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Preliminaries

Motivation

Question:

Which strongly regular graphs arise as Cayley graphs of bent
Boolean functions?
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Preliminaries

Bent functions

Definition 1

The Walsh Hadamard transform of a Boolean function
f : F2m

2 → F2 is

Wf (x) :=
∑

y∈F2m
2

(−1)f(y)+⟨x,y⟩

Definition 2

A Boolean function f : F2m
2 → F2 is bent if and only if its Walsh

Hadamard transform has constant absolute value 2m.

(Dillon 1974; Rothaus 1976)
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Preliminaries

The Cayley graph of a Boolean function

Definition 3

The Cayley graph Cay (f) of a Boolean function

f : Fn
2 → F2 where f(0) = 0

is an undirected graph with

V (Cay (f)) := Fn
2 , (x, y) ∈ E(Cay (f)) ⇔ f(x+ y) = 1.

(Bernasconi and Codenotti 1999)
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Preliminaries

Strongly regular graphs

Definition 4

A simple graph Γ of order v is strongly regular with parameters
(v, k, λ, µ) if

▶ each vertex has degree k,

▶ each adjacent pair of vertices has λ common neighbours, and

▶ each nonadjacent pair of vertices has µ common neighbours.

(Brouwer, Cohen and Neumaier 1989)
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Preliminaries

Cayley graphs of bent functions

Proposition 1

(Bernasconi and Codenotti 1999)

The Cayley graph Cay (f) of a bent function f on F2m
2

with f(0) = 0 is a strongly regular graph with λ = µ.

The parameters of Cay (f) are

(v, k, λ) =(4m, 22m−1 − 2m−1, 22m−2 − 2m−1)

or (4m, 22m−1 + 2m−1, 22m−2 + 2m−1).

(Bernasconi and Codenotti 1999)



Boolean-Cayley-graphs: exploring Bent functions and their Cayley graphs

Equivalence of bent functions

Extended affine equivalence

Definition 5

For bent functions f, g : F2m
2 → F2,

f is extended affine equivalent to g if and only if

g(x) = f(Ax+ b) + ⟨c, x⟩+ δ

for some A ∈ GL(2m, 2), b, c ∈ F2m
2 , δ ∈ F2.

(Budaghyan, Carlet and Pott 2006)
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Equivalence of bent functions

General linear equivalence

Definition 6

For bent functions f, g : F2m
2 → F2, f is general linear equivalent

to g if and only if

g(x) = f(Ax)

for some A ∈ GL(2m, 2).
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Equivalence of bent functions

Extended translation equivalence

Definition 7

For bent functions f, g : F2m
2 → F2,

f is extended translation equivalent to g if and only if

g(x) = f(x+ b) + ⟨c, x⟩+ δ

for b, c ∈ F2m
2 , δ ∈ F2.
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Equivalence of bent functions

Cayley equivalence

Definition 8

For f, g : F2m
2 → F2, with both f and g bent,

we call f and g Cayley equivalent, and write f ≡ g,
if and only if f(0) = g(0) = 0 and Cay (f) ≡ Cay (g) as graphs.

Equivalently, f ≡ g if and only if f(0) = g(0) = 0 and
there exists a bijection π : F2m

2 → F2m
2 such that

g(x+ y) = f
(
π(x) + π(y)

)
for all x, y ∈ F2m

2 .
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Equivalence of bent functions

Extended Cayley equivalence

Definition 9

For f, g : F2m
2 → F2, with both f and g bent,

if there exist δ, ϵ ∈ {0, 1} such that f + δ ≡ g + ϵ,
we call f and g extended Cayley (EC) equivalent and write f ∼= g.

Extended Cayley equivalence is an equivalence relation on the set
of all bent functions on F2m

2 .
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Equivalence of bent functions

General linear equivalence
implies Cayley equivalence

Theorem 1

If f is bent with f(0) = 0 and g(x) := f(Ax) where
A ∈ GL(2m, 2), then g is bent with g(0) = 0 and f ≡ g.

Proof.

g(x+ y) = f
(
A(x+ y)

)
= f(Ax+Ay) for all x, y ∈ F2m

2 .
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Equivalence of bent functions

Extended affine, extended translation, and
extended Cayley equivalence (1)

Theorem 2

For A ∈ GL(2m, 2), b, c ∈ F2m
2 , δ ∈ F2, f : F2m

2 → F2,
the function

h(x) := f(Ax+ b) + ⟨c, x⟩+ δ

can be expressed as h(x) = g(Ax) where

g(x) := f(x+ b) + ⟨(A−1)T c, x⟩+ δ,

and therefore if f is bent then h ∼= g.
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Equivalence of bent functions

Extended affine, extended translation, and
extended Cayley equivalence (2)

Therefore, to determine which extended Cayley equivalence classes
have members within the extended affine equivalence class of a
bent function f : F2m

2 → F2 (for which f(0) = 0) we need only
examine the extended translation equivalent functions of the form

f(x+ b) + ⟨c, x⟩+ f(b),

for each b, c ∈ F2m
2 .
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Equivalence of bent functions

Weights and weight classes

Definition 10

The weight of a binary function is the cardinality of its support.
For f on F2m

2

supp (f) := {x ∈ F2m
2 | f(x) = 1}.

A bent function f on F2m
2 has weight

wt (f) = 22m−1 − 2m−1 (weight class wc (f) = 0), or

wt (f) = 22m−1 + 2m−1 (weight class wc (f) = 1).
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Equivalence of bent functions

Quadratic bent functions have two
General Linear classes

Theorem 3

For each m > 0, the extended affine equivalence class of quadratic
bent functions q : F2m

2 → F2 contains members of exactly two
General linear equivalence classes, corresponding to the two
possible weight classes of x 7→ q(x+ b) + ⟨c, x⟩+ q(b).
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Equivalence of bent functions

Quadratic bent functions have two
extended Cayley classes

Corollary 4

For each m > 0, the extended affine equivalence class of quadratic
bent functions q : F2m

2 → F2 contains exactly two extended Cayley
equivalence classes, corresponding to the two possible weight
classes of x 7→ q(x+ b) + ⟨c, x⟩+ q(b).
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Demo

Demo of Boolean-Cayley-graphs

CoCalc: Public worksheets, Sage and Python source code

http://tinyurl.com/Boolean-Cayley-graphs

GitHub: Sage and Python source code

https://github.com/penguian/Boolean-Cayley-graphs

SourceForge: Documentation

https://boolean-cayley-graphs.sourceforge.io/
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Computational results for low dimensions

For 2 dimensions: ET class [f2,1]

One extended affine class, containing the extended translation
class [f2,1], where f2,1(x) := x0x1.

[f2,1]: 2 extended Cayley classes, 2
General Linear classes
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Computational results for low dimensions

For 4 dimensions: ET class [f4,1]

One extended affine class, containing the extended translation
class [f4,1], where f4,1(x) := x0x1 + x2x3.

[f4,1]: 2 extended Cayley classes, 2
General Linear classes
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Computational results for low dimensions

For 6 dimensions: ET classes

Four extended affine classes, containing the following extended
translation classes:

Class Representative

[f6,1] f6,1 := x0x1 + x2x3 + x4x5

[f6,2] f6,2 := x0x1x2 + x0x3 + x1x4 + x2x5

[f6,3] f6,3 :=
x0x1x2 + x0x1 + x0x3 + x1x3x4 + x1x5

+x2x4 + x3x4

[f6,4] f6,4 :=
x0x1x2 + x0x3 + x1x3x4 + x1x5 + x2x3x5

+x2x3 + x2x4 + x2x5 + x3x4 + x3x5

(Rothaus 1976; Tokareva 2015)
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Computational results for low dimensions

ET class [f6,1]

[f6,1]: 2 extended Cayley classes,
2 General Linear classes
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Computational results for low dimensions

ET class [f6,2]

[f6,2]: 3 extended Cayley classes [f6,2]: 15 General Linear classes

Since f6,1 ≡ f6,2, the Cayley graph for extended Cayley class 0 is
isomorphic to the Cayley graph for class 0 of [f6,1].
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Computational results for low dimensions

ET classes [f6,3] and [f6,4]

[f6,3]: 4 extended Cayley classes,
4 General Linear classes

[f6,4]: 3 extended Cayley classes,
3 General Linear classes
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Source code, references, acknowledgements

Preprint, source code and documentation

Preprint: Paul Leopardi, Classifying bent functions by their Cayley
graphs, arXiv:1705.04507 [math.CO]. Revised, December, 2023.

CoCalc: Public worksheets, Sage and Python source code

http://tinyurl.com/Boolean-Cayley-graphs

GitHub: Sage and Python source code

https://github.com/penguian/Boolean-Cayley-graphs

SourceForge: Documentation

https://boolean-cayley-graphs.sourceforge.io/
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