
0	1	-1	0	-1	0	1	0
1	0	0	1	0	-1	0	1
1	0	-1	0	1	0	0	-1
1	1	1	-1	0	0	0	0
1	-1	0	0	-1	1	0	0

rows (columns) are mutually orthogonal

,

• when k = n, the matrix is a Hadamard matrix.

Definition

A weighing matrix of order *n* and weight *k*, denoted by W(n,k) is an $n \times n$ matrix with entries 0, 1, -1, such that,

$$\mathbf{W}\mathbf{W}^T = k \mathbf{I}_n$$

where $1 \le k \le n$.

Example: a W(8, 4)

0	0	0	0	1	1	1	1
0	0	1	1	0	0	1	-1
0	1	0	1	0	1	-1	0
0	1	-1	0	-1	0	1	0
1	0	0	1	0	-1	0	1
1	0	-1	0	1	0	0	-1
1	1	1	-1	0	0	0	0
1	-1	0	0	-1	1	0	0

- rows (columns) are mutually orthogonal
- when k = n, the matrix is a Hadamard matrix.
- when k = n 1, the matrix is equivalent to a conference matrix.

Equivalence of weighing matrices

These operations produce a weighing matrix when applied to any weighing matrix:

- 1. Permuting the order of rows,
- 2. Permuting the order of columns,
- **3.** Multiplying a row by -1,
- **4.** Multiplying a column -1.

Equivalence of weighing matrices

These operations produce a weighing matrix when applied to any weighing matrix:

- 1. Permuting the order of rows,
- 2. Permuting the order of columns,
- **3.** Multiplying a row by -1,
- **4.** Multiplying a column -1.

Weighing matrices are equivalent if they are essentially the same in the following sense:

Definition

Weighing matrices A and B are equivalent, denoted by, $A \cong B$, if B can be generated from A by applying Operations 1, 2, 3, and 4.

Classification of weighing matrices Pekka Lampio

1. Existence

- Known for weights <= 5.
- Smallest unknown case is W(35, 25).

- 1. Existence
 - Known for weights <= 5.
 - Smallest unknown case is W(35, 25).
- 2. Enumeration of all inequivalent matrices
 - Smallest order with unknown cases is 16.
 - In this work we give complete classification of orders 16,18,19,20 and 21.
 - Also we give complete classification of some cases in orders 22,24,28.

- 1. Existence
 - Known for weights <= 5.
 - Smallest unknown case is W(35, 25).
- 2. Enumeration of all inequivalent matrices
 - Smallest order with unknown cases is 16.
 - In this work we give complete classification of orders 16,18,19,20 and 21.
 - Also we give complete classification of some cases in orders 22,24,28.
- 3. Exhaustive computer search
 - A new computational method: the criss-cross search.

1. Orderly generation of matrices

Classification of weighing matrices Pekka Lampio

- 1. Orderly generation of matrices
- 2. Larger matrices are constructed from smaller by adding rows (or columns).

- 1. Orderly generation of matrices
- 2. Larger matrices are constructed from smaller by adding rows (or columns).
- 3. Pruning of isomorphic matrices and substructures

- 1. Orderly generation of matrices
- 2. Larger matrices are constructed from smaller by adding rows (or columns).
- 3. Pruning of isomorphic matrices and substructures
- 4. Criss-cross search (NEW!)

- 1. Orderly generation of matrices
- 2. Larger matrices are constructed from smaller by adding rows (or columns).
- 3. Pruning of isomorphic matrices and substructures
- 4. Criss-cross search (NEW!)
- 5. Cliquer search

- Example:
 - colors depict equivalence classes

	1	1	1	1	0	0	0	0
	-1	1	0	0	1	1	0	0
		•			•	•	•	•
$\in R2$		•	•	•	•	•	•	•
	•	•	•	·	•	•	•	•
	•	•	·	·	·	•	·	·
	•	•	•	•	•	•	•	•

	1	1	1	1	0	0	0	0
	-1	1	0	0	1	1	0	0
	0	-1	1	0	1	0	1	0
$\subset \mathbf{R8}$	0	1	0	-1	0	-1	1	0
	1	0	-1	0	1	0	0	1
	-1	0	0	1	0	-1	0	1
	0	0	0	0	-1	1	1	1
	0	0	1	-1	0	0	-1	1

	1	1	1	1	0	0	0	0
	-1	1	0	0	1	1	0	0
_	0	-1	1	0	1	0	1	0
$\in C8$	0	1	0	-1	0	-1	1	0
	1	0	-1	0	1	0	0	1
	-1	0	0	1	0	-1	0	1
	0	0	0	0	-1	1	1	1
	0	0	1	-1	0	0	-1	1

Criss-cross search

Classification of weighing matrices Pekka Lampio

Criss-cross search (cont.)

Let C be an $n \times k$ and R $m \times n$ rectangular weighing matrices:

C/R	C/R	R	R	R	R	R	R
C/R	C/R	R	R	R	R	R	R
C/R	C/R	R	R	R	R	R	R
С	С						
С	С						
С	С		-				
С	С		-				
С	С						

C and R are matching row and column search matrices.

Criss-cross search (cont.)

Let C be an $n \times k$ and R $m \times n$ rectangular weighing matrices:

C/R	C/R	R	R	R	R	R	R
C/R	C/R	R	R	R	R	R	R
C/R	C/R	R	R	R	R	R	R
С	С						
С	С						
С	С		-				
С	С		-				
С	С		-				

C and R are matching row and column search matrices.

An equivalence defining operation *f* (row/column permutation, row/column multiplication) is compatible with C if

 $f(R) \geq R$, for all R.

Check if a $k \times n$ rectangular matrix **A** could be extended to a full weighing matrix **W** of order *n*.

Find set *C* of all those rows that are orthogonal with all rows of *A*.

- Find set *C* of all those rows that are orthogonal with all rows of *A*.
- Form a graph *G* where each row in *C* is a node and there is an edge between the rows if they are orthogonal.

- Find set *C* of all those rows that are orthogonal with all rows of *A*.
- Form a graph *G* where each row in *C* is a node and there is an edge between the rows if they are orthogonal.
- Solve maximum clique problem in *G* with Cliquer software

- Find set *C* of all those rows that are orthogonal with all rows of *A*.
- Form a graph *G* where each row in *C* is a node and there is an edge between the rows if they are orthogonal.
- Solve maximum clique problem in G with Cliquer software (Niskanen, Östergård)
- If the size of the maximum clique is n − k, we have found a weighing matrix.

How we computed W(20, 12).

1. Created seeds with Criss-cross search.

How we computed W(20, 12).

- 1. Created seeds with Criss-cross search.
 - seeds are 5 × 20 rectangular weighing matrices
 - single-threaded computation
 - CPU-time 4.36 hours
 - Real-time 4.38 hours
 - Found 4, 055, 445 seeds

How we computed W(20, 12).

- 1. Created seeds with Criss-cross search.
 - seeds are 5 × 20 rectangular weighing matrices
 - single-threaded computation
 - CPU-time 4.36 hours
 - Real-time 4.38 hours
 - Found 4, 055, 445 seeds
- 2. Extended seeds to full matrices with Clique search.

How we computed W(20, 12).

- 1. Created seeds with Criss-cross search.
 - seeds are 5 × 20 rectangular weighing matrices
 - single-threaded computation
 - CPU-time 4.36 hours
 - Real-time 4.38 hours
 - Found 4, 055, 445 seeds
- 2. Extended seeds to full matrices with Clique search.
 - Parallel computation on a computing cluster using 640 cores
 - CPU-time 38.3 years
 - Real-time 23.4 days
 - 3,503,212 inequivalent matrices found

Order	Weight	#	Ref.
16	1,2,3	1	[1]
	4	10	[1]
	5	4	[1]
	6	30	[3]
	7	55	
	8	4631	
	9	704	[3]
	10	743	670 in [3]
	11	43	
	12	279	[3]
	13	14	
	14	17	
	15	1	[1]
	16	5	[2]

Order	Weight	#	Ref.	Order	Weight	#	Ref.
16	1,2,3	1	[1]	17	1	1	[1]
	4	10	[1]		4	2	[1]
	5	4	[1]		9	2360	[3]
	6	30	[3]				
	7	55					
	8	4631					
	9	704	[3]				
	10	743	670 in [3]				
	11	43					
	12	279	[3]				
	13	14					
	14	17					
	15	1	[1]				
	16	5	[2]				

Order	Weight	#	Ref.	Order	Weight	#	Ref.
16	1,2,3	1	[1]	17	1	1	[1]
	4	10	[1]		4	2	[1]
	5	4	[1]		9	2360	[3]
	6	30	[3]	18	1	1	[1]
	7	55			2	1	[1]
	8	4631			4	11	[1]
	9	704	[3]		5	5	[3]
	10	743	670 in [3]		8	4817	
	11	43			9	11891	[3]
	12	279	[3]		10	70133	
	13	14			13	53	
	14	17			16	4	
	15	1	[1]		17	1	[1]
	16	5	[2]				

Order	Weight	#	Ref.	Order	Weight	#	Ref.
16	1,2,3	1	[1]	17	1	1	[1]
	4	10	[1]		4	2	[1]
	5	4	[1]		9	2360	[3]
	6	30	[3]	18	1	1	[1]
	7	55			2	1	[1]
	8	4631			4	11	[1]
	9	704	[3]		5	5	[3]
	10	743	670 in [3]		8	4817	
	11	43			9	11891	[3]
	12	279	[3]		10	70133	
	13	14			13	53	
	14	17			16	4	
	15	1	[1]		17	1	[1]
	16	5	[2]	19	1	1	[1]
					4	5	[1]
					9	189076	

Order	Weight	#	Ref.
20	1,2,3	1	[1]
	4	18	[1]
	5	7	[3]
	6	49	[3]
	7	159	
	8	18294	
	9	2924696	
	10	73418583	
	11	13506863	
	12	3503212	
	13	34312	
	14	6254	
	15	1351	
	16	2164	
	17	58	
	18	53	[3]
	19	2	[2]
	20	3	[2]

Order	Weight	#	Ref.	Order	Weight	#	Ref.
20	1,2,3	1	[1]	21	1	1	[1]
	4	18	[1]		4	1	[1]
	5	7	[3]		9	5756272	
	6	49	[3]		16	40	
	7	159					
	8	18294					
	9	2924696					
	10	73418583					
	11	13506863					
	12	3503212					
	13	34312					
	14	6254					
	15	1351					
	16	2164					
	17	58					
	18	53	[3]				
	19	2	[2]				
	20	3	[2]				

Order	Weight	#	Ref.
22	1,2	1	[1]
	4	22	[1]
	5	9	[3]
	8	196986	
	9,10,13,16	?	
	17	1588	
	18	1621	
	20	6	

Order	Weight	#	Ref.
22	1,2	1	[1]
	4	22	[1]
	5	9	[3]
	8	196986	
	9,10,13,16	?	
	17	1588	
	18	1621	
	20	6	
23	1	1	[1]
	4	10	[1]
	9,16	?	

Order	Weight	#	Ref.	Order	Weight	#	Ref.
22	1,2	1	[1]	24	1,2,3	1	[1]
	4	22	[1]		4	33	[1]
	5	9	[3]		5	14	[3]
	8	196986			6	190	[3]
	9,10,13,16	?			7	336	
	17	1588			8-20	?	
	18	1621			21	2493	
	20	6			22	1440	
23	1	1	[1]	-	23	9	[5]
	4	10	[1]		24	60	[5]
	9,16	?					

Order	Weight	#	Ref.	Order	Weight	#	Ref.
22	1,2	1	[1]	24	1,2,3	1	[1]
	4	22	[1]		4	33	[1]
	5	9	[3]		5	14	[3]
	8	196986			6	190	[3]
	9,10,13,16	?			7	336	
	17	1588			8-20	?	
	18	1621			21	2493	
	20	6			22	1440	
23	1	1	[1]	•	23	9	[5]
	4	10	[1]		24	60	[5]
	9,16	?		25	1	1	[1]
					4	11	[1]
					9,16	?	

Order	Weight	#	Ref.
26	1,2	1	[1]
	4	39	[1]
	5	16	[3]
	8,9,10,13,16,17,18,20	?	
	25	4	[4]

Order	Weight	#	Ref.
26	1,2	1	[1]
	4	39	[1]
	5	16	[3]
	8,9,10,13,16,17,18,20	?	
	25	4	[4]
27	1	1	[1]
	4	18	[1]
	9,16	?	

Order	Weight	#	Ref.
26	1,2	1	[1]
	4	39	[1]
	5	16	[3]
	8,9,10,13,16,17,18,20	?	
	25	4	[4]
27	1	1	[1]
	4	18	[1]
	9,16	?	
28	1,2,3	1	[1]
	4	57	[1]
	5	22	[3]
	6	684	
	7-26	?	
	27	41	[5]
	28	487	[5]

We have classified 32 cases.

- We have classified 32 cases.
- These results are preliminary.

- We have classified 32 cases.
- These results are preliminary.
- Further performance improvements are possible.

- We have classified 32 cases.
- These results are preliminary.
- Further performance improvements are possible.
- The work continues.

Thank you!

Classification of weighing matrices Pekka Lampio

References

- H. C. Chan, C. A. Rodger, and Jennifer Seberry. On inequivalent weighing matrices. volume 21, pages 299–333. 1986. Thirteenth Australasian conference on combinatorial mathematics and computing (Sydney, 1985).
- [2] Marshall Hall, Jr. *Combinatorial theory*. Blaisdell Publishing Co. [Ginn and Co.], Waltham, Mass.-Toronto, Ont.-London, 1967.
- [3] Masaaki Harada and Akihiro Munemasa. On the classification of weighing matrices and self-orthogonal codes. J. Combin. Des., 20(1):40–57, 2012.
- [4] A. J. L. Paulus. Conference matrices and graphs of order 26. Report WSK 73/06, Technische Hogeschool Eindhoven, Eindhoven, 1973.
- [5] Edward Spence. Classification of hadamard matrices of order 24 and 28. *Discret. Math.*, 140(1-3):185–243, 1995.

