Boolean-Cayley-graphs: Using Sage and Python software to explore Boolean functions, their Cayley graphs and associated structures

Paul Leopardi

ACCESS-NRI The Australian National University

For Hadamard 2025

Motivation

Question:

Which strongly regular graphs arise as Cayley graphs of bent Boolean functions?

Bent functions

Definition 1

The Walsh Hadamard transform of a Boolean function $f: \mathbb{F}_2^{2m} \to \mathbb{F}_2$ is

$$W_f(x) := \sum_{y \in \mathbb{F}_2^{2m}} (-1)^{f(y) + \langle x, y \rangle}$$

Definition 2

A Boolean function $f : \mathbb{F}_2^{2m} \to \mathbb{F}_2$ is bent if and only if its Walsh Hadamard transform has constant absolute value 2^m .

(Dillon 1974; Rothaus 1976)

The Cayley graph of a Boolean function

Definition 3

The Cayley graph Cay(f) of a Boolean function

$$f: \mathbb{F}_2^n \to \mathbb{F}_2$$
 where $f(0) = 0$

is an undirected graph with

$$V(\operatorname{Cay}\,(f)):=\mathbb{F}_2^n,\quad (x,y)\in E(\operatorname{Cay}\,(f))\Leftrightarrow f(x+y)=1.$$

(Bernasconi and Codenotti 1999)

-Preliminaries

Strongly regular graphs

Definition 4

A simple graph Γ of order v is strongly regular with parameters (v,k,λ,μ) if

► each vertex has degree k,

• each adjacent pair of vertices has λ common neighbours, and

• each nonadjacent pair of vertices has μ common neighbours.

(Brouwer, Cohen and Neumaier 1989)

-Preliminaries

Cayley graphs of bent functions

Proposition 1

(Bernasconi and Codenotti 1999) The Cayley graph $\operatorname{Cay}(f)$ of a bent function f on \mathbb{F}_2^{2m} with f(0) = 0 is a strongly regular graph with $\lambda = \mu$.

The parameters of $\operatorname{Cay}\left(f\right)$ are

$$\begin{aligned} (v,k,\lambda) = & (4^m,2^{2m-1}-2^{m-1},2^{2m-2}-2^{m-1}) \\ \text{or} \quad (4^m,2^{2m-1}+2^{m-1},2^{2m-2}+2^{m-1}). \end{aligned}$$

(Bernasconi and Codenotti 1999)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ ● ○ ○ ○

Boolean-Cayley-graphs: exploring Bent functions and their Cayley graphs Lequivalence of bent functions

Extended affine equivalence

Definition 5

For bent functions $f, g: \mathbb{F}_2^{2m} \to \mathbb{F}_2$, f is extended affine equivalent to g if and only if

$$g(x) = f(Ax + b) + \langle c, x \rangle + \delta$$

for some $A \in GL(2m, 2)$, $b, c \in \mathbb{F}_2^{2m}$, $\delta \in \mathbb{F}_2$.

(Budaghyan, Carlet and Pott 2006)

Boolean-Cayley-graphs: exploring Bent functions and their Cayley graphs - Equivalence of bent functions

General linear equivalence

Definition 6

For bent functions $f, g: \mathbb{F}_2^{2m} \to \mathbb{F}_2$, f is general linear equivalent to g if and only if

$$g(x) = f(Ax)$$

for some $A \in GL(2m, 2)$.

Boolean-Cayley-graphs: exploring Bent functions and their Cayley graphs - Equivalence of bent functions

Extended translation equivalence

Definition 7

For bent functions $f, g : \mathbb{F}_2^{2m} \to \mathbb{F}_2$, f is extended translation equivalent to g if and only if

$$g(x) = f(x+b) + \langle c, x \rangle + \delta$$

イロト (母) (ヨ) (ヨ) (ヨ) (つ)

for $b, c \in \mathbb{F}_2^{2m}$, $\delta \in \mathbb{F}_2$.

Boolean-Cayley-graphs: exploring Bent functions and their Cayley graphs Lequivalence of bent functions

Cayley equivalence

Definition 8

For $f, g: \mathbb{F}_2^{2m} \to \mathbb{F}_2$, with both f and g bent, we call f and g Cayley equivalent, and write $f \equiv g$, if and only if f(0) = g(0) = 0 and $\operatorname{Cay}(f) \equiv \operatorname{Cay}(g)$ as graphs.

Equivalently, $f \equiv g$ if and only if f(0) = g(0) = 0 and there exists a bijection $\pi : \mathbb{F}_2^{2m} \to \mathbb{F}_2^{2m}$ such that

$$g(x+y) = f(\pi(x) + \pi(y))$$
 for all $x, y \in \mathbb{F}_2^{2m}$.

ション ふゆ メリン オリン しょうくしょ

Boolean-Cayley-graphs: exploring Bent functions and their Cayley graphs - Equivalence of bent functions

Extended Cayley equivalence

Definition 9

For $f, g: \mathbb{F}_2^{2m} \to \mathbb{F}_2$, with both f and g bent, if there exist $\delta, \epsilon \in \{0, 1\}$ such that $f + \delta \equiv g + \epsilon$, we call f and g extended Cayley (EC) equivalent and write $f \cong g$.

Extended Cayley equivalence is an equivalence relation on the set of all bent functions on $\mathbb{F}_2^{2m}.$

ション ふゆ メリン オリン しょうくしょ

Boolean-Cayley-graphs: exploring Bent functions and their Cayley graphs Lequivalence of bent functions

General linear equivalence implies Cayley equivalence

Theorem 1

If f is bent with f(0) = 0 and g(x) := f(Ax) where $A \in GL(2m, 2)$, then g is bent with g(0) = 0 and $f \equiv g$.

Proof.

$$g(x+y) = f\big(A(x+y)\big) = f(Ax+Ay) \quad \text{for all } x, y \in \mathbb{F}_2^{2m}.$$

ション ふゆ メリン オリン しょうくしょ

Boolean-Cayley-graphs: exploring Bent functions and their Cayley graphs Lequivalence of bent functions

Extended affine, extended translation, and extended Cayley equivalence (1)

Theorem 2

For $A \in GL(2m, 2)$, $b, c \in \mathbb{F}_2^{2m}$, $\delta \in \mathbb{F}_2$, $f : \mathbb{F}_2^{2m} \to \mathbb{F}_2$, the function

$$h(x):=f(Ax+b)+\langle c,x\rangle+\delta$$

can be expressed as h(x) = g(Ax) where

$$g(x) := f(x+b) + \langle (A^{-1})^T c, x \rangle + \delta,$$

ション ふゆ メリン オリン しょうくしょ

and therefore if f is bent then $h \cong g$.

Extended affine, extended translation, and extended Cayley equivalence (2)

Therefore, to determine which extended Cayley equivalence classes have members within the extended affine equivalence class of a bent function $f: \mathbb{F}_2^{2m} \to \mathbb{F}_2$ (for which f(0) = 0) we need only examine the extended translation equivalent functions of the form

$$f(x+b) + \langle c, x \rangle + f(b),$$

ション ふゆ メリン オリン しょうくしょ

for each $b, c \in \mathbb{F}_2^{2m}$.

Boolean-Cayley-graphs: exploring Bent functions and their Cayley graphs - Equivalence of bent functions

Weights and weight classes

Definition 10

The weight of a binary function is the cardinality of its support. For f on \mathbb{F}_2^{2m}

$$supp(f) := \{ x \in \mathbb{F}_2^{2m} \mid f(x) = 1 \}.$$

A bent function f on \mathbb{F}_2^{2m} has weight

wt
$$(f) = 2^{2m-1} - 2^{m-1}$$
 (weight class wc $(f) = 0$), or
wt $(f) = 2^{2m-1} + 2^{m-1}$ (weight class wc $(f) = 1$).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Boolean-Cayley-graphs: exploring Bent functions and their Cayley graphs Lequivalence of bent functions

Quadratic bent functions have two General Linear classes

Theorem 3

For each m > 0, the extended affine equivalence class of quadratic bent functions $q: \mathbb{F}_2^{2m} \to \mathbb{F}_2$ contains members of exactly two General linear equivalence classes, corresponding to the two possible weight classes of $x \mapsto q(x+b) + \langle c, x \rangle + q(b)$.

Boolean-Cayley-graphs: exploring Bent functions and their Cayley graphs Lequivalence of bent functions

Quadratic bent functions have two extended Cayley classes

Corollary 4

For each m > 0, the extended affine equivalence class of quadratic bent functions $q: \mathbb{F}_2^{2m} \to \mathbb{F}_2$ contains exactly two extended Cayley equivalence classes, corresponding to the two possible weight classes of $x \mapsto q(x+b) + \langle c, x \rangle + q(b)$.

Demo of Boolean-Cayley-graphs

CoCalc: Public worksheets, Sage and Python source code http://tinyurl.com/Boolean-Cayley-graphs

GitHub: Sage and Python source code

https://github.com/penguian/Boolean-Cayley-graphs

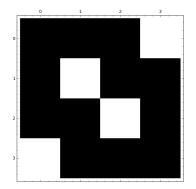
SourceForge: Documentation

https://boolean-cayley-graphs.sourceforge.io/

Boolean-Cayley-graphs: exploring Bent functions and their Cayley graphs Computational results for low dimensions

For 2 dimensions: ET class $[f_{2,1}]$

One extended affine class, containing the extended translation class $[f_{2,1}]$, where $f_{2,1}(x) := x_0 x_1$.

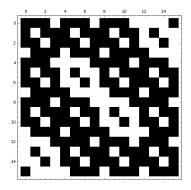


 $[f_{2,1}]$: 2 extended Cayley classes, 2 General Linear classes

Boolean-Cayley-graphs: exploring Bent functions and their Cayley graphs Computational results for low dimensions

For 4 dimensions: ET class $[f_{4,1}]$

One extended affine class, containing the extended translation class $[f_{4,1}]$, where $f_{4,1}(x) := x_0x_1 + x_2x_3$.



 $[f_{4,1}]$: 2 extended Cayley classes, 2 General Linear classes

(日) (周) (日) (日) (日) (0) (0)

Boolean-Cayley-graphs: exploring Bent functions and their Cayley graphs Computational results for low dimensions

For 6 dimensions: ET classes

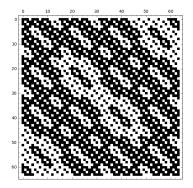
Four extended affine classes, containing the following extended translation classes:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

(Rothaus 1976; Tokareva 2015)

Boolean-Cayley-graphs: exploring Bent functions and their Cayley graphs Computational results for low dimensions

ET class $[f_{6,1}]$

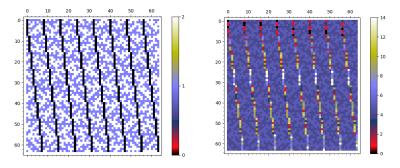


[*f*_{6,1}]: 2 extended Cayley classes, 2 General Linear classes

<ロ> (四) (四) (三) (三) (三) (三)

Boolean-Cayley-graphs: exploring Bent functions and their Cayley graphs <u>Computational</u> results for low dimensions

ET class $[f_{6,2}]$

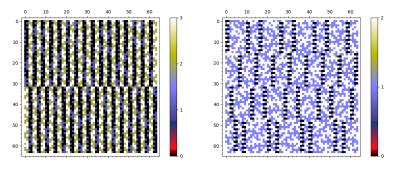


 $[f_{6,2}]$: 3 extended Cayley classes $[f_{6,2}]$: 15 General Linear classes

Since $f_{6,1} \equiv f_{6,2}$, the Cayley graph for extended Cayley class 0 is isomorphic to the Cayley graph for class 0 of $[f_{6,1}]$.

Boolean-Cayley-graphs: exploring Bent functions and their Cayley graphs Computational results for low dimensions

ET classes $[f_{6,3}]$ and $[f_{6,4}]$



[f_{6,3}]: 4 extended Cayley classes, 4 General Linear classes

 $[f_{6,4}]$: 3 extended Cayley classes, 3 General Linear classes

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへ(?)

Preprint, source code and documentation

Preprint: Paul Leopardi, Classifying bent functions by their Cayley graphs, arXiv:1705.04507 [math.CO]. Revised, December, 2023.

CoCalc: Public worksheets, Sage and Python source code

http://tinyurl.com/Boolean-Cayley-graphs

GitHub: Sage and Python source code

https://github.com/penguian/Boolean-Cayley-graphs

SourceForge: Documentation

https://boolean-cayley-graphs.sourceforge.io/

Boolean-Cayley-graphs: exploring Bent functions and their Cayley graphs -Source code, references, acknowledgements

References (1)

- 1. A. Bernasconi and B. Codenotti. Spectral analysis of Boolean functions as a graph eigenvalue problem. *IEEE Transactions on Computers*, 48(3):345–351, (1999).
- A. Braeken. Cryptographic Properties of Boolean Functions and S-Boxes. PhD thesis, Katholieke Universiteit Leuven, Belgium, (2006).
- **3.** A. Brouwer, A. Cohen, and A. Neumaier. *Distance-Regular Graphs*. Ergebnisse der Mathematik und Ihrer Grenzgebiete, vol. 18. Berlin, Heidelberg, [Germany] : Springer-Verlag, (1989).
- 4. L. Budaghyan, C. Carlet, and A. Pott. New classes of almost bent and almost perfect nonlinear polynomials. *IEEE Transactions on Information Theory*, 6;52(3):1141-52 (2006).

Boolean-Cayley-graphs: exploring Bent functions and their Cayley graphs -Source code, references, acknowledgements

References (2)

- 5. J. F. Dillon. *Elementary Hadamard Difference Sets.* PhD thesis, University of Maryland College Park, Ann Arbor, USA, (1974).
- 6. O. S. Rothaus. On "bent" functions. *Journal of Combinatorial Theory, Series A*, 20(3):300–305, (1976).

7. N. Tokareva. *Bent functions: results and applications to cryptography.* Academic Press, (2015).

Acknowledgements

Robin Bowen, An Braeken, Nathan Clisby, Robert Craigen, Joanne Hall, David Joyner, Philippe Langevin, Matthew Leingang, William Martin, Padraig Ó Catháin, Judy-anne Osborn, Dima Pasechnik, William Stein, Natalia Tokareva, and Sanming Zhou.

Australian National University. University of Newcastle, Australia. University of Melbourne. Australian Government - Bureau of Meteorology. National Computational Infrastructure. ACCESS-NRI.

SageMath, CoCalc, Bliss, Nauty, MPI4py, SQLite3, DB Browser for SQLite, PostgreSQL, Psycopg2.